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0 ilości różnych zer iloczynu wielomianu i jego kolejnych pochodnych

Об оценке числа различных нулей произведения многочлена и его последователь­
ных производных

0. Let p (2) (= p(0) (2)) be a polynomial of degree n and let
denote the j-th derivative of p(z). How many distinct zeros does the

n—1
product P(z) — /Jp^(z) have? This is the essence of a question asked 

3=0
by T. Popoviciu. We wish to investigate this problem in the present 
paper. In § 1 we consider polynomials whose zeros are all real. In § 2 we 
allow the zeros to be complex.

The notation “f(z) & g(z)” will stand for “f(z) is a constant multiple 
of g(z)'\

1.0 Let xL, x2, xm be the distinct zeros of a polynomial p(x) 
of degree n with only real zeros. We suppose xx < x2 < ... < xm. If nj is 
the multiplicity of the zero at x} then

p(a?) fj (x-xj)n>, =n.
y=i ?=1

According to Rolle’s theorem there is at least one zero of p^(x) in 
each of the m — 1 intervals (Xj,xj+1), j — 1, 2,..., m — 1. But taking 
multiplicity into account j>(1)(a?) has a total of n — m zeros at the points 
x}-, j = 1, 2, ..., m. This means that only m — 1 of its zeros remain to be 
accounted for. Hence p(1)(x) has one and only one zero (necessarily 
simple) in each of the intervals (x^ Vj+i), j = 1,2,
We find this observation very useful in our study of the above question 
for polynomials with only real zeros.
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1.1 If the zeros of p (z) are coincident then P («) has only one distinct zero.

1.2 Let p(z) be a polynomial with noncoincident zeros. If [a, 6] is 
the smallest interval containing all the zeros of p(z) then both a and b 
are zeros of p (z). Let k be the multiplicity of the zero at a and I the multip-

n — 1
licity of the zero at b. Since the product (±1) / J (a + b — z) has the 

y-o n
same number of distinct zeros as the product P(z) = / / (s) we may

j=0
assume k < Z. Besides, if

/(«) then P(z) =fjp(i)(z) and F(z) =f]fw(z)

have the same number of distinct zeros, and hence there is no loss of 
generality in assuming a — — 1, b = r

1.2.1 In the case when k + l= n, i.e. p(z) has two distinct zeros, we 
distinguish the following subcases.

i) p(z) & (z + r)(z-l)n-\
ii) ?(z)

iii) p(z) & (2 + l)fc(z — 1/ where 3 < k < I,
iv) p(z) & (z + l)k(z — 1)' where k =1 = n/2.
1.2.1. (i). If p(z) & (z + l)(z — l)n_1 then for j — 1,2, ...,n — 2 

the j-th derivative p^(z) has a zero of multiplicity n — l—j at 1 and
a simple zero at — l + 2j/n. Hence along with the zero (» —2)/w of p(n_1)(z) 

n—1
the product / / p(,)(z) has precisely « + 1 distinct zeros, 

y-o

1.2.1. (ii) If p(z) (« + l)2(z — l)2 then elementary direct calculation 
shows that P(z) has 5 ( = n + 1) distinct zeros.

Now let p(z) (z + l)2(z — I)"-’ where «>5. Then

pw(z) {nz + (n — 4)}(3 + l)(« — l)n_3,

p(2)(z) fa {n(n — l)z* + 2(n —l)(n — 4)« + n2 — 9« + 16}(z — l)n_4, 

p(3)(s) «a {n(n —l)z2 + 2(n —l)(n — 6)« + (n — 4)(n — 9)}(z — l)n-s,

whereas
p^(z) & nz + (n — 6) or f&{(n(n — l)zi + 2(n — l)(n — 8)z + (n2 — 

-17« + 64)}(s-l)”-6
according as n = 5 or « > 6.

The product p(z)p^(z) has 3 distinct zeros, namely —1, — (n —4)/n, 
+1. The second derivative p(2) (z) has a simple zero c21 in the open interval
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(— 1, — (» — 4)/») and a simple zero o2>2 in the open interval (— (n — 4)/n, 1). 
Thus the product p(z)p(1,(z)p<2) (2) has 5 distinct zero. The third derivative 
p^(z) has a simple zero c33 in the open interval (c2>1, c2i2), a simple zero 
c3>2 in the open interval (c2>2,1) and a zero of multiplicity n — 5 at 1 if 
n > 6. By direct substitution we see that p(3)( — (n — 4)/») 0, i. e. neither
c3 j nor c32 can be equal to — (n — i)/n. Hence neither of the two numbers 
c3>1, c3.2 is a zero of p(z)p{l} (z)pW (z). The product p(z)p^ (z)pw (z)pw (z) 
has therefore 7 distinct zeros. If n = 5 then p^(z) has only one (simple) 
zero at — (n — 6)/» which is obviously not a zero of p(3)(z). It can be
verified directly that it is also not a zero of p(1)(«) or of pw(z). Hence 

4
the product P(z) — J] p(i)(z) has 8 (=» + 3) distinct zeros. If w > 6 

i=o
then p(i)(z) has two simple zeros c4>1,c4(2 in the open interval ( — 1,1). 
In fact, c4>1 lies in the open interval (c3,, c3>2) whereas c4 2 lies in (c3 2, 1). 
Both these zeros are different from — (n — 4)/n since p(4) (— (» — 4) /») + 0. 
They are also different from the two zeros of p^(z). In fact, p(2)((S) = 0, 
pw(P) = 0 imply that /3 =1 or /3 = — (w —6)/(» —1). But since

p™(-(n-6)l(n-l)) ^0,

p(2) (2), p(4) (2) have no common zero except possibly 1. It fololws that 
the product p(z)p(l}(z)... p(4)(2) has 9 distinct zeros. In particular, if 
n = 6 then P(z) has at least n + 3 distinct zeros. If » > 7 then for 5 < j 
< n — 2 the largest zero cA2 of p(i) (2) in the open interval ( — 1,1) is simple 
and Cj_lt2 < cj2. Hence the product p(z)p^(z)p{2}(z)... p(n~2\z) has at 
least 9 + (» — 2 — 5 + 1) = m + 3 distinct zeros.

1.2.1. (iii). If p(z) fa (2 + 1)* (2 — 1/ where 3 z^k<l then 

p<0(2) {(& + J)2 + (?-fc)}(2 + l)*-1(2-l/-1,
P(J)(2) « {(fc + Z)(ft + Z-l)2I + 2(&+l-l)(Z-fc)2 + (Z-fc)i-ft- 

_Z}(2 + 1)*-1(2-1)?-2,
P<3>(2) «a {fc (fc — 1) (fc — 2) (2 — I)3 + 3ZrZ (Zc — 1) (2 — l)2 (2 +1) +

3 Tel (Z -1)(2 -1) (2 +1)2 + Z (Z — 1) (Z — 2) (2 +1)3} (2 +1)*-3 (2 -1)'-3,

whereas
p<4)(2) « (24Z(2-l)3 + 36Z(Z-l)(2-l)2(2 + l)+12Z(Z-l)(Z-2)(2-l)(2 +

+ 1)2 + Z(Z-1)(Z-2)(Z-3)(s + 1)3}(2-1)'-4 
or

{&(& —l)(fc —2)(ifc —3)(2 —l)4 + 4fcZ(ft —1)(&—2)(2 —1)3(2 + 1) 
-6fcZ(Jfc + Z-H-l)(2-l)2(2 + l)2 + 4fcZ(Z-l)(Z-2)(2-l)(2 + l)3 +

+ Z(Z-l)(Z-2)(Z-3)(2 + l)4}(2 + l)*-4(2-l/-4



86 Qazi Ibadur Rahman

according as fc = 3 or k > 3. The product p (z)pw (z) lias 3 distinct zeros 
namely —1, — (Z — k)l(l + k), 1. The second derivative p(2) (z) has a simple 
zero y2>1 in the open interval ( — 1, — (1 — k)l(l + k)j and another simple 
zero y2>2 in the open interval ( — (I — k)/(l + k), l). The product 
p(z)p(1)(z)p,2)(z) has therefore 5 distinct zeros. The third derivative p<3>(z) 
has a simple zero in each of the open intervals (— 1, c2>1), (c21, c2 2), (c2>2,1). 
None of these zeros can be equal to — (I — k)/(l + k) since p(3)( — (I —k)/

+ 0 if fty=Z which is in fact the case. Thus the product p(z)x
p(1)(z)p<2)(z)p(3>(z) has 8 distinct zeros. The fourth derivative p(4)(z) has 3 
or 4 simple zeros in the open interval (—1,1) according as k = 3 or k'^ 4. 
It is clear that none of these zeros can be a zero of p(3)(z). Besides, it is 
easily checked that p(3)( —(Z —fc)/(Z + fc)) ^0 and hence p(4)(z),p(1)(z) 
have no zero in common except possibly —1,1. Now we wish to show 
that the zeros y2>1, y2>2 of p<J)(z) cannot both be zeros of p(4)(z). Suppose 
if possible that both y21, y2>2 are zeros of p(4)(z). Then

p(4)(z) = {(fc + Z)(fe + Z-l)z2 + 2(fc + Z-l)(Z-fc)z + (Z-^)2-fc-Z}?1(z) 

where q1(a) is a polynomial. But

p(4)(z)
p
dz2 [{(k + l)(k + l — l)zl+2(k + l — l)(l — k)z + (l — k)2 — k — l} x

X(z + l)‘-2(z-l)*-2] = [2(fc + Z)(fc + Z-l)(z2-l) + 2{2(fe + Z)(A: + Z-l)z 

+ 2(Jfc + Z-l)(Z-fc)}{(fc + Z-4)z + (Z-Jfc)}]x
x(z+l)fc-3(z-l/-3 + {(Z: + Z)(fc + Z-l)z2 + 2(Zc + Z-l)(Z-Z:)z +

+ (I - fc)s - k -1} {(z +1)*~2 (z -1)’"2}

Hence
[2(fc + Z)(fc + Z-l)(z2-l) + 2{2(fc + Z)(fc+Z-l)z + 2(fc + Z-l)(Z-fc)} 

x{(fc + Z-4)z + (Z-ft)}](z + l)*-3(z-l)’-3 = {(fc + Z)(fc + Z-l)z2 + 2(& + 

+ Z-l)(Z-fc)z + (Z-Jfc)2-fc-Z}g2(z)

where q2(z} is again a polynomial. This is possible only if (fc + Z)(Zc + 
+Z-l)(2fc + 2Z-7)z2 + 4(fc + Z-l)(Z-A;)(fc + Z-2)z + (fc+Z-l){2(Z-/fc)2- 
— k — Z} is a constant multiple of (fc + Z)(fc + Z — l)z2 + 2(fc + Z — l)(Z — fc)z + 
+ {(Z — k)2 — k — I}. But such is not the case as one can easily see. Thus 
the product p(z)p(1)(z) ... p<4)(z) has at least 10 distinct zeros if k = 3 
and at least 11 distinct zeros if ft > 4. In particular if k = 3, Z = 4 then 
P(z) has at least 10 (— n + 3) distinct zeros. If k = 3 and Z > 5 then for 
5 < j < n — 3 the largest zero y;>3 of p(,)(z) in the open interval ( — 1,1) 
is simple and p(,)(y,j3) =/= 0 for i < j. Hence the product P(z) has at least 
10 + (» — 3) — 5 + 1 = n + 3 distinct zeros. If k = 4 then for 5 < j < n — 4
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the largest zero yj4 of p{r>(z) in (—1,1) is simple and p(<)(yy>4) =/=0 for 
i < j. Hence again the product P(z) has at least 11 + (» — 4) — 5 + 1 = n + 3 
distinct zeros. If ft > 5 then for 5 j ft the smallest zero yjtl and the 
largest zero ywof p{r>(z) in ( — 1,1) are simple andp(,)(yA1) + 0, p(l)(y,->3) + 0 
for i < j .Besides, for ft < j < I the largest zero yj k of p^(z) in ( — 1,1) is 
simple and p^(yj,k) 0 f°r » < j- Hence the product P(z) has at least 
11 + 2 (ft — 5 +1) + Z — ft = » + 3 distinct zeros.

1.2.1. (iv). Let p(z) « (zl — l)nli.
If n = 6 then p{r>(z) has a double zero at each of the points —1,1 

and a simple zero at the origin. The second derivative has a simple zero 
at each of the points —1, — 1/F5, 1//5, 1. The third derivative vanishes 
at the points —V(3/5), 0, ^(3/5), the fourth at —1//5, 1/V5, whereas 
the fifth derivative vanishes at the origin. Hence P(z) has precisely 
7 ( = n +1) distinct zeros.

Now let n — 21c where ft > 4. The polynomial p(1> (z) has zeros of multi­
plicity ft —1 at the points —1, 1 and a simple zero at the origin. The 
second derivative p(2) (z) has zeros of multiplicity ft — 2 at —1,1 and simple 
zeros at y2>1 = — l/I/(2fc — 1), y2>2 = l//(2ft —1). The third derivative 
p^(z) has zeros of multiplicity ft —3 at —1, 1 and simple zeros at y3jl = 
= |/{3/(2ft-l)}, y3,2 = 0, y3>3 = l/{3/(2fc-l)}. Now we note that p(4)(z) 
which is a constant multiple of (z2 —l)fe_4{(2ft —l)(2fc —3)z4 —6(2fc —3)z2 
+ 3} has four simple zeros yi X, y4,2,y4>3, y4>4 in the open interval (—1,1) 
and none of these zeros is a zero of p{i> (z), j < 4. Hence the product 
p(z)pW(z) ...pw(z) has 11 distinct zeros. This implies that if ft = 4 (i. e 
n = 8) then P(z) has at least n + 3 distinct zeros. If ft > 5 then for 5 < j < ft 
the smallest zero and the largest zero yj } of (z) in (— 1,1) are simple 
and p(<) (y ,-,i) '#= 0, p(l) (y3>/) + 0, i<j. Hence the product p(z)p(1)(z).. .p(/c)(z) 
and a fortiori P(z) has at least 11+ 2 (ft —5 + 1) =«+3 distinct zeros

1.2.2. Let fc + Z = n — 1.
First we consider the subcase fc=l, Z=w —2, i. e. —1,1 are 

supposed to be zeros of p(z) of multiplicity 1, n — 2 respectively. Let c 
be the zero of p(z) which lies in ( — 1, 1). Then for » 5:

p(z) (z + l)(z-c)(z-l)n~2,

p(l)(z) [nz2+{— (« — l)c + (« — 3)}z — (» — 3)c — l](z — l)" 3,
p(2)(z) «a O(«-l)z2 + {-(w-l)(«-2)c + (n-l)(w-6)}z-(w-2)

x(»-5)c-2(»-3)](z-l)n-4,

p(3)(z) ss O(»_l)z2 + {-(»-l)(»-3)c + («-l)(w-9)}z_{(«-3) X 
X (»—7)c + 3(w —5)}](z —l)n~5.
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The polynomial p (z) has 3 distinct zeros. The derivative p(1) (z) has a simple 
zero Cj j in the interval (— 1, c) and another simple zero c1>2 in the interval 
(c, 1). The second derivative p(2)(z) has a simple zero o21 in the interval 
(ci,nci,i) and another simple zero c22 in the interval (clj2,l). However, 
if c = — (« —3)/(n —1) then c2>, = c and p(2)(z) contributes only one 
new zero to the product p (z)pw (z)p<2) (z). Thus the product p (z)p(1)(z)p(1>(z) 
has 6 or 7 distinct zeros according as c = — (» — 3)/(w — 1) or c += — (n — 
— 3)/(n —1). Now if c = — (w —3)/(n —1) then p<3)(z) has a simple zero 
cs l in the interval (c, c2>2) and a simple zero c3>2 in the interval (c2i2,1). 
It is clear that c3 2 is necessarily a new zero. Also c3>1 is a new zero. For 
it is clearly not a zero of p(z) or of p<2)(z). Besides, if it were a zero of 
p(1)(z) then p(I)(c3>1) = 0, p(3)(c3,i) = 0 would together lead to the conc­
lusion that c3>i = — (2n2 —13»+ 17)/{(» — l)(2n — 3)}. Thus we would 
have

— (2»2 —13» + 17)/{(% —1)(2m —3)} =c3>1 =c1>2 = -{(n-l)(»-3)- 

—^(5n — 9)(w — l)}/{n (« —1)}

or
(2n —3)j/(5w —9)(» —1) =2»2 + f» —9,

which is false for 5. Hence the product p(z)pU)(z)p(2)(z)p(3)(z) has 8 
distinct zeros. In case c — (n — 3)/(n — 1) it is enough for our purpose 
to observe that the largest zero of p(3)(z) in (—1,1) is not a zero of 
p(z)p(1)(z)p<2,(z) and therefore p(z)p(1) (z)p(2) (z)p(3)(z) has at least 
8 distinct zeros. For 4 < j < n — 2 the largest zero of p0) (z) in the open 
interval ( — 1,1) is simple and is not a zero of the product p(z)p(1)(z) ... 
...p^_1)(z). Consequently the product p(z)p(1>(z) ... p<n_2>(z) and a fortiori 
P(z) has at least 8 + (n —2 —4 + 1) = n + 3 distinct zeros.

If n =4 then direct calculation shows that P(z) has 7(=w + 3) 
distinct zeros if c = —1/3 or 1/3; otherwise it has 8 distinct zeros.

If n = 3 then P(z) has 5 or 6 distinct zeros according as c = 0 or 
c 0.

Now we consider polynomials of the form (z + l)fc(z —c)(z —I)"-*-1 
where 2 < k < n — k — 1, — 1 < c < 1. We have

p(1)(z) [wz2 + {(w — 2fc — l) — (» — l)c}z — l — 

-(»-2fc-l)c](z + l)*-I(z-l)n-*-2,

p<2)(z) «£! [»(» —l)z3 + (» —1){2(» —2fc —1) —(» —2)c}z2 + {(» —2&—l)2 — 

— 3 (» — 1) — 2 (n — 2) (n — 2k — 1) c} z — 2(n — 2k — 1) — {(n — 2k — l}2 —

- n +1} c] (z +1)*"2 (z -1)”-*-3.
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The first derivative p(r>(z) has a simple zero cbl in the open interval 
( —1, c) and a simple zero c1>2 in (c, 1). The second derivative p(2)(2) has 
a simple zero c21 in (— 1, Cj.j), a simple zero c22 in (cw, c, 2) and a simple 
zero c23 in (cJ>2,l). However, c22 = c if c = — (n — 2k — l)l(n — 1). 
Hence the product p(z)p<-1)(z)p{2}(z) has 7 distinct zeros or 8 distinct 
zeros according as c = — (n — 2k — l)/(w — 1) orc — (n — 2fc —l)/(n — 1). 
Now if fc = 2, c — (« — 2k — — 1) then for —3 the
largest zero of p(i}(z) in the open interval ( — 1,1) is simple and is not 
a zero of p^(z) for i<j. Hence the product p(z)p(r> (z)... p{n~y> (z) has 
at least 8 +« —3—3 + 1 = » + 3 distinct zeros. H k > 3, o — (n — 2k — 
—1)/(» —1) then for 3 < j < k the smallest zero of p^(z) is simple and
is not a zero of p(l) (z) for i < j-, the same is true of the largest zero of 

n—k—1
pW)(«), 3<j<n —fc —1 in ( — 1,1). Hence the product ]] p(J>(z) has

3=0

at least 8 + fc — 3 +1 + n — 7c —1 + 3 + 1 = n + 3 distinct zeros. We remark 
that the third derivative p(3) (2) has a simple zero in each of the intervals 
(c2J,c), (c, c2.3) hut we have ignored these zeros to allow the possibility 
that they may be zeros of p (z)p{r> (2). We verify that if c = — (n — 2k — 1) / 
/(» — 1) then they cannot both be zeros of p(2)p(1) (2). It is clear that neither 
of the two is a zero of p(2). If both are zeros of p(I)(2) then we must have 

»(2 + l)*-1(2-l)B-fc-2+2{»2 + (»-2&-l)}{(»-3)2 + (»-2fc-l)}(2 +

+ l)fc-2(2-l)n"‘-s s {?»22 + 2(n-2fc-l)2-l + (?i-2fc-l)2/(n-l)} + (2).

where A (z) is a polynomial. This is possible only if
»(2»-5)»2 + 2(2«-3)(»-2k-l)2-» + 2(n-^-l)2

nz2 + 2(n —2k —1)2-—1 + (p — 2k +1)*"/(p — 1).

But this is obviously false unless n = 5, & = 2. Excluding this latter 
case we may now argue as above to conclude that the product P(z) has 
at least » + 3 distinct zeros. In the case just excluded P(z) has 7( = w + 2) 
distinct zeros.

1.2.3. Now let k + l^n — 2.
In this case I = maxfft, I) < n — 3. For k^j^n— 2 the smallest 

zero a0) of p(r> (2) is simple and

— 1 < a{k} < o№+b < ... < a(n~2).

Besides, for I + j < n — 2 the largest zero h(?) of piJ) (2) is simple and 

1 > b(,) > 6(,+1) > ... > ft(n-2> > a(n_2).

Thus the product p («)p(1) («)••• P<n 2) (2) has at least 2n — k — l distinct
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zeros, namely, — 1, a,kf a(k+1), ..., a(n_S), b(n~2\ fe(n-3), ..., b(r>, 1. Inclu­
ding the zero (a("_2) + 6<n_2))/2 of p(n~^(z) the product P(z) has at 
least -» + 3 distinct zeros.

The following theorem summarizes our discussion of polynomials 
with only real zeros.

Theorem 1. If p(z) is a polynomial of degree n with real zeros then 
the produet P(z) = p(z)p(r>(z)... p(n~1)(z) has

i) 1 distinct zero if p (z) & (z — a)n,
ii) n + 1 distinct zeros if p(z) an (z — a)(z — b)n~l or p(z) & (z — a)2(z — 

— b)2 or p(z) s» (z — a)3(z — b)3,
iii) n + 2 distinct zeros if p(z + b) is a constant multiple of z(z2 — a2) 

or of z(z2 — a2)2 for some b,
iv) at least n + 3 distinct zeros in any other case.
In the above theorem we only need to assume that the zeros of p (z) 

are collinear.

2.0 Now we wish to consider polynomials whose zeros are not collinear. 
Let us denote the convex hull of the zeros of p(z) by IIP. According to 
Gauss-Lucas theorem

Up 2 Ifp(i) 2 ... 2 IIp(n-1).

If the zeros of are not collinear, pw(f) = 0 for some £e dHp(k-\)
and some h (1 < fc < » —1) if and only if f is a multiple zero of p(fe-1)(z)

= p(z)}.
We note that if II(sn ..., zm) is the convex hull of the points zx, ... 

..., zme G and , ..., vk are the vertices of H(+, ..., zm) then , ..., t?fc}
— {^1» • • • > zm}‘

The centroid of the zeros of a polynomial is invariant under differen­
tiation. This trivial fact will be often used without being mentioned 
explicitly. We shall assume the origin to be the centroid of 
the zeros of p(z). This will not involve any loss of generality since 
for any given a the product p (z + a)p(1) (2 + a) ... p(n_1) (z + a) has the 
same number of distinct zeros as p(z)p(1,(2) ... p(n_1)(z).

n
Definition. A polynomial p(z) = £ ^kzk, an 0, will be said 

fc=0
to belong to the class &n if = 0, i. e. the origin is the centroid of the 
zeros of p(z). The subclass 0^ will consist of those polynomials whose 
zeros are collinear whereas the polynomials with noncollinear zeros will 
form the subclass

In the sequel we shall make extensive use of the following corollary 
of Theorem 1.
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Corollary 1. If p(z)4&W then P(z) = p(z)p^(z)... p^n~^(z) has
i) 1 distinct zero if p (z) w zn,

ii) » + 1 distinct zeros if p(z) «a (z — a){z + a/(n — l)}n_1 or 
p(z) «a (z — a)2(z + a)2 or p(z) & (z — a)3(z + a)3,

iii) n + 2 distinct zeros if p(z) z(z2 — a2) or p(z) «a z(z2 — a2)2,
iv) at least n + 3 distinct zeros in any other case.

Lemma 1. If f(z) is a polynomial of degree »»+1 such that fm(z) & zm— 
— a'n for some a + 0 then the product f(z)f^(z)fm(z) has at least 2m distinct 
zeros.

Proof. The polynomial/(z) is a constant multiple of zm+1 — (m + l)amz + 
+ Z> for some b. Hence if f(z), /(1)(2) have a common zero it is necessary 
but not sufficient that it be equal to b/(mam). In fact, there is no common 
zero if b = 0 for the simple reason that /(1) (9) =/= 0, i. e. f(z), /(1) (z) have 
no common zero if the only zero of/(2)(z) is a zero of f(z). Except possibly 
for one double zero all the zeros of f (z) are therefore simple and we readily 
see that the product (2) has at least 2m. distinct zeros.

Remark 1. Given a polynomial p(z) of degree n the zeros of p^(z) 
are coincident if and only if the zeros of p(fc_1)(«) are coincident or form 
a regular (n — k +1) -gon. Hence if p(z)rfi zn — an and pw(is) «a zn~k then 
p(z)p{r>(z) ... pw(z) has at least 2(n — k + l) distinct zeros.

Lemma 2. Let p(z) be a polynomial of degree n. If for some k (1 s^k 
< n —2)

pW(z) tv (z —a)Hl(z —ft)”2, a + b, n1^l, nt^l, nx + n2 = n — k, 
then p(fc_1)(z) can vanish at most once on the straight line segment joining 
the points a, b. The product p(k~1}(z)pw(z) ... p{n~1}(z) has at least nt + 2n2 + 
+ 1 distinct zeros if p^k~^(a) = 0, at least 2nt + n2 + l distinct zeros if 

p^k~1',(b) =0 and at least 2nt + 2n2 + l distinct zeros in any other case. 
If the zeros of p{z) are not collinear and p^k\z) <=» (z — a)(z — b)n2 then P(z) 
= p(z)p^(z) ... p(n~1\z) has at least 2(w2-t-l) distinct zeros.

Proof. We may clearly assume a, b to be real and a < b. If (c) — 0 
for some ce [a, ft] then is real for real x. Now if d + c is another
point of the interval [a, 6] such that p(&-1)(d) = 0 then by Rolle’s theorem 
pW (x) must vanish at least once in the open interval I with c, d as end 
points. But by hypothesis pw(ar) 0 in (a, b). Hence p(k~^(x) cannot 
vanish more than once on [a, 6].

According to Corollary 1 the product p{k) (z)p(k+r> (z) ... p^'^ (z) 
has at least W! + »2 + l distinct zeros which of course lie on [u, 6]. Since 
any point other than a, b cannot be a multiple zero of p(fr_1)(«) the product 
p{k~1}(z)p^(z) ... p{n~i}(z) has at least ni + 2?42 + l distinct zeros if
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p(fc_1)(a) =0, at least 2»1 + »2+l distinct zeros if p(fc_1)(6) = 0, and 
at least 2n1 + 2n„ + l distinct zeros in any other case.

Now let us suppose that the zeros of p(z) are not collinear and pm(z) 
(z — a)(z — b)n2. If p(fc-1)(6) =0 then p(fc-l)(«) has only one other 

zero which must lie at {(w2 + 2)a — 6}/(w2 + l). Thus p(fe_1)(«) is of the 
same form as p^(z). If again p(A_2)(&) = 0 then p(k~2\z) is also of the 
same form as p(k\z) and p(k~l\z). Since the zeros of p(z) are not collinear 
p^(b) cannot be zero for every j such that (pw(z) =p(z)).
Now if p^(b) 0 whereas pW)(h) = 0 for i < j < k then except possibly
for one double zero all the zeros of p(l)(«) are simple and we readily conclude 
that p® (z)p(l+l\z) ... p(n~l\z) has at least 2(n2 + l) distinct zeros.

Lemma 2'. If p(z) is a polynomial of degree 8 such that p^(z) 
(z — a)3(z + a)3 then the product P(z) = p(z)p^(z) ... p(7)(z) has at

least 12 distinct zeros.

Proof. Without loss of generality we may assume a to be real and 
positive. If p(1) (z) 0 at z — ±a then according to Lemma 2 the product 
P(z) has at least 13 distinct zeros. However, if pw(z) vanishes at a (the 
case p(n ( — a) =0 is analogous) then

p(1) (z) (20«’ + 80a«2 + 116a2z + 64a’) (« — a)4 = 20 (« — a) {« — (/? +

+ *y)} {« - (/3 - iy)} (« - a)4, y 0

where a < —a since according to Eolle’s theorem p<2)(«) has at least one 
zero in the open interval joining a, a. It is clear that if p (z) has no real 
zeros then at least four of its zeros are simple and are not zeros of the 
product p(1)(«)p(2)(«)... p(7)(«). According to Corollary 1 the product 
pf2)(«)p(3)(«) ...p(zfr> has 7 distinct zeros which all lie on the interval 
[ — a, a]. Hence P(«) has at least 14 distinct zeros. If p(«) has a real zero 
then it [p («)) must be a polynomial with real coefficients. Since a is a zero 
of p(1)(z) of multiplicity 4 and IIp z the polynomial p(z) being 
of degree 8 can vanish at a only if

p(z) (3-a1)(«-(/31 + iy,))((2-(/31-iyi))(2-«)5, Zi 0

where a, < a. Hence P(«) has at least 13 distinct zeros. If p(a) =0 then 
p(z) 0 on the interval (a, a]. Even if p(fi + iy) = 0, p(P — iy) — 0 there 
are two simple zeros of p(z) which are not zeros of p(1>(«)p(2>(«) ... p<7)(«). 
Hence P(z) has at least 12 distinct zeros. If p(z) has a real zero which 
does not lie at a or a then P(«) lias at least 13 distinct zeros.

Lemma 2". If p(z) is a polynomial of degree 8 such that 
p^(z) z(z2 — a2)2 then P(z) has at least 12 distinct zeros.
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Proof. There is no loss of generality in assuming a to be real and 
positive. We may use Rolle’s theorem to conclude that p(2)(z) can vanish 
at most once on each of the intervals [ — a, 0], [0, a]. Note that p(2)(z) 
vanishes at —a or a if and only if p(2)(z) (z — a)3 (2 +a)3 and then by 
Lemma 2 the product P(z) has at least 12 distinct zeros. If p(2)(±a) + 0 
but p(2) (0) = 0 then p(2) (z) has four non-real zeros which form a rectangle. 
Since p(1) (2) is of degree 7 all the vertices of H (2) cannot be zeros of p(1)(2),
i.e. H (2) is a proper subset of H (1). Hence p{1)(z)p(2) (2)... p(7,(2) has at 
least 12 distinct zeros. If p<2)( ±a) 0 and also p<2)(0) 0 then at least
five simple zeros of p<2) (2) do not lie on [ — a, a] and the product 
p(2)(z)p(3) (2)... p(7) (2) has at least 12 distinct zeros.

Lemma 3. If f(z) m (z — A)2(z — B)2(z — C)3 and C is a root of the 
equation 322 + 152 + 10 = 0, then /(2)(2) cannot be a constant multiple of 
s? (322 + 152 + 29).

Proof. According to hypothesis /(C) = 0, /(1)(C) = 0. Hence if 
/(2)(2) 23(322 +152 + 20) then/(2) must be a constant multiple of

27 + 72s + 142s - (7C6 + 42CS + 70C1) 2 + 6C7 + 35C6 + 56C5

which is easily seen to be different from (2 — A)2 (2 — Bf(z — C)3 whatever 
A, B may be.

Lemma 4. If p(z) as (2—®1),(2—®2)*(2—®s)3 e(PjW then p<3>(2) 
cannot be a constant multiple of (2 —a)3(322 + 9«2 + 8a2).

Proof. Let/(2) = p(«2 + a). If p<3)(2) (2 —a)3(322 + 9«2 + 8a2) then
/3)(2) is a constant multiple of 23(322 +152 + 20) and

/(2) S8 + 827 + (56/3)26 + l22 + JU2 + r

for some 2, p, v. It can be directly verified that 28 + 827 + (56/3)26 + l22 + 
+ pz + v is never of the form (2 —a)2 (z — f)3 (z — y)3 whatever 2, p, v may 
be. This contradicts the fact that p(z) is a constant multiple of (z — v^)2 
(z-vt)3 (2-®3)3.

The next lemma is trivial.

Lemma 5. If a vertex v of Hp is a zero of p(z) of multiplicity k then 
H is a proper subset of Hp. The point v does not belong to H for k < j

— 1.
n—1

If p(2) vzn-an for some a + 0 then P(z) = /J Po>(») has » + 1 
>=0

distinct zeros. In future we shall exclude these polynomials from our 
consideration.
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2.1 Let 2>(«)«^3^% p(2) z3 — a3. Since the zeros of p(z) are 
not collinear they must be simple and different from 0. Now let us note 
that p(1)(z) has two distinct zeros d, —d whereas pw(z) vanishes at the 
origin. Hence P(z) has 6 distinct zeros.

2.2 Now let p(z)e^XC), p (z) — a4. Since p(1) (z)^z3 the product
p^(z)p{2\z)p^(z) has at least 4 distinct zeros. Hence if three or more 
of the vertices of Hp are simple zeros of p(z) the product P(z) = p(z) x 
p(1\z)p{2\z)p(3\z) has at least 7 distinct zeros. Only those polynomials 
which have one double and two simple zeros are not covered. So let p(z) 
an (z — v1)2(z — v2)(z — v3). We observe that p(1)(z) cannot be a constant 
multiple of z^ — a2). For otherwise must be equal to a or — a, i. e. 
p(1,(z) ^zfz5- r2) and p(z) ^(z2 —r2)2 which is a contradiction. Hence 
P(z) has at least 8 distinct zeros unless p(1)(z) is a constant multiple of 
z3 —a3 or of (z — a)(z + a/2)2. In the latter two cases p(z) <v z* — 463z + 3b* 
(b is one of the cube roots of a3), p(z) an 2z4 —3a2z2 — 2a3z + 3a4 respecti­
vely, and P(z) has 6 distinct zeros.

We therefore have the following theorem.

Theorem 2. If p(z) e then P(z) has
i) 1 distinct zero if p (z) an z*,

ii) 5 distinct zeros if p(z) an (z — a)(z + a/3)3 or p(z) an (z — a)2 
X (z + a)2 or p (z) an z* — a4,

iii) 6 distinct zeros if p(z) z4 —4a3z + 3a4 or p(z) an 2z4 — 3a2z2 — 
— 2a’z + 3a4,

iv) at least 7 distinct zeros in any other case.

2.3 Let p (z) e ^(VC), p(z) 96 z5 —a5. Since p(1,(z) afr z4 the product 
p(l)(z)p<2)(z)p(3)(z)p(4)(z) has at least 5 distinct zeros. Hence if three or 
more of the vertices of Hp are simple zeros of p(z) the product P(z) = 
= p(z)j>(1)(z)... p(4)(z) has at least 8 distinct zeros. This is surely the 
case if Hp is a pentagon or a quadrilateral.

If Hp is a triangle and two of its vertices are double zeros of p(z) 
then can neither be a square nor a straight line segment. Hence 
P(z) has at least 8 distinct zeros unless p(1)(z) happens to be a constant 
multiple of z4 — 4a3z + 3a‘ == (z — a2)(z2 + 2az + 3a2) or of

2z4 — 3ffl2z2 — 2a3 z + 3a4 = (z — a)2 (2Z2 + 4az + 3a2)

for some a 0. It is clear that the two simple zeros of p(1) (z) must 
come from the two double zeros of p(z). Thus we respectively have

i) p(z) w (z —6)(z2 + 2az + 3a2)2, p(1)(z) (z —a)2 (z2 + 2az + 3a2)
ii) p(z) an (z — 6)(2za + 4az + 3a2)2, p(1)(z) «b (z —a)’(2z2 + 4az+3a2)

for some b. But, neither (i) nor (ii) can hold whatever b may be.
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Let only one vertex of IIp be a multiple zero of p(z). If p^(z) is 
a constant multiple of z4 —a4 or of (z —a)(z4-a/3)3 for some a 0 then 
by Lemma 1, Lemma 2 respectively P(z) has at least 8 distinct zeros. 
It is readily seen that p(1)(z) (z — a)2 (z + a)2 if and only if p(z) 
(zTaj’^z2 ±9az4-8a2) and then P(z) has only 7 distinct zeros.

We therefore have the following theorem.

THEOREM 3. If p(z)e £PS then P(z) has
i) 1 distinct zero if p (z) z5,

ii) 6 distinct zeros if p(z) tv (z — a)(z+a/4:)* or p(z) s»z5 — a5,
iii) 7 distinct zeros if p (z) z(z2 — a2)2 or p(z) ss (z —a)3(3z2 + 9az + 

+ 8a«),
iv) at least 8 distinct zeros in any other case

2.4 Let p(z)e^6NC\ p(z) tfiz6 — a6. If p(1)(z) is a constant multiple 
of z5—a5 or of (z —a)(z + a/4)4 then by Lemmas 1,2 respectively P(z) 
= p(z)pw(z) ... p(5)(z) has at least 10 distinct zeros. Theorem 3 says 
that in any other case p(1)(z)p(2)(z) ... p(5)(z) has at least 7 distinct zeros. 
Hence if two or more of the vertices of Hp are simple zeros of p(z) then 
P(z) = p(z)p(1)(z) ... p<5,(z) has at least 9 distinct zeros. This is certainly 
the case if Hp is a hexagon, a pentagon, or a quadrilateral.

Let Hp be a triangle v1®2'p3 an(l suppose two of the vertices (say 
v2, v3) are multiple zeros of p (z). It is clear that Hp(i) cannot be a straight 
line segment. Now suppose, if possible, that p(1)(z) «s (z — a)3 (3z2 + 9az + 
+ 8a2). According to hypothesis p(1)(z) vanishes at v2,v3. Hence (3z2 + 
+ 9az + 8a2) s= 3 (z —®2) (z — va) and p(z) (3z2 + 9az + 8a2)2A2(z) where 
A2(z) vanishes at vY but not at v2 or v3. However, it is readily seen the 
derivative of (3z2 + 9az +8a2)2A2(z) can never be a constant multiple 
of (z —a)3(3z2 + 9az + 8a2). Hence in the case under consideration p(1)(z) 

(z —a)3(3z2 + 9az + 8a2). By Theorem 3 the product p(1)(z)p(2)(z) ... 
... p(5) (z) has at least 8 distinct zeros. Since is not a zero of this product
P(z) has at least 9 distinct zeros.

If none of the vertices of Hp is a simple zero of p (z) then each vertex 
must be a double zero of p (z). It can be directly verified that if p (z) s» (z3 4-
— a3)2 then P(z) has 10 distinct zeros. So letp(z) s« (z-i>1)2(z-®2)2(z-
— v3)2, p(z) (z3 —a3)2. It is clear that the zeros of p(1)(z) are all simple 
and p<2)(z) 56?. Hence the product p(1)(z)p(2)(z) has 9 distinct zeros if 
p(2)(z) tvz* — a\ Since p(1)(z), p(2)(z) cannot have any common zeros 
we may use Lemma 2 to conclude that if p(2)(z) (z —a)(z4-a/3)3 or 
tv (z — a)2 (z + a)2 the product P(z) = p(z)p(1)(z) ... p(5)(z) has at least 
9 distinct zeros. In any other case the same conclusion can be drawn from 
Theorem 2.

We therefore have the following theorem.
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Theorem 4. If p(z) / then P(z) has
i) 1 distinct zero if p (z) on z6,

ii) 7 distinct zeros if p(z) on (z — a)(z + a/5)5 or p(z) fv (z — a)3(z + 
+ a)3 or p(z) on z6 — a6,

iii) at least 9 distinct zeros in any other case.

2.5 Let p(z)e^tc^, p(z) ^z' — a!. If p^(z) is a constant multiple 
of (z — a)(z+a/5)s or of (z — a)3(z + a)3 then by Lemma 2 the product 
P(z) = p(z)pW(z)... p^(z) has at least 10 distinct zeros. In view of 
Lemma 1 the same can be said about the number of distinct zeros of 
P(z)) if p(r>(z) mf-a11. Theorem 4 says that in any other case p(1)(z) 
x p(i\z)... (z) has at least 9 distinct zeros. Hence if at least one of the 
vertices of IIp is a simple zero of p(z) the product P(z) has at least 10 
distinct zeros. This is certainly the case if Hp has four or more vertices. 
So let IIP be a triangle and suppose that all its vertices are multiple zeros 
of p(z). If p(2)(z) is a constant multiple of a5 —a5 or of (z —a)(z + a/4) 
then by Lemmas 1, 2 respectively P(z) has at least 10 distinct zeros. 
According to Theorem 3 the product p(2}(z)p^(z) ...p(i\z) has at least 7 
distinct zeros in any other case. Thus if all the vertices of IIp are double 
zeros of p(z) the product P(z) = p(z)pw{z) ... p^(z) has at least 10 dist­
inct zeros. If on the other hand, p(z) on (z — a)2 (z — /?)2 (z — y)3 the pm(z) 
has a simple zero at y and cannot therefore be a constant multiple of 
z(z? — a2)1. Lemma 3 applied to p (z + a) says that p(,) (z) cannot be a const­
ant multiple of (z — a)3(3z*-|-9az + 8a2) either. Hence by Theorem 3 the 
product pW(z)pW(z) . ..p(6)(z) has at least 8 distinct zeros in this case. 
Since a and ft are not zeros of this product, P(z) — p(z)p^ (z) ...pw(z) 
has at least 10 distinct zeros.

We therefore have the following theorem.

Theorem 5. If p(z)e then P(z) has
i) 1 distinct zero if p(z) on z1,

ii) 8 distinct zeros if p (z) on (z — a) (z + o/6)6, or p (z) on z1 — o’,
iii) at least 10 distinct zeros in any other case.

2.6 Let p(z)e^vc>, p(z) ^z*-«8. If p(1)(z) is a constant multiple 
of z^ — a1 or of (z —a)(z + «/6)6 then by Lemmas 1, 2 respectively P(z) 
= p(z)p(1)(z) ...p(7)(z) has at least 14 distinct zeros. By Theorem 5 the 
product p(1)(z)p(,)(z) . ..p(7)(z) has at least 10 distinct zeros in any other 
case. Hence if there exists a vertex of Hp which is a simple zero of p (z) 
then P(z) =p(«)p(1)(«) ...p(7)(z) has at least 11 distinct zeros. If all the 
vertices of Hp are multiple zeros of p(z) out of which at least two are 
double zeros of p(z) we may apply Theorem 4 to p<2)(z) and conclude 
that P(z) = p(z)p(1,(z)p(2)(z)... p(7)(z) has at least 11 distinct zeros
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except possibly when p(2) (2) is a constant multiple of 26 — a6, of (2 — a) (2 + 
+ a/5)5 or of (2 —a)3 (2 +a)3. However, according to Lemmas 1, 2, 2' 
respectively P(z) lias at least 12 distinct zeros in these exceptional cases. 
Finally, let p(z) & (z — vfftz — vfp^z — vf?. If p(3)(2) w z5 or p(i\z) 
w2(22-«2)’ then according to Lemmas 1, 2" respectively the product 
P (2) has at least 12 distinct zeros. Besides, if p(3)(2) is a constant multiple 
of 25 —o5 or of (2 —a)(2 + a/l)4 then by Lemmas 1, 2 respectively the 
product p(2) (2)p<3) (2) ... p<7) (2) has at least 10 distinct zeros and since 
is not a zero of this product P (2) has at least 11 distinct zeros. Since Lemma 
4 says thatp(3)(2) cannot be a constant multiple of (2 —a)3(322 + 9«2 + 8a2) 
the product p(i\z)pw(z) ... p{r>(z) has at least 8 distinct zeros. It is 
clear that v1} v2, v3 are not zeros of this product. Hence P(z) has at least 
11 distinct zeros.

We therefore have the following theorem.

Theorem 6. If p(z) e then P(z) has
i) 1 distinct zero if p (z) na zB,

ii) 9 distinct zeros if p(z) & (z — a^z + all)1 or p(z) & z6 — a8,
iii) at least 11 distinct zeros in any other case.

2.7 Let p(2)ep(z) There are four possibilities:
1. At least one of the vertices of Hp is a simple zero of p(z).
2. At least two of the vertices of Hp are double zeros of p(z).
3. All the vertices of Ep are zeros of p(z) of multiplicity < 3.
4. p(2) « (2-©1)2(2-®2)S(2-©3)4.
If p<l)(2) is a constant multiple of 28—a8 or of (2 —a)(2 + 0/7)7 

then by Lemmas 1, 2 respectively P(z) has at least 16 distinct 
zeros. By Theorem 6 the product p(1) (2) p(2) (2) ... pm (z) has at least 
11 distinct zeros in any other case. Hence if there exists a vertex 
of IIp which is a simple zero of p(z) then P(2) has at least 12 dis­
tinct zeros.

If two or more of the vertices of Hp are double zeros of p(z) we may 
use Theorem 5 in conjunction with Lemmas 1, 2 to conclude that P(z) 
has at least 12 distinct zeros.

If p(3)(2) is a constant multiple of 2s — a6, of (2 —a)(2 + «/5)5, or 
of (2 — a)3(2 + a)3 then by Lemmas 1, 2, 2' respectively the product 
P (2) = p(2)p(1)(2) ... p(3)(2) has at least 12 distinct zeros. Theorem 4 
implies that in any other case p(3)(2)p<4>(2) ... pw(z) has at least 9 distinct 
zeros. Hence if all the vertices of IIp are zeros of p (z) of multiplicity 3 
the product P(2) = p(z)p(1}(z) ... pw (z) has at least 12 distinct zeros. 
Besides, if p(z) « (2-w1)2(2-»J)3(2-®3)4 then P(z) has at least 11 
distinct zeros.

We therefore have the following theorem.

7 — Annales
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Theorem 7. If p(z)e then P(z) has
i) 1 distinct zero if p(z) & z9,

ii) 10 distinct zeros if p(z) (z — a)(z + a/8)8 or p(z) & z9 — a9,
iii) at least 11 distinct zeros if p(z) & (z — vl)2(z — v2)3(z — vi)‘i,
iv) at least 12 distinct zeros in any other case.

2.8. Let p (z) e P (z) o6«10 —a10- If p(2)(«) is a constant multiple
of 28 —a8 or of (2 —a)(2 + a/7)7 then by Lemmas 1, 2 respectively P{z) 
has at least 16 distinct zeros. Theorem 6 says that in any other case 
pm(z)p^(z) ... p^(z) has at least 11 distinct zeros. Hence if one or 
more of the vertices of 11 p is a zero of p(z) of multiplicity < 2 then P(z) 
has at least 12 distinct zeros. If none of the vertices of IIP is a zero of 
p (z) of multiplicity < 2 then at least two of the vertices of IIp must be 
triple zeros of p(z). We may use Theorem 5 along with Lemmas 1, 2 to 
conclude that P(z) has at least 12 distinct zeros.

We therefore have the following theorem.

Theorem 8. If p(z) e ^10 then P(z) has
i) 1 distinct zero if p (2) «s 210,

ii) 11 distinct zeros if p(z) (2 —a)(2 + a/9)9 or p(z) s»210 —a10,
iii) at least 12 distinct zeros in any other case.

2.9 Let p(2)e^'i’f, p(z) 9&211 —a11. If p(2)(3) is a constant multiple 
of 28 — a8 or of (2 —a)(2 + a/7)7 then by Lemmas 1, 2 respectively P(2) 
= p(2)p(1)(2) ... p(10)(2) has at least 14 distinct zeros. Theorem 6 says 
that in any other case p(3) (2)p(4) (2) ... p(10) (2) has at least 11 distinct 
zeros. Since there always exists a vertex of IIp which is a zero of p(z) 
of multiplicity <3 the product P(z) = p(z)p(1) (2) ... p(z)^ has at 
least 12 distinct zeros.

We therefore have the following theorem.

Theorem 9. If p(z)c&u then P(z) has
i) 1 distinct zero if p (2) « 211,

ii) at least 12 distinct zeros in any other case.
2.10. Let p(z)e p(z) 96 212 —a12. There are two possibilities:
1. At least one of the vertices of Hp is a zero of p(z) of multipli­

city < 2.
2. At least two of the vertices of Hp are zeros of p(z) of multi­

plicity < 4.
In the first case we may apply Theorem 8 along with Lemmas 1, 2 

to p(2>(2) and in the second case Theorem 6 together with Lemmas 1, 2 
to p^(z) to conclude that P(z) has at least 13 distinct zeros.

We therefore have the following theorem.
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Theorem 10. If p (is) then P(z) has
i) 1 distinct zero if p(z) & z12,

ii) at least 13 distinct zeros in any other case.

Conclusion. We have shown in particular that if p(z) is a polynomial 
of degree «<12 then the product P(z) = p(z)p{l}(z) ...p^n~^(z) has at 
least « + 1 distinct zeros unless p(z) = c(z — a)n. It has been conjectured 
by Popoviciu that the same holds for polynomials of all degree.

STRESZCZENIE

T. Popoviciu postawił hipotezę, że jeżeli p(z) jest wielomianem 
różnym od c(z — a)n, to wielomian P(z) = p(z)p'(z) ... p(n~1)(z) ma 
conajmniej « + 1 różnych zer.

Autor uzyskuje kilka rezultatów, dotyczących ilości różnych zer 
wielomianu P(z), z których wynika prawdziwość hipotezy Popoviciu 
dla wielomianów p(z) stopnia «<12. W przypadku wielomianów p(z) 
o zerach kolinearnych autor uzyskał dokładniejsze oszacowanie ilości 
różnych zer wielomianu P(z).

РЕЗЮМЕ

T. Поповичю поставил гипотезу: если p(z) — многочлен, отли­
чающийся от c(z—a)n, то многочлен P(z) =p(z)p'(z) ... р(п~^(г) 
имеет по меньшей мере «+1 различных нулей.

Получено несколько результатов, касающихся числа различных 
нулей многочлена Р(г), из которых вытекает справедливость гипотезы 
Поповичю для многочленов р (z) степени «<12. В случае многочленов 
p(z) с колинеарными нулями получена лучшая оценка числа различ­
ных нулей мночочлена P(z)




