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On the Derivative of Bounded p-valent Functions
O pochodnej funkeji p-listnych ograniczonych

O nNPOMIBOAHON D-JMCTHBIX OrpaHHMYEHHBIX (yHKuUMHR

L. Let SY) denote the class of bounded, weakly p-valent functions,
regular in the unit circle |z2|<<1 and such that for Fe S and |z|<1
we have: F(z) —=2"+A4,.13**1+..., |F(2)]<M (M>1) (for the definition
of weak p-valency see [2] or [4]). In the paper [4] the following estimation
of |F(2)| for FeSf) has been obtained:

(1.1) IF'(2)| < pPM(1+[2]) [F(2)| 1—[M! F(2)|]"°

2l(1—'z) M 1+ [M7'[F(2)|'"”
This bound is valid and sharp for all 0 <|z|<C 1, the equality being attain-
ed for F(z) = [f (M"*, 2)]?, where w = f (K, z) denotes the Pick func-

Lix.m which represents the unit circle |z| <1 on the circle |w|<K (K > 1)
slit along the negative real axis from — K to

— r(K)=—K [2K—1—2}) K(K—1)].

The bound (1.1) depends, however, on |F (z)|. It would be desirable to

find a bound depending on |z| only and this can be done, at least for
small values of 2, quite similarly as in [3].
We now prove the following

Theorem 1. If F(z)eS% and 0 < |z| < r(M,p), where
(1.2) T(M,p)=A""(A+1/2— YA+ 1/4),

{1.3) A= ;M‘”p(l’l+p”+p)-
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p(1+2)
2| (1—]z|)

M2 — f(M'”, 2))
M+ f(MP, z)"

(1.4) F'(2)| < [f(M!'?,]2])]?

f (K, z) being the Pick function.

We have
(1.5) r(M,p) > 2 —1=0,4142, ...,
for any M,p (M > 1, p=1) and besides,
(1.6) lim r(M,p) = lim r(M,p)=1.
Mo +oo p>+oo

Under the above given assumptions the inequality (1.4) is sharp, the equa-
lity being attained for F(z)=[f(M'?,z))? and real, positive z, 0<|z|<<r(M, p).
Proof. Putting u=—[M!|F(2)|]"? we see that
. M(1+ |z)) wP(1—u
(1.1a) F'(2)] < ”;((I—iLL; —(14?}7)'
Now, the function
uP(1—u)

(1'7) ¢P (u) == 1+ u ]

0<<u<1,

is a strictly increasing function of the variable u for u €(0,u,) where
(1.8) u,,=-%(| 1+p°—1), 0<<up<1.

Clearly u, is an increasing function of p, too. Let us now suppose that,
M and p being fixed, r=7 (M, p) is the solution of the equation f (M'?,r)=
=M"Pu, with respect to r. Since 0 <wu, <1, this equation has always
a unique solution r =1 (M, p) such that 0 <7 (M, p) <1. Since the Pick
function is real and increasing for r¢(0,1), the inequality o<<7 (M. p)
implies

(1.9) f(MYP,0) < M'Puyu,=f(MYP, 7).

We have proved in [4] that for FeS(f),|F(z)|'? < f (M"?,|z|). Therefore,
if |z|<r(M,p), then (F(2)|/M)? < M~YP§(M'?, |z))<<up, by (1.9).
Now the function @,(u) is increasing for ue€(0,u,) and hence for
|z| <7 (M,p) and u=[M—1|F(2)|]'?, pp(u) takes, |z| being fixed, the
maximal value for u=M~'?f(M'? |z|). Putting u=M""?f(M'?,|z|) in
(1.1a) we obtain (1.4). This bound holds clearly for 0 <|z|<<r (M, p). An
immediate calculation shows that for 0<z<<r (M, p) and F(z)=[f (M'?,2)]?
an equality in (1.4) is attained.
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We shall now deduce our statements concerning r (M, p), r (M, p) being
defined as the unique solution of the equation

(1.10) f(M"’,'r)=M‘PuPE—lp—[l/'l—i-p"’—llM"’.

Since the Pick function fulfills the equation
(1.11) fK,M) 1 — K K, 1] 2 =r(1—1)
we can replace (1.10) by an equivalent equation:
(1.12) M'Pup(1—up) 2 =r(1—1)7"
By (1.8) we have

M1y (1 —up) ™ = o M2 p (V145 + )
and (1.12) takes the form

(1.12a) rl—r = %M””p(VhHO2 +p)
and hence
(1.2) r=r(M,p)=A'(A+12—VyA+1/4),

where A is defined as in (1.3). (1.2) implies that r is a strictly increasing
function of A. In order to obtain the greatest lower bound of r (M, p), we
need a little more information about A. A increases strictly with M and
therefore, p being fixed and =1, we have

1 == T =
A>7p(}1+p2+p)\>%(|'2+1)=A(,.
Hence
inf r(M,p)=(Q2A)"'"(24A,+1—)4A,+1)=)2—1.

P21, M>1
This greatest lower bound is evidently sharp and the circle where (1.4)
is valid, has a respectively small radius for p=1 and M slightly greater
than 1. If A—+oco, then r(M, p).— 1 — and this gives (1.6) in virtue
of (1.3). The theorem 1. is proved.

Since
— ,'1— Wizl P
J5HB, 5 (0) = g ) = (V1 57— [ V1 P
we see that
(1.13) F(2) < EM“HZZ){P’TP’—IJ)('II 43?‘—1)”.

z{(1—|z]) \ p
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2. The inequality (1.13) implies that F'(2) =0 ((1 — [z|)~') for Fe S}
and |z|—1. It is, however, well known that the derivative of an arbitrary
regular function F(z) bounded in the unit circle is O((1 — 'z|)—!'). This is
an immediate consequence of G. Pick’s inequality

1— M~ |F(2) |*

F'2|<M 1 =T.F

valid for F(z) regular in |2|<{1 and such that |F(z)|<M for |z|<1. Let
M (r,f) denote sup |[f(z)|. Pick’s inequality implies: lim (1—7)

jz|<r r->1—

M (r, F;) < M (1, F)/2. Besides, it is easy to see that for the function
; 1+2
w=¢e"""1-z (which is regular and bounded in the unit circle |z|<1
and represents it conformally on the universal covering surface of the

annulus e~ *?<<|w|<<e”?) we have

2|f(z)\

[1—2*

If (2)| =

and for 0 <z=1r <1 we have

r

}g{_zu—n_ 2
1—7  1+r

ilog

1—r)M(r,f)> e >1.

Therefore “O” cannot be replaced by “o” under the sole assumption
fo boundedness. Let us now suppose that F(z) being bounded, fulfils
a supplementary condition, such as p-valency or more generally, areally
mean p-valency in the sense of D. C. Spencer, [5]. Then we can
replace “O” by “0” in the statement F'(z) =0 ((1 —|z|)~!). The bounded
functions fulfilling such a condition represent clearly the unit circle on
a Riemann surface of finite area. We next prove that for functions with
this property we have F'(z) = o ((1 —|z|)™!). This means that the bounded-
ness of the area covered by F(z2) exercises a greater influence upon the
growth of the derivative then the boundedness of the function itself.

Theorem 2. If the function f(z) = ' a,2" is regular in the unit circle

n=0
|z]|<1 and if the Riemann surface being the map of |z|<<1 by f(2) is
of finite area, then M (r,f)=—o0o (1 —1)~ 1) for r—>1 —.

Proof. Let A (r, f) denote the area of the Riemann surface being the
map of |z|<r by f(z). We have

—_—
n

Ar,f)=n ¥ n|aa|re.
=1
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Since A (r, f) is bounded as a function of 7, re(0,1), the series dnla.l®
converges. Given arbitrary ¢>> 0, we can choose N =2 such that "

y a &
_Jna,.|<4.
n=N

Then
S AR =
.E‘ nla,,]rﬂ—l__: Z 'nlanll nrﬂ-—1 . ' ananl‘d.]/z nr2n—2<
m— n=N n=N n=N
8 ]/ S‘ .
4 Dottt — — —
Thus we have 2 = 2 1—1r®
— - n—1 £ 1 €
" T)A;J"'a"" S22 14r 2

for every r€(0,1) if N= N(e) is large enough. Having fixed N as above,
we choose 7y so that
N—1
1 £
1—7) Z nla, < 2 for any re(r,,1).

Then a fortiori =i

N—1
(1—r) E nla,| "' << Z for re(r,, 1)
n=1

and
(I_T)M(T,f')~"(1—7‘)Zn'anlr""<2-%=e for any re(r,, 1).
n=1

This proves our statement.

‘ We have even proved somewhat more: under the above stated assump-
tion the majorizing function for the derivative

!)"E{T:.f'): Z n.a./ "' s O(
n=1 1—r

Corollary 1. If F(z) is regular, bounded and p-valent, or, more generally
areally mean p-valent, then A(r, F)<<np M2 (1, F) and therefore M (r, F Y=
=o0((1—r)"1). The same is true for the class of circumferentially mean
p-valent functions [1], but not for the class of weakly p-valent functions.

[Counter-example: for f (z) = 2e™"4¢' '8 ;——z being weakly univalent
we have (1 —r71) M (r, f) =1].

If W is a simply connected Riemann surface being the 1—1 map of
|2]<1 under f(z), f(z) being regular in the unit circle, then the inner
conformal radius r(W,P,) of W with respect to Py is equal to

) as r—1.
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(1 —|20|?)|f(20)|. We suppose here that the point P, of W corresponds
to the point z; of the unit circle |z|<<1. If the point P, tends to the ideal
boundary Fr (W) of W, then the corresponding point 2, tends to the
boundary of the unit circle by the topological invariance of boundary.

Corollary 2. Since for functions whose values cover Riemann domains
of finite area r (W, Pg)/(1 + |20]) = (1 —|20|) |f (20)| tends to zero in virtue
of Theorem 2, we see that

limr (W, P,) =0, P,— Fr(W).
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Streszczenie

Wychodzac z uzyskanego poprzednio oszacowania na pochodng loga-
rytmiczng, otrzymuje dokladne oszacowanie od gory pochodnej funkcji
f(z)=2"+... p-listnej, ograniczonej (|f|<<M) i regularnej w kole
|z|<1, wazne dla 0< |z|<<r(M,p) gdzie r(M,p)=>0,4142.. oraz
T (M, p) >1 zaréwno przy p—+oo, jak i przy M — oco.

Ponadto wykazuje, ze dla funkcji, ktérych powierzchnia Riemanna po-
siada skonczone pole, a wiec w szczegolnym przypadku dla funkeji polo-
wo p-listnych i ograniczonych, jest f(2) =o (1/(1—|z])).

Pes3ome

Mcxona U3 paHee MOJIyYEHHOM OLIEHKM JIOrapu(pPMMUUYECKON ITPOUIBOXA-~
HOM, A TOJy4al0 TOYHYI0 BEPXHIOK OLEHKY NPOM3BOAHO! D-JIMCTHOMI
dbysxumit f (2) =2° + ** orpanuMueHHOM U peryJaspHOi B kpyre |z| <],
npurognypo a8 0 << |z| <r (M, p) rae r (M, p) = 0,4142.., ¥ (M, p)—1
Tak nmpu p — + 00, Kak u npu M — + oo.

CBepx TOro A mnokasbiBal, 4TO AJA (PYHKIMIA, KOTOPLIX PUMaHOBBI
NOBEPXHOCTM MMEIOT KOHEYHbIE IJIOLIAy, — CJIEXOBATEJIbHO, B YaCTHOCTU
oA (PYHKLMA NJOLIATHO P-JIMCTHBIX M OTPAaHMYEHHBIX — HMMEET MECTO

f'(z) =0(1/(1 —|2))).



