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O iloéci réznych zer iloczynu wielomianu i jego kolejnych pochodnych

06 omeHKe uKMcia Pa3JINYHEX HyJell mpou3BeAeHUA MHOTOYJIEHA U Oro MOCJeJ0BaTelNb-
HHX NPOM3BORHKIX

0. Let p(2)(= p(2)) be a polynomial of degree » and let p"(2)

denote the j-th derivative of p(z). How many distinct zeros does the
n—1

product P(z) = [] p(")(z) have ? This is the essence of a question asked
1=0

by T. Popoviciu. We wish to investigate this problem in the present
paper. In § 1 we consider polynomials whose zeros are all real. In § 2 we
allow the zeros to be complex.

The notation “f(z) ~ g(z)” will stand for “f(z) is a constant multiple
of g(2)".

1.0 Let x,,x,,...,2, be the distinct zeros of a polynomial p(z)
of degree n with only real zeros. We suppose z, < &, < ... < @,,. If n; is
the multiplicity of the zero at z; then

m

p@ ~ [[@—a)n, m =mn
j=1

i=1

According to Rolle’s theorem there is at least one zero of p!"(x) in
each of the m —1 intervals (z;,%;,,), j =1,2,...,m—1. But taking
multiplicity into account p” (x) has a total of » —m zeros at the points
w;, j =1,2,...,m. This means that only m —1 of its zeros remain to be
accounted for. Hence p” () has one and only one zero (necessarily
simple) in each of the intervals (z;,2;.,), j =1,2,...,m—1.
We find this observation very useful in our study of the above question
for polynomials with only real zeros.
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1.1 If the zeros of p (2) are coincident then P (z) has only one distinct zero.

1.2 Let p(2) be a polynomial with noncoincident zeros. If [a, b] is
the smallest interval containing all the zeros of p(z) then both a and b
are zeros of p(z). Let k be the multiplicity of the zero at @ and ! the multip-

n-1
licity of the zero at b. Since the product (+1) [] p"’(a+ b—z) has the
j=0

same number of distinct zeros as the product P(z) = [] p"(2) we may
j=0
agsume k < I. Besides, if

f)y=p ( bt 3 ;—-(a—_ bl{) then P(z) =ﬁp<i)(z) and F(z) =Hf(n(z)

have the same number of distinct zeros, and hence there is no loss of
generality in assuming ¢ = —1, b =1°

1.2.1 In the case when k+1= n, i.e. p(2) has two distinct zeros, we
distinguish the following subcases.

i) pe) ~ (24+1)(z—1)",

il) ple) ~ (z+1)(z—1)"""

iii) p(2) ~ (z+1)*(2—1)" where 3 <k <1,

iv) p(2) ~ (z+1)*(z—1)" where k =1 = n/2.

1.2.1. (i). If p(2) ~(2+1)(z—1)""' then for j=1,2,...,0—2
the j-th derivative p’(z) has a zero of multiplicity » —1—j at 1 and
a simple zero at — 1 + 2j/n. Hence along with the zero (n—2)/n of p™~!(z)

n-1
the product || p”(z) has precisely n+1 distinct zeros.
j=0

1.2.1. (ii) If p(2) ~ (2+1)*(2 —1) then elementary direct calculation
shows that P(z) has 5 (= n+1) distinct zeros.

Now let p(z) ~ (2+1)*(z—1)""* where n > 5. Then

PV (2) & {nz 4 (n—4)}(z+1)(z—1)"3,

pP(2) ~ {(n(n—1)22+2(n—1)(n—4)z+n*—9n +16}(z—1)" 4,

P (2) ~ {n(n—1)2 +2(n—1)(n—6)z+ (n—4)(n—9)}(z—1)" %,
whereas

p¥(2) ~ nz+ (n—6) or ~ {(n(n—1)2"+2(n—1)(n—8)z+ (n* —

—17n+64)}(z—1)""°
according as n = b or » > 6.
The product p(z)p" (2) has 3 distinct zeros, namely —1, —(n —4)/n,
+1. The second derivative p*) (z) has a simple zero ¢, in the open interval
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(—1, —(»—4)/n) and a simple zero ¢, , in the open interval ( — (n» —4)/n, 1).
Thus the product p (2) p'* (2) p'® (2) has 5 distinet zero. The third derivative
p® (2) has a simple zero ¢;, in the open interval (¢, ,, ¢,,), a simple zero
¢y, in the open interval (¢,,,1) and a zero of multiplicity » —5 at 1 if
» > 6. By direct substitution we see that p®( — (» — 4)/n) # 0, i. e. neither
€3, DOT ¢;, can be equal to —(n — 4)/n. Ience neither of the two numbers
Cs1) €5, 18 @ zero of p(z)p™ (2)p® (z). The product p(2)p™ (2)p® (z)p™ (2)
has therefore 7 distinct zeros. If » — 5 then p¥(2) has only one (simple)
zero at —(m— 6)/n which is obviously not a zero of p"® (z). It can be
verified directly that it is also not a zero of p(z) or of p?(z). Hence
4
the product P(z) = [] p¥’(z) has 8 (= m-+3) distinct zeros. If n > 6
=0
then p* (2) has two simple zeros ¢,,,¢,, in the open interval (—1,1).
In fact, ¢,, lies in the open interval (c,,, ¢, ,) whereas ¢, , lies in (¢, ,, 1).
Both these zeros are different from — (n —4)/n since p*( — (n —4)/n) 5 0.
They are also different from the two zeros of p'” (). In fact, p®(8) = 0,
p®(B) = 0 imply that § =1 or § = —(n—6)/(n—1). But since

P —(n—6)/(n—1)) # 0,

p®(z), P (2) have no common zero except possibly 1. It fololws that
the product p(z)p"(2)...p" (2) has 9 distinct zeros. In particular, if

= 6 then P(z) has at least »+ 3 distinet zeros. If » = 7 then for 5 <j
< m—2 the largest zero ¢;, of p”)(2) in the open interval (—1, 1) is simple
and ¢;_,, < ¢;,. Hence the product p(2)p"(2)p® (2)...p" ?(2) has at
least 94+ (n—2—-5+1) =n+3 distinct zeros.

1.2.1. (iii). If p(2) ~ (2+1)*(¢—1)" where 3 < k < I then
pV(2) &~ {(k+Dz+(1—k)} (2 + 1) (2 —1),
pP () ~ {(k+)(k+1-1)F +2(k+1-1)(1— k)2 + (1 —k)* —k—
—Bz+ 1) % (2 —1)7,
PP (2) ~ (k(k—1)(k—2)(2—1)+3kl(k—1)(c—1)*(2+1) +
3H(I—1)2—1)(z+ 1) +1(1—-1)(1—2)(z + 1)} (z + 1) (2 —1)",
whereas
P (2) ~ {241(z2—1)* +361(1—1)(z2 —1)* (2 +1)+121(1 - 1) (1 —2)(z — 1) (2 +

1P HIE—1)(I—-2)(—3) (e + 1}z — 1)
or
~ {k(k—1)(k—2)(k—3)(z— 1) + 4kL(E —1)(k —2) (2 —1)* (2 + 1)

—6kl(k+1—kl—1)(z—1)*(2+1)* +4kl(I—1)(1—2)(2—1)(2+1)*+
FI0—-1)(1—2)1—=3)(z+ 1)} (z+ L) 4 (z—1)*
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according as k = 3 or k > 3. The product p(2)p"(2) has 3 distinct zeros
namely —1, — (I —k)/(l+%), 1. The second derivative p'?(z) has a simple
zero y;, in the open interval (—1, —(l—k)/(l+k)) and another simple
zero y,, in the open interval (—(l— k)/(1+ k), 1). The product
p(2)p™ (2)p® (2) has therefore 5 distinct zeros. The third derivative p©®)(z)
has a simple zero in each of the open intervals ( —1, ¢,,), (¢, ¢, 5), (€55, 1).
Nono of these zeros can be equal to —(I—%k)/(l+k) since p®(—(1—k)/
[(1+k))# O if k-~ Il which is in fact the case. Thus the product p(z)x
pV(2)p® (2)p® (2) has 8 distinct zeros. The fourth derivative p*(z) has 3
or 4 simple zeros in the open interval (—1, 1) according as k = 3 or k > 4.
It is clear that none of these zeros can be a zero of p® (z). Besides, it is
easily checked that p®(—(1—%k)/(I+k)) # 0 and hence p™(z), p™ (z)
have no zero in common except possibly —1,1. Now we wish to show
that the zeros y,,, y,, of p* (2) cannot both be zeros of p!* (z). Suppose
if possible that both y, ;, 7, , are zeros of p!* (z). Then

P2 = {(E+D(k+1—1)2+2(k+1—1)(I—k)z+ @ — kY —k— 1} ,(2)

where ¢,(2) is a polynomial. But
d2
PP ~ 5 {EHDEHI-1)Z +2(k+1-1)(1—b)z+ (k) ~k—1) x

X(z+1)?(z—1)"%] = [2(k+l)(k+l- V(-1 +2{2(k+)(k+1-1)
+2(k+1-1) }{(k+l—4)z+ (I—k)}] x
x(z+1)"‘3(z—1)"’+{(k+l)(k+l— )2 +2(k+1—1)(1—k)z+

+ -k —k—1} -:?- {z+ 1)tz —1)-*)
Hence
[2(k+)(k+1—1)( —1)+2{2(k+ 1) (k+1—1)z+2(k+1—1)(1—k)}
X{(k+1—4)z4+ (1 -k} )z +1) 2 (2 —1) " = {(k+ 1) (k+1-1)2* +2(k+
+i-1)(I—k)z+(1—k}—k—1}g(2)

where g¢,(2) is again a polynomial. This is possible only if (k+41)(k+
H1—1)(2k+ 21 —T) 2 + 4 (k+1—1) (I —k) (k+1—2)z+ (k+1—1){2(L — k)* —
—k —1} is a constant multiple of (k+1)(k+1—1)2* +2(k+1—1)(1—k)z+
+{(l—k)*—k—1}. But such is not the case as one can easily sce. Thus
the product p(z)p!"(z)... p¥(2) has at least 10 distinct zeros if & = 3
and at least 11 distinct zeros if ¥ > 4. In particular if ¥ = 3, I= 4 then
P(z) has at least 10 (= n + 3) distinct zeros. If ¥ = 3 and 1 > 5 then for
5 < j < n—3 the largest zero y;, of p’(2) in the open interval (—1,1)
is simple and p'”(y, ;) # 0 for ¢ < j. Hence the product P(z) has at least
104+ (n—3)—5+1 = n+3 distinet zeros. If ¥ = 4 then for 5 <j<n—4
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the largest zero y;, of p(2) in (—1,1) is simple and p¥(y,,) # 0 for
i < j. Hence again the product P(2) has at least 11+ (n—4)—5+1 = n+3
distinet zeros. If k > 5 then for 5 < j < k the smallest zero y;, and the
largest zero v, ;0f p¥ (2) in (—1,1) are simple and p” (y,, l) ;& 0, p(y; ;) #0
for i < j .Besides, for k < j < I the largest zero y;, of p¥)(2) in (—1,1) is
simple and p“)(y,,k) # 0 for ¢ < j. Hence the product P(z) has at least
11 +2(k—5+1)+1—Fk = n+3 distinct zeros.

1.2.1. (iv). Let p(z) ~ (& —1)"2.

If » = 6 then p'"(z) has a double zero at each of the points —1, 1
and a simple zero at the origin. The second derivative has a simple zero
at each of the points —1, —1 /1/5, 1/V5, 1. The third derivative vanishes
at the points —V(3/5), 0, V(3/5), the fourth at —1/V5, 1/¥'5, whereas
the fifth derivative vanishes at the origin. Hence P(z) has precisely
7 (= »+1) distinet zeros.

Now let n = 2k where k > 4. The polynomial p” (z) has zeros of multi-
plicity k—1 at the points —1, 1 and a simple zero at the origin. The
second derivative p'? (z) has zeros of multlphclty k—2at —1,1 and simple

zeros at y,, = —1/I/(2k 1), 50 = 1/V( 2k 1) The third derivative
p® (2) has zeros of multiplicity ¥k —3 at —1, 1 and simple zeros at y;, =
= V{3/(2k—1)}, y5,= 0, 7,5 = V{3/(2k—1)}. Now we note that p'¥(z)
which is a constant multiple of (¢* —1)* *{(2k —1)(2k —3)2* — 6 (2k — 3)7*
+ 3} has four simple zeros v, ,, ¥5,, Y43, ¥s.s i the open interval (—1,1)
and none of these zeros is a zero of p)(z),j < 4. Hence the product
p(2)p™ (2) ... p¥(2) has 11 distinct zeros. This implies that if k¥ = 4 (i. e
7 = 8) then P(2) has at least » 4 3 distinct zeros. If k > 5 thenfor 5 <j < k
the smallest zero y;, and the largest zero y; ; of p'’ (2) in (—1, 1) are simple
and p¥ (y;,) # 0, p" (9;,;) #0,1<j. Hence the product p(2)p™" (2)...p*(2)
and a fortiori P(z) has at least 11+2(k—5+1) = n+3 distinct zeros

122, Let k+1 =n—1.

First we consider the subcase k =1, =#»—2, i.e. —1,1 are

supposed to be zeros of p(z) of multiplicity 1, » —2 respectively. Let ¢
be the zero of p(2) which lies in (—1, 1). Then for n > 5:

p(2) ~ (2+1)(z—0c)(2—1)" %,
pM(2) & [n22+{—(n—1)e+(n—3)}z—(n—3)c—1)(z—1)" 7,
P (2) ~ [n(n—1)22+ {—(n—1)(n—2)c+ (n—1)(n—6)}z—(n—2)
X(n—5)e—2(n—3)](z—1)""*,
pM(2) ~ [n(n—1)22+ {—(n—1)(n—3)e+(n—1)(n—9)}z— {(n—3) X
x (n—T)e+3(n—5)})(z—1)""".
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The polynomial p (z) has 3 distinct zeros. The derivative p")(z) has a simple
zero ¢, , in the interval (—1, 0) and another simple zero ¢, , in the interval
(¢,1). The second derivative p®(z) has a simple zero ¢,, in the interval
(€15 €12) and another simple zero e;, in the interval (c,,, 1). However,
if ¢ = —(n—3)/(n—1) then ¢,, = ¢ and p*(z) contributes only one
new zero to the product p(z)p™ (2) p® (2). Thus the product p(z) p™ (2) p*)(2)
has 6 or 7 distinct zeros accordingas¢ = —(n—3)/(n—1)orec #* —(n—
—3)/(n—1). Now if ¢ = —(n—3)/(m—1) then p®(2) has a simple zero
¢;, in the interval (¢, ¢,,) and a simple zero ¢;, in the interval (c,,, 1).
It is clear that c;, is necessarily a new zero. Also ¢;, is a new zero. For
it is clearly not a zero of p(z) or of p®(z). Besides, if it were a zero of
p"(z) then pW(ec;,) = 0, p®(c;,) = 0 would together lead to the conc-
lusion that ey, = —(2n* —13n+17)/{(» —1)(2n —3)}. Thus we would
have
— (20 =13 +1T){(n—1) (28 —3)} =¢;, =€, = —{(n—1)(n—3)—

~V(5n—9)(n—1)} /{n(n—1)}
or
(2n—3W(5mn—9)(n—1) = 2n*+n—9,

which is false for # > 5. Hence the product p(2)p™ (2)p® (z)p™ (2) has 8
distinet zeros. In case ¢ # —(»—3)/(n—1) it is enough for our purpose
to observe that the largest zero of p®(z) in (—1,1) is not a zero of
p(2)p"(2)p®(2) and therefore p(z)p™” (2)p® (2)p™(2) has at least
8 distinct zeros. For 4 < j < n—2 the largest zero of p”)(z) in the open
interval (—1, 1) is simple and is not a zero of the product p(z)p™”(z)...
...pY7Y(2). Consequently the product p(2z)p™(2) ... p"~?(z) and a fortiori
P(z) has at least 8 +(n —2 —44+1) = »+ 3 distinct zeros.

If » =4 then direct calculation shows that P(2) has 7(= n+3)
distinct zeros if ¢ = —1/3 or 1/3; otherwise it has 8 distinct zeros.

If » =3 then P(2) has 5 or 6 distinct zeros according as ¢ = 0 or
c #0.

Now we consider polynomiuls of the form (z+1)*(z—¢)(z—1)"*!
where 2<k<n—k—1, —1<c¢<1 We have

pW(z) ~ w2+ {(n—2k—1)—(n—1)c}z—1—
—(w—2k—1)e](z+ 1) (z—1)"F-2,

PPR) ~ [B(n—1)2+ (n—1){2(n—2k—1)—(n—2)c}2* + {(n — 2k —1)* —
—3(n—1)—2(n—2)(n—2k—1)c}z—2(n—2k —1) — {(n— 2k —1)* —
—n+1}e](z+ 1) 2 (z—1)" %3,
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The first derivative p)(z) has a simple zero ¢,, in the open interval
(—1,¢) and a simple zero ¢,, in (¢, 1). The second derivative p®(z) has
a simple zero ¢,, in (—1, ¢,,), a simple zero ¢,, in (¢, ¢, ;) and a simple
zero ¢,; in (¢, z,1). However, ¢,, =¢ if ¢ = —(»n—2k—1)/(n—1).
Hence the product p(z)p™(2)p™® (2) has 7 distinct zeros or 8 distinct
zeros according as ¢ = —(n—2k—1)/(n—1)orc¢ # —(n—2k—1)/(n—1).
Now if k=2, ¢ # —(n—2k—1)/(n—1) then for 3<j<n—3 the
largest zero of p(z) in the open interval (—1, 1) is simple and is not
a zero of p¥(z) for i < j. Hence the product p(2)p"(z)... p™ ¥ (z) has
at least 8 +n —3 —3+1 = n+ 3 distinct zeros. If k >3, ¢ # —(n—2k —
—1)/(n—1) then for 3 < j < k the smallest zero of p"(z) is simple and

is not a zero of p®(2) for i < j; the same is true of the largest zero of
n—k—1

pP(z), 3<j<mn—k—1in (—1,1). Hence the product [] p“’(z) has
i=0

at least 8 4+k—3+14+n—k—1+4+3+4+1 = -+ 3 distinct zeros. We remark
that the third derivative p'®(z) has a simple zero in each of the intervals
(€14 €)y (€, €33) but we have ignored these zeros to allow the possibility
that they may be zeros of p(z)p" (2). We verify that if ¢ = —(n —2k—1)/
/(n — 1) then they cannot both be zeros of p(2)p™" (z). It is clear that neither
of the two is a zero of p(z). If both are zeros of p™ (z) then we must have

w(z+ 1 z—1)" 2t 2 nz 4+ (n—2k 1)} {(n—3)z+ (n—2k —1)} (2 +
+ 1z —1)"* = (0 4+ 2(n—2k—1)2— 1+ (n — 2k —1)2/(n — 1)} A (2).
where A (z) is a polynomial. This is possible only if

n(2n—>5)2" +2(2n —3)(n—2k —1)z2—n+2(n — 2k — 1)*
~ n +2(n—2k —1)2 —1 4+ (n—2k + 1)*/(n —1).

But this is obviously false unless n = 5, k¥ = 2. Excluding this latter
case we may now argue as above to conclude that the product P(z) has
at least n + 3 distinct zeros. In the case just excluded P(z) has 7(= n+2)
distinct, zeros.

1.2.3. Now let k+1 < n—2.

In this case I = max(k,l) <#n—3. For k<j<n—2 the smallest
zero a? of p')(2) is simple and

=il = a(k) < a(k+l) e a(?l—2).
Besides, for 1 <j<n—2 the largest zero b" of p") (2) is simple and

1 o b a0t my, b0 Seditly

Thus the product p(2)p® (2)... p" ?(2) has at least 2n—%k—1 distinct
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zeros, namely, —1,a™®, a**D . 5 a™2 p-2 pin=3 p® 1. Inclu-
ding the zero (a™ ®+b""?)/2 of p™~!(z) the product P(z) has at
least n+ 3 distinct zeros.

The following theorem summarizes our discussion of polynomials
with only real zeros.

Theorem 1. If p(z) is a polynomial of degree n with real zeros then
the product P(z) = p(2)p(2)... p"""V(2) has
i) 1 distinct zero if p(2) ~ (2 —a)",
ii) m 41 distinct zeros if p(2) ~ (z—a)(z2—b)""" or p(2) ~ (z—a)2(z—
—b)2 or p(2) ~ (2—a)*(2—b)?,
iii) » + 2 distinct zeros if p(z-+b) 18 a constant mulliple of z(2*— a?)
or of z(2®— a?)? for some b,
iv) at least n+ 3 distinct zeros in any other case.
In the above theorem we only need to assume that the zeros of p(z)
are collinear.

2.0 Now we wish to consider polynomials whose zeros are not collinear.
Let us denote the convex hull of the zeros of p(z) by H,. According to
Gauss-Lucas theorem

H,2 H,m=2...2 Hyn-n.

If the zeros of p'*~"(2) are not collinear, p*) (&) = 0 for some &e OH k-1
and some k (1 < k <n—1) if and only if £ is a multiple zero of p"*~"(z)
(2(2) = p(2)).

We note that if H(z,,...,2,) i8 the convex hull of the points z,, ..
..oy 2,€C and v,, ..., v, are the vertices of H(z, ..., 2,) then {v,, ..., v;}
R O

The centroid of the zeros of a polynomial is invariant under differen-
tiation. This trivial fact will be often used without being mentioned
explicitly. We shall assume the origin to be the centroid of
the zeros of p(z). This will not involve any loss of generality since
for any given a the product p(z+a)p®(z+a)... p"" V(z+a) has the
same number of distinct zeros as p(2)p™(2)... p" V(2).

Definition. A polynomial p(z) = Y a,2*, a, # 0, will be said
K=o

to belong to the class £, if a, , = 0, i. e. the origin is the centroid of the
zeros of p(z). The subclags 2(°) will consist of those polynomials whose
zeros are collinear whereas the polynomials with noncollinear zeros will
form the subclass #N),

In the sequel we shall make extensive use of the following corollary
of Theorem 1.
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Corollary 1. If p(z)¢ 2O then P(z) = p(2)p"(2)... p"V(2) has
i) 1 distinct zero if p(2) ~ 2",
ii) n+1 distinct zeros if p(z) ~(z—a){z+a/(n—1)}"" or
p(2) = (2 —a)*(z+a)? or p(2) ~(2—a)*(z+a)’,
iii) n»+2 distinet zeros if p(z) ~ 2(22—a?) or p(2) ~ z(22— a?)3,
iv) at least n+ 3 distinct zeros in any other case.

Lemma 1. If f(2) i3 a polynomial of degree m -1 such that fV(z) ~ 2™ —
—a™ for some a # 0 then the product f(2)f) (2)f® (2) has at least 2m distinct
2€708.

Proof. The polynomial f(z)is a constant multiple of 2™*! — (m +1)a™z +
+ b for some b. Hence if f(z), fY(2) have a common zero it is necessary
but not sufficient that it be equal to b/(ma™). In fact, there is no common
zero if b = 0 for the simple reason that f)(0) # 0, i. e. f(2), f(2) have
no common zero if the only zero of f¥)(z) is a zero of f(z). Except possibly
for one double zero all the zeros of f(z) are therefore simple and we readily
see that the product f(z)f™ (2)f* (z) has at least 2m distinct zeros.

Remark 1. Given a polynomial p(z) of degrec = the zeros of p*(2)
are coincident if and only if the zeros of p*~" (z) are coincident or form
a regular (n—k+1)-gon. Hence if p(2)# 2" —a" and p* (2) ~ 2" * then
p(2)p™(2) ... ¥ (2) has at least 2(n—k+1) distinct zeros.

Lemma 2. Let p(z) be a polynomial of degree n. If for some k (1 <k
<n-—2)

P(k)(z) ~(z—a)1(2=b)" a #£b, %, >1, #y>1, n+n, =n—k,
then p*~"(2) can vanish at most once on the straight line segment joining
the points a, b. The product p*~ 1 (2)p® (z) ... p"V(2) has at least n, + 2n, +
+1 distinct zeros if p*~V(a) =0, at least 2n,+n,+ 1 distinct zeros if
p®-D(b) = 0 and at least 2n,+2n,+ 1 distinct zeros in any other case.
If the zeros of p(z) are not collinear and p¥ (2) ~ (z— a)(z— b)" then P(z)
= p(2)pM(2) ... "V (2) has at least 2(n,+ 1) distinct zeros.

Proof. We may clearly assume a, b to bereal anda < b. If p* " (¢) = 0
for some ce [a, b] then p* " (x) is real for real . Now if d # ¢ is another
point of the interval [a, b] such that p*~?(d) = 0 then by Rolle’s theorem
p™(z) must vanish at least once in the open interval I with ¢, d as end
points. But by hypothesis p®(z) + 0 in (a, b). Hence p*~"(z) cannot
vanish more than once on [a, b).

According to Corollary 1 the product p™ (2)p*"V(z)...p" V(2)
has at least n, +n,+ 1 distinet zeros which of course lie on [a, b]. Since
any point other than e, b cannot be a multiple zero of p*~"(z) the product
p*(2)p®(2)... p""(2) has at least m,+2n,+1 distinet zeros if
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p*=Y(a) =0, at least 2n,+m,+1 distinet zeros if p*~V(b) =0, and
at least 2, +2n,+ 1 distinct zeros in any other case.

Now let us suppose that the zeros of p(z) are not collinear and p®(z)
~ (z—a)(z—b)"™. If p*V(b) =0 then p*~"(2) has only one other
zero which must lie at {(n,+2)a—b}/(n,+1). Thus p¥*~Y(2) is of the
same form as p®(z). If again p*~?(b) = 0 then p*~?(z) is also of the
same form as p®(z) and p*~?(2). Since the zeros of p(z) are not collinear
pY(b) cannot be zero for every j such that 0 <j < k—1 (p9(2) = p(2)).
Now if p®(b) # 0 whereas p¥(b) = 0 for i < j < k then except possibly
for one double zero all the zeros of p”(z) are simple and we readily conclude
that p®(2)p®*(2) ... p™Y(2) has at least 2(my+1) distinct zeros.

Lemma 2'. If p(z) i8¢ a polynomial of degree 8 such that p®(z)
a (z—a)*(z+a)® then the product P(z) = p(2)p"(z)... p"(2) has at
least 12 distinct zeros.

Proof. Without loss of generality we may assume a to be real and
positive. If p!)(z) # 0 at z = + a then according to Lemma 2 the product
P(2) has at least 13 distinct zeros. However, if p®(z) vanishes at a (the
case p"'(—a) = 0 is analogous) then

pM(2) ~ (202° +80az® 4+ 1164’z + 64a®) (2 —a)* = 20(z—a){z— (B +
+iy) {z—(B—iy)}(z—a)4y# 0

where a < —a since according to Rolle’s theorem p®(z) has at least one
zero in the open interval joining a, a. It is clear that if p(z) has no real
zeros then at least four of its zeros are simple and are not zeros of the
product p®W(2)p?(2)... p"(2). According to Corollary 1 the product
p?(2)p®(z) ... p(2) has 7 distinct zeros which all lie on the interval
[ —a, a]. Hence P(z) has at least 14 distinct zeros. If p(z) has a real zero
then it (p(z)) must be a polynomial with real coefficients. Since a is a zero
of pV(z) of multiplicity 4 and H, < H_, the polynomial p(z) being
of degree 8 can vanish at a only if

P(2) =~ (z‘_al)(z—(ﬂl+'i)’1))((z_(ﬂ1_i'}’l))(z—a)sy » #0

where a, < a. Hence P(z) has at least 13 distinet zeros. If p(a) = 0 then
P(z) # 0 on the interval (a, a]. Even if p(f+1iy) = 0, p(8 —iy) = 0 there
are two simple zeros of p(z) which are not zeros of p™(2)p®(2) ... p(2).
Hence P(z) has at least 12 distinct zeros. If p(2) has a real zero which
does not lie at a or a then P(z) has at least 13 distinct zeros.

Lemma 2. If p(z) i8¢ a polynomial of degree 8 such that
p®(2) ~ z(2z,—a®)® then P(z) has at least 12 distinct zeros.
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Proof. There is no loss of generality in assuming e to be real and
positive. We may use Rolle’s theorem to conclude that p®(z) can vanish
at most once on each of the intervals [—a, 0], [0, a]. Note that p®(2)
vanishes at —a or a if and only if p¥(2) a (z—a)’(2+a)’ and then by
Lemma 2 the product P(z) has at least 12 distinct zeros. If p®(+-a) # 0
but p®(0) = 0 then p® (z) has four non-real zeros which form a rectangle.
Since p (2) is of degree 7 all the vertices of H , cannot be zeros of " (z),
ie. H , is a proper subset of H . Hence 2V (2)p? (2)... p(2) has at
least 12 distinct zeros. If p®(+a) # 0 and also p»(0) # O then at least
five simple zeros of p®(z) do not lie on [—a,a] and the product
p(2)p® (2)...p"(2) has at least 12 distinct zeros.

Lemma 3. If f(z) ~(2— A)*(2— B)}(z—C)* and C is a root of the
equation 32°+1562+10 = 0, then f®(z) cannot be a constant mulliple of
2 (328 +152+29).

Proof. According to hypothesis f(C) =0, f(C) =0. Hence if
f®(2) ~ 2*(32° +152+20) then f(2) must be a constant multiple of

21+ T2+ 142° — (70% 4- 42C° 4+ 70C*) 2+ 6C" + 35C° + 56C°

which is easily seen to be different from (2 — A)*(2 — B)*(z2—C)* whatever
A, B may be.

Lemma 4. If p(2) ~(2—0,)'(z—0.) (=0, e %O then p®(2)
cannot be a constant multiple of (z— a)®(32* + 9az + 8a®).

Proof. Let f(2) = p(az+a). If p®(2) ~ (z—a)*(32*+ 9az+ 84*) then
f¥(2) is a constant multiple of 2°(32> + 16z 4 20) and

f(2) &~ 2+ 82" +(56/3)2° + 42> + uz + v

for some 4, u, ». It can be directly verified that 2°-- 82"+ (56/3)2° + A2* +
+ uz+» is never of the form (z— a)? (z—B)* (z—y)® whatever 4, u, v may
be. This contradicts the fact that p(z) is a constant multiple of (z— v,)*
(z—03)° (z2—0y)".

The next lemma is trivial.

Lemma 3. If a vertex v of H, i8 a zero of p(z) of multiplicity k then
H,,m i8 a proper subset of H,. The point v does not belong to H,,(i) Jor k<j
<n-—1.

n-1

If p(2) ~2"—a" for some a # 0 then P(z) = [| p¥(2) has n+1

3=0

distinct zeros. In future we shall exclude these polynomials from our
consideration.
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2.1 Let p(2)e 2, N, p(2)# 2 —a’. Since the zeros of p(z) are
not collinear they must be simple and different from 0. Now let us note
that p¥(z) has two distinct zeros d, —d whereas p®(z) vanishes at the
origin. Hence P(z) has 6 distinct zeros.

2.2 Now let p(2)e 2O, p(2) #2* —a'. Since pV(z) 2’ the product
pM(2)p® (2)p® (2) has at least 4 distinct zeros. Hence if three or more
of the vertices of H, are simple zeros of p(z) the product P(z) = p(z) x
pM(2)p® (2)p® (2) has at least 7 distinct zeros. Only those polynomials
which have one double and two simple zeros are not covered. So let p(z)
~ (z—9,)*(2 —v;)(z—v;). We observe that p(z) cannot be a constant
multiple of z(z* — a?). For otherwise #, must be equal to a or —a, i. e.
pW(2) ~ z(* —?) and p(2) ~ (& —2})* which is a contradiction. Hence
P(z) has at least 8 distinct zeros unless p")(2) is a constant multiple of
22 —a’ or of (z—a)(2z+a/2)’. In the latter two cases p(z) ~ 2* —4b*2+3b*
(b is one of the cube roots of a*), p(z) ~ 22* —3a’2* — 2a’z + 3a* respecti-
vely, and P(2) has 6 distinct zeros.

We therefore have the following theorem.

Theorem 2. If p(2) e #, then P(z) has
i) 1 distinct zero if p(2) ~ 2*,
ii) 5 distinct zeros if p(2) ~(2—a)(z+a/3) or p(2) ~ (2—a)
xX(z+a) or p(2) ~ 2*—a',
iii) 6 distinet zeros if p(z) ~ 2*—4a’2+3a* or p(2) ~ 22*—3a’2* —
—2a*z + 3a’,
iv) at least 7 distinct zeros in any other case.

2.3 Let p(2)e 20, p(2z) % 2 —a’. Since p"(2) s 2* the product
pM (2)p?® (2) p® (2)p® (2) has at least 5 distinct zeros. Hence if three or
more of the vertices of H, are simple zeros of p(z) the product P(z) =
=p(2)pV(2)... p¥(2) has at least 8 distinet zeros. This is surely the
case if H,, is a pentagon or a quadrilateral.

If H, is a triangle and two of its vertices are double zeros of p(2)
then H,, can neither be a square nor a straight line segment. Hence
P(2) has at least 8 distinct zeros unless p!"(z) happens to be a constant
multiple of 2*—4a’z+3a' = (2 —a*)(* +2az+ 3a®) or of

228 —3a’2 —2a’z + 3a* = (2 — a)*(22* + 4az + 34?)
for some a s 0. It is cloar that the two simple zeros of p'"(z) must
come from the two double zeros of p(z). Thus we respectively have
i) p(2) ~ (2—b)(*+ 2az +3a%)2, pV(2) ~ (2— a)? (&* +2az + 3a®)

ii) p(2) ~ (2—0)(222 + 4az +3a%?, pV(2) ~ (2 —a)*(22° + 4az +3a?)
for some b. But, neither (¢) nor (ii) can hold whatever b may be.



The number of distinet zeros of the product of a polynomial... 95

Let only one vertex of H, be a multiple zero of p(z). If p!(2) is
a constant multiple of z* —a* or of (2—a)(2+ a/3)* for some a # 0 then
by Lemma 1, Lemma 2 respectively P(z) has at least 8 distinct zeros.
It is readily seen that p®(z2) ~ (z—a)’*(z+a)’ if and only if p(2) ~
(2F a)*(32° +9az + 8a?) and then P(2) has only 7 distinct zeros.

We therefore have the following theorem.

THEOREM 3. If p(z)e # then P(z) has
i) 1 distinct zero if p(z) ~ 2%,
ii) 6 distinct zeros if p(z) ~ (z—a)(2+a/4)* or p(2) ~ 2°—@’,
iii) 7 distinct zeros if p(z) ~ 2(22—a?)? or p(2) ~ (2 —a)3(322+9az+
-+ 8a?),
iv) at least 8 distinct zeros in any other case

2.4 Let p(z)e 2N p(z) % 2°—a’. If pM(2) is a constant multiple
of 2°—a® or of (2—a)(z+a/4)* then by Lemmas 1,2 respectively P(2)
= p(2)pM(2) ... p®(2) has at least 10 distinct zeros. Theorem 3 says
that in any other case p* (2)p® (2) ... p® (2) has at least 7 distinct zeros.
Hence if two or more of the vertices of H,, are simple zeros of p(z) then
P(z) = p(2)p"V(2) ... p® (2) has at least 9 distinct zeros. This is certainly
the case if H, is a hexagon, a pentagon, or a quadrilateral.

Let H, be a triangle »,v,v, and suppose two of the vertices (say
v,, v,) are multiple zeros of p(z). It is clear that H i) cannot be a straight
line segment. Now suppose, if possible, that p® (z) ~ (z—a)® (32 +9az+
+8a?). According to hypothesis p!’(z) vanishes at v,,v,. Hence (32,+
+9az+8a?) = 3(z—v,)(z—v;) and p(z) ~ (322+ 9az+8a2)2A4,(z) where
A,(z) vanishes at », but not at v, or v,. However, it is readily seen the
derivative of (3224 9az + 8a%)24,(z) can never be a constant multiple
of (z—a)*(32%+9az+8a’). Hence in the case under consideration p!’ (2)
# (z—a)’ (32 + 9az 4 8a’). By Theorem 3 the product p™ (z)p®(2) ...
... p® (2) has at least 8 distinct zeros. Since », is not a zero of this product
P(z) has at least 9 distinct zeros.

If none of the vertices of H, is a simple zero of p(z) then each vertex
must be a double zero of p(2). It can be directly verified that if p(2) ~ (2% +
—a®)? then P(z) has 10 distinct zeros. So let p(2) ~ (z—v,)*(2—v,)* (2 —
—,)% p(2) # (2*—a’)’. Tt is clear that the zeros of p™(z) are all simple
and p®(z) # 2*. Hence the product p (z)p® (2) has 9 distinct zeros if
p®(z) ~ 2*—a*. Since p"(2), p”(z) cannot have any common zeros
we may use Lemma 2 to conclude that if p®(z) ~ (z—a)(z+a/3)* or
~ (z—a)*(2+a)* the product P(2) = p(2)p"(2)... p®(2) has at least
9 distinet zeros. In any other case the same conclusion can be drawn from
Theorem 2.

We therefore have the following theorein.
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Theorem 4. If p(z)¢ #, then P(z) has
i) 1 distinct zero if p(z) ~ 2°,
ii) 7 distinct zeros if p(z) ~ (2 —a)(z+a/5)® or p(z) ~ (z2—a)(z+
+a)d or p(2) ~ 2°—ab,
iil) at least 9 distinct zeros in any other case.

2.5 Let p(z)e 2N, p(2) % 2'—a'. If p'V(2) is a constant multiple
of (z—a)(z+a/5)° or of (2—a)*(z+a)® then by Lemma 2 the product
P(z) = p(z)pM(z) ... p(2) has at least 10 distinct zeros. In view of
Lemma 1 the same can be said about the number of distinct zeros of
P(z)) if p"(2) ~ 2°—a®. Theorem 4 says that in any other case p"(2)
x pP(z) ... p'9(2) has at least 9 distinct zeros. Ience if at least one of the
vertices of I, is a simple zero of p(z) the product P(2) has at least 10
distinct zeros. This is certainly the case if H, has four or more vertices.
So let I/, be a triangle and suppose that all its vertices are multiple zeros
of p(z). If p®(2) is a constant multiple of 2° —a® or of (z—a)(z+a/4)
then by Lemmas 1, 2 respectively P(z) has at least 10 distinct zeros.
According to Theorem 3 the product p® (z)p®(z) ... p©(2) has at least 7
distinct zeros in any other case. Thus if all the vertices of H,, are double
zeros of p(z) the product P(z) = p(2)p"V(2) ... ' (2) has at least 10 dist-
inct zeros. If on the other hand, p(z) ~ (2—a)*(z—f)*(2—7)’ the p®)(2)
has a simple zero at y and cannot therefore be a constant multiple of
2(2 — a*)®. Lemma 3 applied to p(z+ a) says that p® (z) cannot be a const-
ant multiple of (z—a)3(322+ 9az+ 8a?) either. Hence by Theorem 3 the
product p® (2)p®(2) ... p'®(2) has at least 8 distinct zeros in this case.
Since a and § are not zeros of this product, P(z) = p(2)p"(2)... p'®(2)
has at least 10 distinct zeros.

We therefore have the following theorem.

Theorem 5. If p(2)e @, then P(2) has

i) 1 distinct zero if p(z) ~ 27,

ii) 8 distinct zeros if p(z) ~ (2—a)(z+a[6)%, or p(z) ~ 2" —a’,
iii) at least 10 distinct zeros in any other case.

2.6 Let p(2)e 209, p(2) % 2 —ab. If p)(2) is a constant multiple
of 2’—a” or of (2—a)(2+a/6)°® then by Lemmas 1, 2 respectively P(z)
= p(2)p™(2) ... p” (2) has at least 14 distinct zeros. By Theorem 5 the
product p® (z)p® (z) ... p”(2) has at least 10 distinct zeros in any other
case. Hence if there exists a vertex of H, which is a simple zero of p(z)
then P(z) = p(2)p™(2) ... p”(z) has at least 11 distinct zeros. If all the
vertices of H, are multiple zeros of p(z) out of which at least two are
double zeros of p(z) we may apply Theorem 4 to p”(2) and conclude
that P(2) = p(2)p" (2)p?(2) ... p"(z) has at least 11 distinct zeros
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except possibly when p?(z) is a constant multiple of z* — a®, of (z—a)(z +
+a/5)* or of (z—a)’(z+ a)’. However, according to Lemmas 1, 2, 2’
respectively P(z) has at least 12 distinet zeros in these exceptional cases.
Finally, let p(2) ~ (z—0,)(z—2,)'(z—w,)’. If pW(2) ~2° or p¥(2)
~ z(2* — a’)* then according to Lemmas 1, 2" respectively the product
P(2) has at least 12 distinct zeros. Besides, if p'*(2) is a constant multiple
of 22—a’ or of (2—a)(2+a/4)* then by Lemmas 1, 2 respectively the
product p®(2)p® (z) ... p?(2) has at least 10 distinct zeros and since o,
is not a zero of this product P(z) has at least 11 distinet zeros. Since Lemma
4 says that p'”(2) cannot be a constant multiple of (z — a)*(32* + 9az + 8a?)
the product p®(z)p™(2)... p""(2) has at least 8 distinct zeros. It is
clear that v,, v,, v; are not zeros of this product. Hence P(2) has at least
11 distinct zeros.
We therefore have the following theorem.

Theorem 6. If p(2)e &, then P(z) has

i) 1 distinct zero if p(z) ~ 2°

ii) 9 distinct zeros if p(2) ~ (z—a)(2+alT)' or p(z) ~2*—a’,
iii) at least 11 distinct zeros in any other case.

2.7 Let p(2)e 2V, p(2) # 2" —a’. There are four possibilities:

1. At least one of the vertices of 1, is a simple zero of p(z).

2. At least two of the vertices of H, are double zeros of p(z).

3. All the vertices of H, are zeros of p(2) of multiplicity < 3.

4. p(2) ~ (2—0) (2 —0,) (2 —vy)".

If p™(z) is a constant multiple of 2z*—a® or of (z—a)(z+a/7)
then by Lemmas 1, 2 respectively P(z) has at least 16 distinct
zeros. By Theorem 6 the product p™(z)p®(z)... p®(2) has at least
11 distinet zeros in any other case. Hence if there exists a vertex
of H, which is a simple zero of p(z) then P(z) has at least 12 dis-
tinct zeros.

If two or more of the vertices of H, are double zeros of p(2) we may
use Theorem 5 in conjunction with Lemmas 1, 2 to conclude that P(z)
has at least 12 distinct zeros.

If p¥(2) is a constant multiple of z*—a® of (z—a)(z+a/5)%, or
of (z—a)3(2+a)® then by Lemmas 1, 2, 2’ respectively the product
P(z) = p(2)p"(2) ... p®(2) has at least 12 distinct zeros. Theorem 4
implies that in any other case p®® (z)p® (2) ... p® (2) has at least 9 distinct
zeros. Hence if all the vertices of H, are zeros of p(2) of multiplicity < 3
the product P(z) = p(2)p"(z) ... p® (2) has at least 12 distinct zeros.
Besides, if p(2) ~ (z—v,)*(z—1,)’(¢—v;)' then P(2) has at least 11
distinet zeros.

We therefore have the following theorem.

7 — Annales
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Theorem 7. If p(2)e &, then P(z) has
i) 1 distinct zero if p(2) ~ 2°,
ii) 10 distinet zeros if p(z) ~ (z—a)(z+a/8) or p(2) ~ 2 —a’,
iii) at least 11 distinct zeros if p(z) ~ (2 —v,)*(z —v,)’ (2 — v,)%,
iv) at least 12 distinct zeros in any other case.

2.8. Let p(2)e ), p(2) # 2"°—a". If p®(z) is a constant multiple
of 2° —a® or of (2—a)(2+a/7)" then by Lemmas 1, 2 respectively P(z)
has at least 16 distinet zeros. Theorem 6 says that in any other case
pP(2)p®(2) ... p¥(2) has at least 11 distinct zeros. Hence if one or
more of the vertices of 11, is a zero of p(z) of multiplicity < 2 then P(z)
has at least 12 distinct zeros. If none of the vertices of I, is a zero of
p(2) of multiplicity < 2 then at least two of the vertices of H, must be
triple zeros of p(z). We may use Theorem 5 along with Lemmas 1, 2 to
conclude that P(z) has at least 12 distinct zeros.

We therefore have the following theorem.

Theorem 8. If p(z) e #,, then P(z) has

i) 1 distinct zero if p(z) ~ 219,

il) 11 distinet zeros if p(z) ~ (z—a)(z+a/9)° or p(2) ~ 2'°—a',
iii) at least 12 distinct zeros in any other case.

2.9 Let p(2)e 2T, p(z) # 2"' —a'. If p(2)® is a constant multiple
of 2 —a® or of (2—a)(z+a/7)" then by Lemmas 1, 2 respectively P(z)
= p(2)pW(z)... p"(2) has at least 14 distinct zeros. Theorem 6 says
that in any other case p®(z)p™ (z) ... p"”(z) has at least 11 distinct
zeros. Since there always exists a vertex of H, which is a zero of p(2)
of multiplicity <3 the product P(z) = p(2)p"(2)... p(2)"” has at
least 12 distinet zeros.

We therefore have the following theoreni.

Theorem 9. If p(2)e #,, then P(z) has
i) 1 distinct zero if p(z) ~ 21,
i) at least 12 distinct zeros in any other case.

2.10. Let p(2)e AYY, p(2) # 22— a2 There are two possibilities:

1. At least one of the vertices of H, is a zero of p(z) of multipli-
city < 2.

2. At least two of the vertices of H, are zeros of p(z) of multi-
plicity < 4.

In the first case we may apply Theorem 8 along with Lemmas 1, 2
to p®@(2) and in the second case Theorem 6 together with Lemmas 1, 2
to p®(2) to conclude that P(z) has at least 13 distinct zeros.

We therefore have the following theorem.
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Theorem 10. If p(2)e #,, then P(2) has
i) 1 distinct zero if p(2) ~ 2'%,
ii) at least 13 distinct zeros in any other case.

Conclusion. We have shown in particular that if p(z) is a polynomial
of degree n < 12 then the product P(z) = p(z)p"(2)... p*~V(z) has at
least » + 1 distinet zeros unless p(z) = ¢(z —a)". It has been conjectured
by Popovicin that the same holds for polynomials of all degree.

STRESZCZENIE

T. Popoviciu postawil hipoteze, ze jezeli p(z) jest wielomianem
ré6znym od ¢(z—a)", to wielomian P(z) = p(2)p’(2)... p" V(2) ma
conajmniej #+1 réinych zer.

Autor uzyskuje kilka rezultatéw, dotyczgceych ilo§ei réznych zer
wielomianu P(z), z ktérych wynika prawdziwoéé hipotezy Popoviciu
dla wielomianéw p(z) stopnia n < 12. W przypadku wielomianéw p(z)
o zerach kolinearnych autor uzyskal dokladniejsze oszacowanie ilofci
r6znych zer wielomianu P(z).

PE3IOME

T. TlomoBUYI0 MOCTABUJI TUIMOTE3Yy: e€CIUM P(2) — MHOTOYIEH, OTIU-
yaomuiica 0T ¢(z—a)", To MHorounen P(z)=p(2)p (2) ... p"" ()
IIMeeT 110 MeHbuleil Mepe n +1 pa3jIMYHRIX HYJIei.

1loyyeHO HECKOIbKO PE3YJIbTATOB, KACAIIUMXCA YUCIA PAIMYHBIX
Hyueil MHorouaeHa P(z), U3 KOTOPBIX BhITCKAeT CIIpaBeVIMBOCTh FMMTOTE3bI
1lomoBMYI0 HJIA MHOTOYJIEHOB P (2) CTenmcHM n<12. B ciy4yae MHOro4JieHoB
P(2) ¢ KOAMHEAPHBIMM HYJIAMM TOJyYeHa JIy4dllad OlleHKAa YMCIa pasjuy-
HBIX HyJeii MHoYouleHa P(z)






