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1. Problem

Some problems of the testing of hypotheses in the theory of normal 
regression have been already discussed by “S t u d e n t” [22] and 
A. A. Markoff [9] at the beginning of the present century. R. A. F i- 
sher [1,2], J. Neyman and E. S. Pearson [11,12], J. Ney­
man [13], St. Kołodziejczyk [7], C. R. R a о [21] and many others 
have also dealt with these problems.

The assumptions connected with the problem of the testing of linear 
hypothesis in the theory of normal regression are the following.

Uncorrelated random variables

(1) y a —

with expected values

(2) Ha = E (ya) = X«1 01 + X«2 02 H----------T xap 0p

(a= 1, 2,..., n) depending on p (p < n) parameters 0,,02) —,0p are normally 
distributed with the common variance a2. The symbols e„ denote re­
siduals, and x„j (j = 1, 2,.... p) denote elements of given matrix X with n
rows and p columns, which is marked by X — X. The g independent

«P
linear restrictions denoted by matrix relation

(3) G0 = 2J,
2
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where G — G is the given matrix and rj is the given column vector with 
gp

components are imposed on the unknown parameters /5,,/32, ...,(SP
being the components of column vector /?.

The problem consists in testing of linear hypothesis 

(4) H f) = v

that h of given and independent parameter functions H fi which are line­
arly independent of (3) (where matrix H = H, h + g <p, h > 0, g 0)

hp
have certain values vlt v2,Vh that are components of vector v.

This problem, with the omission of the restriction (3) and on the 
assumption that the rank r of matrix X is equal to p, has been dealt with 
and solved by St. Kołodziejczyk [7] by means of the test of 
significance (cf. sec. 3 in [7]) which he obtained as a likelihood ratio test A, 
following a procedure due to J. Neyman and E. S. Pearson 
([14], [15], [16] and [23]).

The general solution for r p is due to C. R. R a o. In the papers [20] 
and [21] he proved the theorem that under conditions (1), (2), (3) and (4)

n
random variable o~2-Min £ (cf. (1)) where minimalization is performed 

1=1
with respect to parameters /?n#2, ...,(SP, is distributed as %2 (chi-square) 
with an appropriate number of degrees of freedom. Giving two proofs of 
this theorem C. R. Rao under the conditions (l)-(4) deduced an expression 
for the random variable F of the form similar to that in the theorem 1 of 
the present paper (cf. [19]). Since this random variable may be used for 
testing the linear hypothesis (4) in the model defined by the relations 
(l)-(3), when r^p, it provides a general solution for the discussed pro­
blem.

The other above mentionned authors mainly give different ways of 
testing linear hypothesis.

R. A. Fisher assigns for the model expressed by relations (1) and (2) 
the Student’s t test for testing hypothesis that regression coefficient in 
population, fi,-, assumes the given value (i —1,2..... p).

As far as the further course'of research in normal multiple regression 
is concerned, the corresponding sections in textbooks by R. A. F i - 
sher [3], A. M. Mood [10], S. S. Wilks [25], H. B. Mann [8], 
C. R. Rao [19] and O. Kempthorne [6] deserve attention.

The survey of the methods of proofs applied in the above publications 
permits us to see certain gaps in the theory of normal multiple regression. 
To fill these gaps at least partly is the task of the present paper.
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This paper deals with some problems connected with testing linear 
hypothesis in the theory of normal regression in the case of C. R. Rao’s 
model [cf. (1), (2), (3) and (4)] restricted to the condition r (X) = p.

The solution of problem as defined on p. 18 in a general form and ex­
pressed in the present paper in the theorem 1 has been reached by gene­
ralizing H. B. Mann’s lemma 4.1 and also by generalizing the theorem 4.1 
of the same author (cf. [8]). Though C. R. Rao’s results includes the 
theorem 1, it is given here another proof. This is justified by the fact 
that theorem 1 presents a general method of determining the form of 
random variable F (on the assumption that the linear hypothesis is true) 
for any linear regression model with restrictions given in (3).

Apart from the general problem we are primarily concerned with eli­
minating the minimalization marked in the formula for F in the theorem 1 
and with presenting in the explicit form the expressions for the random 
variables which are to be deduced from this formula in connection with 
different types of multiple regression models under different variants 
of the linear hypothesis. The expressions so obtained are given in 
theorems 3, 4 and 5. To find these expressions [cf. (56), (57) and (58)] we 
express the known theorem [25] (cf. the theorem 2 of the present paper) 
in the matrix form [cf. (47) and (48)], while proving this theorem by the 
matrix calculus. It should be noted that the mentionned minimalization 
is unavoidable, if the theorem 1 is applied directly.

The random variables F given in the theorems 2, 3, 4 and 5 may be 
used for testing corresponding linear hypothesis (cf. sec. 6 and in par­
ticular (120)).

To show that the tests of significance based on random variables 
appearing in theorems 2, 3, 4 and 5 are right-tailed, a number of expected 
values for corresponding quadratic forms have been worked out. Inci­
dentally other matrix relations have been found, such as some identities 
with conditional and unconditional estimates of parameters, related to 
multiple regression model, covariance matrix for linear combinations of 
parameter estimates, and other relations presented in sections 3 and 5.

Because of the simplicity of formulae and ease of operations with 
matrices we use matrix calculus and deal in particular with sub­
matrices [4].

All throughout this paper the equality of variances for all random 
variables y,- is assumed. Some types of hypotheses met in the problems 
of regression analysis for any number of samples in the case of non- 
homogeneous variances have been considered in W e 1 c h’s investigations 
[24]- In this paper however this case is not considered.
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We divide vectors into subvectors in the following way:

' Pi ' 

^2

- Pp -

, where y =

A,
& and d =

Pq + 1 
Pq + 2

- Pq Pp

For the sake of brevity we introduce the following notation:

(7) A = X*X,, B =X‘X!, D = X*X2. 
qq <?. p—q p—q. p—q

The reciprocal matrix S-1 of the matrix S — X* X is devided into four 
pp

submatrices: SU = S", S12 = S’2, S21 = S2' and S22 = S22 , and
qq q. p—q p—q. q p—q. p—q

is represented in the relation:

(8)
S>':S12|

Ls21!s22.r

The unconditional estimates of parameters P, y, 6,... are denoted ft, y, ir­
respectively (strictly speaking: the estimates P, y, d,... are vectors, whose 
components are estimates of the corresponding components of vectors
/?, y, i, ...). To convey that we estimate the parameters /?,, 02......pP forming
the vector /3, we say briefly that we estimate parameter p. The symbol y 
is used to denote the parameter estimate y assuming that <5 = <5O, where <50 
is the known vector; sismilarly i denotes conditional estimate of para­
meter <5 when y = y0, where y0 is the known vector.

The sample variant for n observations xltx2,...,xn is denoted by

n

and the sample covariance for x,,x2) ...,x„ and i/,,y2,.. ,y„ by 

n

SXy = — (Xi — x) (yt—y),
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2. Notation

In the present paper we use in general large italic letters G, H, M, 
P, R, ... for matrices and small italic letters x, y, z, u, v, 8, d, o,... for 
column vectors with exceptions which will be evident from the text. We 
admit the following definitions and notations. Matrix P = {p,y),
i —1,2..... n; j = 1,2.......  m; with n rows and m columns is called matrix
of order n-m and is marked with symbol P— P. Let the transpose of

nrn
of a matrix P have corresponding symbol with a star i. e. P*. The tran-

spose of the column vector y = 
n\

y2

yn

is called the row vector y* = 
Izl

= [Pu y2....... y„], and conversely; the small italic letters with indices
2/i> y2, yn denote elements of the vector y. The submatrices are se­
parated by broken line and are written in square brackets i. e.

H = fW G I
tim I np n, m—p J

or ff =
p
qm

R
_ n—q. rn _

Symbol E is reserved for expected values and e =

e,

.2 for residual vector. 
en ’

The reciprocal matrix of the matrix P is written, as usual, P-'= {p'y); 
gg

i,j —1,2, ...,g. The unit matrix and the zero matrix are marked by sym­
bols I and O respectively. Let r (P) denote the rank of matrix P. The de­
terminant of the matrix P is. marked by |P|. Definite matrices and vec­
tors preserve throughout the paper consistent symbols. We admit con­
tention

p = E(y) = X0,
where

y, •£*11 *^*12 • • • »Elp •£ 1, <7 4-1 *£l. (f+2 .. Xip

y>
, /' = , x =

•^21 3?22 • • • %2q ^2. <7 4-1 *^2.q 4-2 .». Xip
= |X, X2 1,

zip n.p-q I
yj

-^zil Xn2 • • • Xnq *Kn.q 4 lX/i.^ + 2 . • Xnp

Xj and X3 are corresponding submatrices of the matrix X, where r (X.) = q, 
r (X2) = p — q and r (X) = p.
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where

thus the sum of squared deviations from the mean and sum of product 
deviations are defined by symbols nS\ and nSxy respectively.

Population covariance is written E(yi— yi)(y,-—yj) or cov (yi,yj), 
where yi = E(y.) and E(yj) = yj.

Mean of squares of xlt x2,..., x„ is marked by
n

In the text we shall use the symbols Q„ — Min (e*e) and Qr — Min e*e; 
in the first case the minimalization is to be performed with respect to 
Pltp2,...,Pp under the restrictions imposed on these parameters, and in the 
second case the minimalization is to be performed under the same re­
strictions plus restrictions expressed in the null hypothesis. The mini­
malization with respect to the parameters /?,,/32, ...,may be replaced 
by the minimalization with respect to the expected values yr, y2, ..., y„ 
(ci. 5°-7°).

The meaning of other symbols is explained in the text.

3. Matrix relations

We deduce some relations which are used in the proofs of theorems 
presented in the following section. We are concerned with simple multiple 
regression model:

y = E(y) = Xß = XlY + X2ô,

where r (X) — p, r (XJ = q, r (X2) = p—q and X = [X!• X2], y, (t,y and <5 
are defined in the precending section.

1°. Let us write matrix S —X*X in the form including matrices A, B 
and D (ci. sec. 2). Considering the partition of the matrix X into two 
submatrices X, and X2 we obtain:

s = x*x = |x,:x2]*[x, x2

and using the notation introduced in (7) we obtain

(9)
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On account of the identity SS l = I and of the partition (8) of the 
matrix S_1 into four submatrices S11, S12, S21 and S22 we have

1A Bl 1 Su ?13U AS11 + BS2' ; AS12 + BS22 I I
<?«

0

| B* D J [s2‘ s22J B*S" + DS21 B* S'2 + DS22J 6 1
_p-q,q p—q,p—q_

and hence from indirect comparison of submatrices we obtain the follow­
ing four identities:

(10) AS11 + BS2' == 1,

(11) B*S" + DS21 == O,

(12) AS12 + BS22 ==0,

(13) B*S12 + DS22 == 1.

2°. The following relations of S11, S12, S21, S22, A, B and D hold:

(14) S" =(A — BD~' B*)-1,

(15) S’2 = —A-1 BS22 = —S" BD~',

(16) S2' = — D-’ B* Sn = — S22 B* A~

(17) S22 = (D — B* A-1 B)-1.

Proof: From (11) we receive S21 ——D ‘B*S". Substituting this 
into (10) we obtain AS11 — BD“1 B*Sn = I and hence (A—BD~' B*)SU = I, 
and S11 obtains in the form (14). Similarly using the identity (12) and (13) 
we prove the relation (17).

Now we shall deduce the formula (15). From identity (12) we obtain 
AS12 = — BS22, hence immediately

(18) S12 = —A-’BS22.

Similarly from (11) we find

(19) S21 = — D-t B* S11.
\

As the matrix S — X*X is symmetric, the reciprocal S~1 is also symmetric. 
From this we infer that S12 = (S21)* = (—D~' B*S'1)* =—S" BD~1, which 
proves the relation (15). Taking into consideration (18) we obtain S21 = 
= (S12)* = (—A~rBS22)* = —S22B*A-1, which jointly with (19) gives the 
result (16). The proof is concluded.



24 Wiktor Oktaba

3°. The parameter estimates y and <5 in the model E(y) = 
when r(X) —p, are marked with symbols y and <5. We express them by 
submatrices X, and Xa and by y.

It is known that the estimate of parameter /3 in the model £ (y) = X /3, 
where r(X) — p, is /J = S~1X*y (cf. [6]). Dividing the vector /3 according 
to (6) into two subvectors y and <5 we obtain:

= S’X‘y = |X, Xaj*-y = Is^^Jlx* y J

hence

r<sn x*.y +_s,a x*2 yl 
|S21 X* y + S”X* y I

(20) ÿ=S'’X* y + S,2X* y

(21) d = S2' X* y + S22 X* y.

Using the relations (14), (15), (16) and (17) the estimates y and Ö are 
given in the form:

(22) y=(A — BD 'B*)-l(X* y —BD-1X*y),

(23) Ô — (D ~ B* A~'B)~'(X*, y-B‘A-‘X;y).

Hence it is evident, that in the case of B == X* Xa = O, i. e. when the
parameters y and â are orthogonal, the independent estimates of simple
form are obtained:

(22') y = A 1 X* y = (X* X,)-1 X* y,

(23') d = D' X* y = (X* Xa)-> X* y.

These forms are similar to ß = S "1 X* y = (X* X)-1 X* y.
4°. For the model E (y) = X ß — X, y + Xa d and any parameters y„

and d0 we have the identity :

(24) (y — X,y0 — Xa d0)* (y — X, y0 — Xa d0) =

= (y - X, y - Xa d)* (y - X, y - Xa d) + (d - d0)* (S22)-1 (d — d0) +

+ fy-yo + A-1B(d-d„)l*2l[y-yo + A-1B(d-do)]

where y4-.A_tB(d — d0) = y is the estimate of the parameter y when 
d = d0) while as usual | J-j = X*y.
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On account of the symmetry of the parameters y and <5 in the model 
we have also the identity:

(25) (y-X, y0-X, a0)‘ (y-X, y0-X2 <50) =
= (y - X, y - X2 $)* (y - Xt y - Xa d) + (y - y0)‘ (S11)-1 (y - y0) + 

+ |<5 — <50 + D"1 B* (y- y0)|* D [«5 — do+D-1 B* (y- y0)J

where ô + D 1 B* (y—y0) = <5 is the estimate of the parameter «5 when 
y = yo-

Proof: To prove the relations (24) and (25) it is sufficient to prove 
the identities

(26) (fi - po)* S (p - 0O) = (<$ - <50)‘ (S22)"1 W - <50) +

+ [y-yo + 4-1 B (d-d0)]* A [y-y0 + A-*B(d —d0)l,
and

(27) (p - p0)* S(P- fi0) = (y- y„)* (S' ‘J"1 (7 ~ yo) +

+ M - «5» + D-1 B* (y-yj]* D [d - <50 + D 1 B* (y- y0)] t 

respectively, both with aide of identity

(28) (y - Xpor (y - Xp0) = (y - XpY (y - XP) + (P - p,)* S (P - p0),

given in |6|, where p0 = l^°| is any vector.
L 0°.J

Let us first prove the identity (27). For the sake of brevity we write: 
<y=y—y0 and ip—d — d0. Let us find the difference R — (P—P0)*S(P—Po)— 
— (y—y0)*(S11)-1 (y—y0). On account of (9) we have:

A B_ ly —y.o y0R = K (y-yo)*(S") J(ÿ—y0):
» — <50| | B* D J |_<5 — <5o|

— k* V*J [g. q] [y ]~ V* (S")~'<p = <p* A<p + <p* B* <p + <p* Bip -f-

+ ip* Dip —<p* (Sn) ' <p — ip* {.A — S”). ') <p -(- ip* B*ip + (p* Bip ip* Dtp.

Using (14) we have (Sll)_l=A—BD~l B* and hence A—(S”)-1 = BD~'B\ 
Then R = g>* BD~' B* ip + ip* B*<p + <p* Bip + ip* Dip = (ip + D~' B*<p)* D(ip + 
+ D_1 B* tp). We have thus proved the identity (27) and because of (28) 
also the identity (25).

The identity (24) is proved in the same way using (26) instead of (27). 
To prove it it is sufficient to use the relation D — (Saa)-1= B*A~'B, which 
is obtained from the expression (17).
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5°. It may be noted that the multiple regression model y = E(y) = XP, 
where r(X) = p, includes the implicit relation (cf. [8]):

(29) 

where

(30) 

and

(31)

К • p = 0,
n—p.n n 1

К =1 1 —LL-'
n—p,fl \n—p,n—p

x =
np

L
n—p,p

L
. pp

with matrix L including p independent rows of matrix X and matrix L — 
the remaining rows.

To prove the relation (29) let us divide the vector p into two subvectors 
a and b, corresponding to the matrices L and t. Thus we obtain

n—p. 1 pi

and hence

(32) b = Lp

and o = L/S. From expression (32) we obtain

(33) p = fc“1 b,

which exists since г (X) = p. It then follows that
a = Lf,-’b and a — Lb~' b = 0 = [I — 11 “ J = Kp,

which we were to prove. Thus the expected values p1( p2,..., pn of ran­
dom variables ylty2, —,Уп are connected with n — p linear relations given 
in (29), where the matrix К of rank n — p is in the form (30).

6°. Consider the same multiple regression model as in 5° with the 
restrictions »
(34) G-p = y, 

gp pi gi

imposed on parameters P's, where the matrix G (of order д-р) is of rank 
<7 < p and у is the column vector with д components. We shall prove 
that both relations (34) and (29) connecting the expected values ,p2, ...p„ 
and the parameters/?,,&>, ...,/Sp may be replaced by one relation of the 
form
(35) Mp=&,
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where

(36) M = M = 
n-p + g.n

1 -L-L
n—p, n—p n—P.P PP

o G-L~l
L g.n-p ZP PP

n and ofis the matrix of order (n — p+g) rank n—p+g, and

o
(37) 0 = 0 = "~p-- .

n—p+g, i VL gt J

In fact, let us write (34) as O • a + Gfi = y. Using (33) we have Oa + 
CL~1b=r) or fO Gfr-1] | ° ] = T?' Hence considering [I:—Lt-1] [ £ °>

and i9 in (37) we obtain (35). It is evident, that rank of matrix M equals 
n—p+g, since diagonal matrices I and Gt-1, being its submatrices, are 
of ranks n—p and g respectively.

7°. The restrictions
H0 = >,

may be replaced by the restrictions expressed by means of the relation

(38) Pp = v

where

(39) p=[o:hl-'].

In fact, introducing /5 in the form (33) into (4) we obtain Hfi=HL~'b=v 
or Oa + H£j~ 1 b = v, from which follows ° 1 = »'.

4. Lemma and Theorems

In this paper we discuss the model given by the relation (1), (2), (3) 
and (4) when r (X) = p.

It should be noted that some multiple regression models with matrix 
X = X of rank r < p may be transformed into models discused in the

np
present paper i. e. into such models in which the numbers of independent 
parameters are equal to the ranks of matrices whose elements are the 
coefficients of these parameters (cf. for instance the model of the type a) 
in the “Applications”).
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In view of the great importance of the problem of testing linear hy­
pothesis in the theory of experiment, and its extensive application in the 
analysis of data obtained from experiments carried out in different fields, 
such as agriculture, industry, biology, etc. (cf. paper by K. Iwaszkie­
wicz [5] and J. Neyman [13] and [17]), it is necessary to discuss it 
most thoroughly (cf. the two proofs of the same theorem given by C. R. 
Rao in [20] and [21]).

We present the lemma which generalizes H. B. Mann’s lemma 4.1 
(cf. [8]) for unhomogeneous relations.

Lemma. Let matrix relation

(40) M/i = 0

where M = M = [m//}, i = 1,2,Jc, j=l,2......n, ..... /x„|r
kn

0*=[Vlt^2..... #*), define k linearly independent linear restrictions im­
posed on n expected values /q,ju3,...,jun* Then we may determine the 
system of restrictions

(41) Wfi = 0

which is equivalent to (40), where W=W=[w<yi, i=l,2, ...,k, j=l, 2,...,n, 
kn

0* = [0,,02) ...,©*], and where the matrix W is orthogonalized and nor­
malized i. e. WW* = I.

kk

Proof: The elements of matrix W are obtained according to Mann’s 
recurrent method given in lemma 4.1. We use therefore the formulae:

n

(42) Mj= Wj„miti.a, j —1,2,...,!, where Kk,
0=1

(43) WZH.« = Tn/Tl.a —^1 Wl«-

(44)
a = 1, 2,..., n,
1 = 0,1, 2,..., Jc —1,

where for t = 0 we write w'ia — mla.
Considering (40), (41), (42), (43) and (44), the components of vector 0

are obtained immediately:
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where I = 0,1, 2,.... fc-1, and for I — 0 we admit w'la = mia and x00 = 0. 
The expression (45) is a recurrent formula, which permits effectively to 
determine the coefficients appearing on the right sides of the relations (41). 
In particular we have

Theorem 1. Let the random variables ya in the multiple regression 
model y = Xfi + e = y + e, where E (y) = y = Xfl, be normally and inde­
pendently distributed with expected values /<«, a — 1,2, ...,n and common 
variance a2. Let also matrix relation Ky = 0 (cf. (29)) determine n — p 
independent linear restrictions for expected values yit y2, ..., derived 
from the model with p parameters which are subjected to g
independent linear restrictions G(f = y (cf. (34)) where g<~p. Let hypo­
thesis be true that h < p — g further linear restrictions H — v with 
respect to /?,, fl2, ..., fip independent of preceding g restrictions and mutually 
independent, assume the values determined by the components of the 
vector v (cf. (4)). Then the random variable

Qr Qa Qa 
h 'n — p + g

has F distribution with h and n — p+p degrees of freedom.
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Proof : In the section 3 we proved, that both relations Ky = 0 
and Gf} = rj may be replaced by one relation My — d (ci. (35), (36), (29) 
and (30)), and that the restrictions H(} — v may be expressed in the form 
P// = v (Cf. (4), (38) and (39)).

From the lemma it follows that the relations My = and Py — v may 
be transformed into their corresponding two equivalent sets of restric­
tions with such property that rows of two sets of these restrictions will 
belong to orthogonal and normalized matrices. Let the relations My = & 
and P/z — v be such transformed sets of restrictions i. e. let MM* = 1^ 
PP* — I, MP* — O. Add orthogonal and normalized matrix

M
n—p+g.n

p
h, n

with n — p + g + h rows and n columns to orthogonal and normalized 
square matrix

M
n—p+g,n

p
hn

II

which is always possible to do. Then CC* = I, MM* = 1, PP* = 1, nn* — lr 
MP* — O, MfT — O and PI1* = O. Consider orthogonal transformation
t — Cy, where

z + & 
U + V 

W + Q

t =

and where the number of components of vectors z, u and w are equal:' 
n — p + g, h and p — g — h respectively. Since t — Cy and CC* — I we 
have z + I) — My, u + v — Py, w + Q — fly and hence

(46) z — My — u = Py — v and w = 77y — q.

Denoting E(z) = mz, E(u) = m„ and E(w)—mw we obtain: m2=My — i), 
mu — Py — v and mw = fly, — g.

Before finding Qa note that (y — y)* (y — y) = (t—mt)* (t—mt), where 
E(t) = mt. In fact, since t = Cy and CC*=I we have y — C~'t = C*t and 
y = E(y) = C*m,. Hence (y — y)*(y — y) = (C*t — C*mt)*(C*t — C*mt) = 
= (t — mt)* CC* (t — mt) = (t — mt)* (t — mt).
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Now let us find Qa, by minimalizing corresponding expression with 
respect to y. We have Qa — Min(y— y)* (y— y) — Min(t— mt)* (t—m,/) —

— Min [(z + &—mz—#)*(z+«?—mz—f)) + (u+r—mu—r)*(u + »'—mu— v) + 
+ (w+g — mw — q)*(w + q— mw— g)| and writing mz = My— 0 we ob­
tain Qa = z* z + Min [(u — m„)* (u — m„) + (w — mw)* (w — mw)] = z* z.

Similarly we find Qr by minimalizing the sum of squares of residuals 
e*e = (y — y)*(y— y) with respect to y, this time under two restrictions 
My—i) and Py = j>. We obtain in succession: Q, — Min e* e = Min [(z—
— mz)* (z — m2) + (u — m,,)* (u — m„) + (w — mw)* (w — niw)] = z* z+u* u+
+Min(w—mw)‘(w—mw)=z*z-)-u*u and hence Qr—Qa = u*u, where u—u.

in
We shall prove that components of vectors z and u are uncorrela- 

n—P+g.l hl
ted and normally distributed random variables with variance a2 and 
means equal to zero. For this purpose let us find covariance matrix of 
vector t;

E (t — mt) (t — mp* — E
z — mz 
u— m„ [z mz)* : (u — m„)* (w — mK-)‘| —
w—mw

— E
(z — mz) (z — mz)* i (z — mz) (u — m,,)*; (z — mz) (w — mw)* 
(tt — m„) (z — mz)* ; (it — mu) (u — mu)* : (u—m„) (w — mœ)* 
(w — mw) (z— mz)* ! (w— mw)(u — m„)* (w—ntw)(w—mu)*

a2 - I O O
n—p+g.n—p+g' ;

Ô : <?• i ' Q
: hh :

O O a2 > I
' P—g—h, p—g-h-i

(since on account of relations (46) we obtain successively:

E (z — mz) (z — mz)* = E [(z + d) — (mz + tf)| [(z + &) — (mz + »?)]* =

= (My — My)(My—My)*—M(y —y)(y — y)* M*=MIa2M*=o2 ■ I 
and further n—p+g.n—p+g

E(z — mz) (u — m„)* == E (My—My) (Py—Py)* = Mia2 P* = a21MP*=O, etc.).

Noting that E (z) = E (My — O) — My — d = 0 and that by hypothesis: 
Py = v we obtain E(u) = E (Py — v) = Py — v = 0. Thus it has been pro­
ved that Qa is the sum of squares of n — p + 9 normal and independent 
random variables with the means zero and common variance a2 i. e.

Qa __ Z* Z__ 2 *
«2 zt2 *n-p+g
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which means that Qa/o2 is distributed as Chi-square with (n—p+g) de­
grees of freedom. Similarly Qr—Qa = u*u is the sum of squares of h 
independent normally distributed random variables with means zero and 
common variance a2 i. e. (Qr — Qa)/o2 is distributed as Chi-square with h 
degrees of freedom. It has been also shown (cf. covariance matrix of 
vector t) that Qa and Qr—Qa are independent. Consequently we conclude 
that if the hypothesis Hp = v is true, the random variable

„ _  Qr Qa Qa
h n—p + g

has F distribution with h and n—p+g degrees of freedom. Consequently 
it can be used to test the null hypothesis that H/3 = v.

Theorem 2. Consider the multiple regression model y — X^+e = X^y + 
+ X26 + e where according to the notation introduced on pages 20—21 we

have E (y) = Xß = y, and ß — . Let further the components of vector e

be normally distributed with zero means, common variance a2 and zero 
covariances, and finally let rank of matrix X be equal to the number of 
parameters f}2,()p i. e. let r(X) = p. Then on the null hypothesis: 
y = y0 the random variable defined as the ratio

(47) F = (y-yo)*(Sn) '(y-yo). <y-xfl* (y - Xft
' q n— p

has F distribution with q and n—p degrees of freedom, and on the hy­
pothesis: <5 = <50 the random variable

(48) F = “ Xßr(y-Xß)
p — q n — p

has F distribution with p—q and n—p degrees of freedom (the symbols 
here used are introduced in the sec. 2).

Proof: For the proof we shall apply the theorem 1. As it is known 
(cf. [6])
(49) Qa = Min(y — Xp)*(y — Xp) = (y — X(})*(y — Xp) = y*y-'p*X*y 

where /3 = S~' X* y and S = X* X.
On the hypothesis that y = y0 the model y = Xfi + e = X,y + X2d + e 

assumes the form y — X, y0 + X2 <5 + e or

(50) E (y — X, y„) = X., d.
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Now Qr by (49) has for the model (50) the form:

Qr = Min (y-Xp? (y-Xp) = Min (y—X,y0—X,6)* (y—X, y0—X,<5) = 

= (y — X, y0 - Xa d)* (y — X, y0 - X2 d) = (y - X, y„)‘(y - X, y0)—
- d* X*(y - X, y0) = y* y - 2 y* X, y„ + yj Ay0 - ? X*(y - X, y0), 

where the conditional estimate

(51) d = D- 1 X* (y - X, y0) = D~' (X! y - B* y0)

is deduced from the normal equations

(52) Dd = X.t(y-X,y0)

where, as usual, A — X* X,, B — X* X2 and D — X* X2.
Since from the theory of normal regression it is clear that the esti-

mete ß is found from the normal equation Sß — X*y, we obtain (cf. p. 21 
and (9)):

Sß = A
B*

Ay+Bö

hence

(53)

(54)

I B*y + DÖ
= X y = X*y

X*y

Ay + BÖ = X*y 

B*y + D6= X*y 

Using the relation (54) we obtain 

(55) Ö = D“1 (B* y + D <5 — B* yn) = d + D B* (y Yo)

instead of (51). By (49), (55), and the form of Qr, as well as by the ex­
pression

P* X* y = kl*|X, X2|*y = y*X*y + i‘xh,
I I

we have further

Qr - Qa = — 2 y* X, y0+yS A y0 - [3 +D -1B* (y-y0) | *(XS y-B* y0)+P*X* y

and using (53) and (54) we find after the reduction:

Qr — Qa — (y — y0)* l-A — BD ~ ' B*] (y — y0).

Comparing this with (14) we obtain

Qr - Qa = (y - y„)* (S'1)-1 (y - y„)
3
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and finally by (49) it appears that random variable F mentionned in the 
theorem 1 assumes the form of the ratio (47). It may be used thus for 
testing the hypothesis y = y0-

The alternative to the null hypothesis: y = y0 is y^y0, which means 
that at least one of the parameters Pi,Pa,—,P<i does not assume the value 
mentionned in the null hypothesis.

The formula (48) is deduced in the same manner. Here should be used 
the relation (17), from which it follows that (S22)-1 = D—B*A~,B. The 
proof of the theorem 2 is concluded.

Theorem 3. Consider the multiple regression model /u=E(y)=XB, 
where the components of vector y are independent random variables 
normally distributed with means y,, y2, ..., and common variance cr2. 
Besides, let the rank of matrix X be equal to the number p of parameters 
P and let the hypothesis that q> — LB — <p0 be true, where L = {ly}, 
(i= l,2,...,q; j = l,2,...,p) and r(L) = q. Then the random variable

(56) F = (Zp-V0r(tS-'L*)-'(Lp-<p0) . (y-Xp)* (y-Xp) 
q n — p

has F distribution with q and n — p degrees of freedom.
Proof: Since by assumption the rank of the matrix L is q we can add 

to this matrix such a rectangular matrix M with p—q rows and p co­
lumns, as to make the resulting square matrix pXp non-singular. Let 
such a matrix be R j. Similarly let us add to vector ....

with q components a vector o* = [p?+i, Qq+2, —, op] with p — q compo­

nents, such that the relation w= - = R/3 is obtained. For this purpose
p* I e J

it is sufficient to put g — M.p. Then p — R~'y and the multiple regression 
model E(y) = XP becomes:

E(y) = XR~1y> = Zy> —XlRn: R12 1 |
npl P9 : P. P—9J 1

:]= XRuy + XR^g = Zi<p + Zag

where

R_1 = [RU R12 1 and Z — \Zl : Z2 l=XR-‘ or Z, = XRn
PP l P7 P. P—9J np |n<z n.p-q 1

and Za = XR12. Since the model y = E(y) = Xp has on the null hypothesis 
<p = LP = <po been transformed into the model E(y) = Zy — Zx(p-\-Z2Q, 
the situation described in the theorem 2 is obtained. Consequently
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Qa — (y — XP)*(y— Xp), where p — S-'X*y and, as usual, S — X*X and 
Qr — — — <Po)* (Wn)-1 (<p— (p0), where W’1 is the submatrix of matrix

r w11 : Wta
qq <bP—q

W2' w23
_ p—q. q: p—?. p—q.

which is the reciprocal matrix of W = Z*Z. Let us find the matrix Wu.
pp

To do this let us observe that W = Z* Z = (R-1)* X* XR-' = (R-’)‘ SR-' i. e.

w~l — IW11; W12l 
w-1 w2-

[(R-')*SR-']“1 = RS~' R* =

LS~' L 
MS'L*

LS-'M*
MS-' M*

Hence comparing the corresponding submatrices we have:

W" = LS~'L*, W'2 = LS~'M*, W2’= MS-'L*, W22 = MS~'M*.
qq q.p-q p-q.q p—q.p—q

Thus Qr—Qa=(<p—(fo)* (LS~' L*)~' (<j>—<p0). By the relation <p=Lp we obtain 
tp—Lp=LS-'X*y. Inconsequence Qr—Qa=(Lp—q>0)*(LS~'L*)-'(Lp—<p0). 
Considering further the form Qa represented above, we obtain by the 
theorem 2 the random variable F defined in (56).

Similarly as in the theorems 1 and 2 this random variable may be 
used for testing the null hypothesis Lp = <pa. The alternative to the null 
hypothesis Lp = <p0 is: Lfi is equal to any tf0, different from <p0. The alter­
native hypothesis states that q linear parametric functions expressed in 
the matrix form by Lft have values different from components of vector <jp0.

Theorem 4. Let g linearly independent restrictions defined by the
matrix relation Gp = y (cf. (3)), where G = G and y = y, g<p, be 

gp «i
imposed on the parameters pt, p2, ..., pp of the multiple regression model 
p = E(y) = XP, where the components of vector y are independent random 
variables normally distributed with means p2, ..., n„ and common va­
riance a2, and where r (X) = p. Let also the null hypothesis H p = v be

hp pi hi

true, where r (H) = h and g + h < p, when all the g + h linear parametric 
functions, expressed by GP — y and HP — v, are mutually independent. 
Under these assumptions the random variable given by the ratio
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(57) = (Tß — t)* (TS-' T*)~' (T/j — t) — (Gß — y)* (GS-' G*)-1 (Gß — y)
h

. -_x è + (G^-y)*(GS~1G*)-1 (Gß — y)
n—p + g

has F distribution with h and n — p + g degrees of freedom, where

Proof: Under the assumptions of the theorem 3, where Gp = y plays 
the rôle of the restrictions Lf) = (p0, we obtain: »

Q; = (G 3 - y)* (GS-1 G*)-1 (G 3 -y) + (y - X F)* (y - X p).

Under the conditions of theorem 4 Q„ has the latter form, so that:

Qa = Min (y - Xp)* (y - Xp) =
a?=i

= (y - Xp)* (y—XP) + (Gp - y)* (GS-1 GV (Gp - y)

with n—p+g degrees of freedom, where as usual P=S~ ' X*y and S — X*X.
Similarly we find Qr after performing the minimalization under the 

restrictions Gp = y and Hp = v: Since these restrictions are replaced by 
one relation Tp = r, where the matrix T and vector t are defined in the 
theorem 4, we have:

Qr = Min (y - XP)* (y - Xp) =

= (y — Xp)*(y-Xp) + (Tp — r)* (TS~' T*)~l (TP — t)

with n — p + y + h degrees of freedom. Hence
• :V ■ if
Qr — Qa = (Tp — r)‘ (TS-1 T*)-1 (TP-t)-(GP — y)* (GS-' G*)-' (Gp — y).

Applying the theorem 1 we may state that random variable expressed 
by the ratio (57) has F distribution with h and n—p+g degrees of freedom.

Let us observe that this theorem may be also proved (at a greater 
length) using Lagrange’s multipliers method.

Theorem 5. Let there be given the multiple regression model 
y = E(y) = XjS, where the components of vector y* = [y,, y2, .... y«| are 
independent random variables normally distributed with means y1(^2, —,yn 
and common variance o2, and the rank of the matrix X is equal to the
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number p of parameters (i. Let the null hypothesis be true that the 
parameters ^1,^2» •••> ftp are represented by linear combinations of p — q pa­
rameters t9?+i, #?+2,dp, q > 0, expressed by the matrix relation fi = Ud,

where the rank of matrix U= U is p—qand$*= d* = [dq+i,dq+2,...,dp].
p. p—q p—q. 1

Then the random variable expressed by the ratio

(58)
, _ S/J . (y- x^*(y - Xfi)

n ■

has F distribution with q and n — p degrees of freedom.
Proof: Let matrix P — P complete the matrix U to obtain the 

pq p. p—q
non-singular matrix T = [PUj. In the same way the vector d wit]n p — q 

with p
pp

components is completed by vector n, to get the vector g
At pi

components. Thus we have the transformation of vector d info the 
vector q, which is expressed by the matrix relation

(59) /3 = Te = [P:l7]|^ | = Prc + U0.

By (59) the hypothesis d~Ud may be written: 3i=o. Then the mul­
tiple regression model assumes the form:

E(y) = xd = xTe = xPn + xud = zin + z2d = Ze

where we put Z, = X P, Z2 =X- U and Z = [Z, Z2] — XT, and where 
nq np pq n, p—q np p. p—q np

r(Z) — p, since r(X) = p and T is a non-singular matrix. Thus we come 
to the problem, which is dealt with in theorem 2: Considering the model 
E (y) — Z, n + Z2 d and assuming that the null hypothesis n = o is true, 
we conclude that the random variable

(60) F = - XV*(y-Xd)
q n — p

has F distribution with q and n—p degrees of freedom, where H — H = 
pp

= Z* Z and according to the symbols introduced in the sec. 2 the matrix 
H11 is the submatrix of

H11
qq

H'2
q.p—q

H2i 
p—q. q

H22

P—Q. P—Q
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and n = HnZ*y + Hl2Z*y = (HuP* + Hl2U*)Sp (cf. (20)). In the appli­
cations it is more convenient to use the formula (58), which is deduced 
in the following way.

We have Qa = Min(y— X P)* (y— Xp) — (y— Xp)* (y — X(i), where 
P = S~'X*y. Further when the null hypothesis /?=[/# is true Qr — 
= Min (y — X ft)* (y — Xp) where the minimalization is to be performed 
with respect to parameters pitp2, -,Pp- Let us find an explicit expression 
for Qr — Qa- On the hypothesis: p = Ud the multiple regression model 
has the form
(61) E(y) — XP=XUd = Z.,d

where Z2 — XU .and r(Z2) = p — q, since under the assumption r(X) = p 
n.p—q

and r(U) = p— q.
The estimate of parameter & in the form

d = (Z* Z2)~' Z*y = (U* SU)-’ U* X* y

is obtained from the normal equations (Z* Z2) d = Z*y, where Z* Z2 = U* SU. 
Hence
(62) Qr— Qa = (y — Z2^)* (y — Z2d) — (y — xp)* (y — Xp) 

and by

(y-Xpy(y-Xp) = y*y — p*SP = y*y-y* XS~'X*y
we have

(63) Qr-Qa = y*y — y* Za (U* SU)“1 Z*y-y*y + y* XS~l X*y =

= y* XS~' X* y — y* XU (U* SU)“’ U*X*y = 

= y* X [S-1 — U(U* SU)-1 U*] X*y = (spy (S-1 — U(U* SU)-1 U*\Sp.

Using the theorem 1 we obtain the random variable F in the form (58) 
with q and n—p degrees of freedom. This random variable may be used 
for testing the null hypothesis P = Ufl in the case of model (61). The same 
is true of the theorem 4.

5. Expected values of quadratic forms, covariance matrices, 
and other matrix relations

The problem of testing a null hypothesis against an alternative hypo­
thesis is connected with the problem of determining the type of test i. e. 
whether the test is to be one-tailed or two-tailed. Since the random
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variables F discussed in this paper are the ratios of quadratic forms, 
the determination of the type of test based on these random variables 
requires finding expected values of corresponding quadratic forms. To 
do this it is necessary to deduce a number of matrix relations. Inci­
dentally some covariance matrices and other matrix expressions which 
can be applied in the multiple regression will be deduced.

1°. Let y,, y3,y« be random variables with covariances cou(y/,y/) = 
= E (yt — yt) (yj — /y), i, j — 1,2,..., n, and means /z,, y2, ..., y„. Let further 
y* = |yi.y2..... Vn] and y* = [/<,, y2,y„] = E (y*), and let P = (py) be the

nn
matrix of quadratic form y* Py. We shall prove that under these assumptions

(64) E (y* Py) = y* Py+ y £ py cov (yh yj).
< j

Proof :

E(y*Py) = E(y* Py) - Ey* Py + Ey*Py = E(y — y)* Py + y*Py =

= E(y-y)*P(y-y)+E(y-y)*Py + y* Py = E(y— y)* P(y— y) +y* Py =

l°a. When the random variables y„ y2, y„ are uncorrelated and have 
variances equal to o~, cP, '..., respectively, then cou(y„yy) = 0 for
i, j = 1, 2, ...,n, and cou(y/, yz) = a? for i = 1, 2..... n. Then the identity (64)
assumes the form

(64 a) E (y* Py) = y*Py+ £ pti aj

2°. The sum of diagonal elements of matrix

(65) L — A • b • (A ■ c)* = Abe* A* is equal to (Æ>)*Ac
nn run ml nm mi

where A = A, b = b, and c = c.c.
ml

Proof: Let i4*=[[a,] [a2] ••• |anll i.e. let

A
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where [a,]*, i = l, 2,is the vector with the components constituting
i-th row of matrix A. Then

(66) A* A = 2 [az] fa,l*
z

and matrix L has the form:

l«i]*bc* ]«,], [a,]*be* [a2], .... [a,|*bc* |a„]

L = Abe* A* = [a2]*bc* [a,], [a2]*bc* [a2], ...,[a2]*bc*[an]

[a„|*bc* |a,J, [a„|*bc* [a2], ..., |a„]*bc* [a„]_

Thus the sum of diagonal elements of matrix L equals:

2 [az]* be* [az] = 2 b‘ I«-l la‘l* c = b*(E M M jc = b* A* Ac = W Ac.

3°. For the multiple regression model y = X/3 + e we have

(67) Ee* XS~' X*e = po2

where, as usual, S = X*X and o2 is the variance of each of n inde­
pendent random variables yu y2, —> yn that are the components of vector y.

Proof: By the identity (64a) we obtain

Ee* XS~'X*e=o2 2 /" >
i

where /zz are diagonal elements of matrix F = XS'X*. To show this it is 
sufficient to prove that the sum of diagonal elements of matrix F equals p. 
This is proved immediately by writing explicitely the elements of this

matrix. Thus, if by L we denote the matrix L = XS-1 = {ly*}, then 

p

ljk= 2 x‘jSik; j=l,2,...,n, k=l,2,...,p.
z

Hence
p p p

fgh == Igm Xmh == Xig St,n Xmh\ g, h == 1, 2, 71.
m m i

When g — h then
. p p

fee — 2 2 x'£ s"n Xmg •//1=1 /=1
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Hence
n n p p p P H , p , p ,

fgg— X‘g X"'g S'"‘ ~ \ X‘g s""= | VS„„ s"" I =p,
g g m i m z ' g rn ' Z '

since on account of S — X* X we obtain

n

Si,n == Xig Xmg • 
g

3°a. Note that

(68) E(y —X)?)‘(y —X/S) = (n —p)o2.

In fact, by E(y — Xp)*(y— Xp) = Ee* e— Ee* XS~' X* e and by (64a) we 
have Ee* e = na2, and hence the expression (68) follows from (67).

4°. For any ft,

(69) E (y - Xft,)* (y - Xft() = (0 - ft,)* S(p- fa + na2.

Proof: The result (69) is obtained immediately with the help of the 
relation (68), of the identity (cf. [6])

(y - XpJ* (y — Xpa) = (y - xp)* (y - Xp) + (p- pa)* S(P- p0) 

and of the matrix expression (cf. loc. cit.)

E (P - pof S(P- p0) =(p- p0)* S(p-pa) + pa2.

5°. The matrices of covariances between the unconditional estimates 
y and the d's for parameters y and <5 appearing in the multiple regres­
sion model of the form E (y) = XP — X, y + Xa<$

(where, as usual, X = ||X, X, 1 and p
\ «p 1W n.p—qi pi

(70) E (P — y) (y --y)* = a2.S11,

(71) E (y — y) (3 --<$)* = a2-S’2,

(72) E (<5 — d) (y-

(73) E(d — 6) (<5 -- <5)* = a2 • S22,
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where according to sec. 2: the symbol a2 denotes common variance of 
each of n components y„ y2,.... yn of vector y, and S11, S12, S21 and S22 
are submatrices of S-1 (cf. (8)).

Proof: It is known (cf. [6]) that covariance matrix of vector p is equal
to M — E (P—p) (p — p)* — a2 S~ '. Utilizing the fact that p = j N 1 we have 
on the one hand L <9 |

(74) ?_ ~ y]
<5 — ÔI

and on the other hand

E 'J |(y — y)* (<5 —<3)| == 
d — 0 I

_ [EA?-e (ÿ — /) (<5 “ ^)* I 
" I E (<5 — <5) (y — yj* : E (â — «5j (Ô — <5)* I

I s11 S'21 |a2S”:<T2S12|
1 s21 S221 “ 'pS21ff2S2aJ

The comparison of corresponding submatrices given in (74) and (75) 
leads to the covariance matrices in the form (70)-(73).

Remark 1. In particular case when the sets of parameters represented 
by vectors y and d are orthogonal i. e. when the matrix B = X* X., = O, 
we deduce using the relations (14)—(17):

(76) S11 = A-’ = (X* X,)-1, S12 = S21 = O, S22 =D-‘= (X.t X2)-‘.

Consequently the covariance matrices (70)—(73) are equal to:

(77)

(78)

(79)

E(y — y) (y — y)* — a2 A

E (y - y) (Ô - <5)* = E (d — <î) (y — y)* = O, 

E(<5 — <5) (ô — Ô)* = o2D-'.

we6° Under the assumptions given in 5° for any parameter p,
have :

(80) E(y--yo) (y -— y0)* = ff2-S" + (y — yo) (y—yo)*,

(81) E(y--y0) (<5-- <50)‘ = . S,2 + (y — yo) (<5 - <50)*,

(82) E(ô --<5o) (y-- y0)* = <r2 • S21 + (<5 - <5o) (y-yo)*,

(83) E(ô --<5„) (3-- <50)‘ = a2 • S22 + (<5 — <50) (<5 — <50)*,

where p = 1
Ns
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Proof: Using the relation (71) we obtain successively:

E(y-70) (ô-ô0)* = Eyô:-Ey ô*0 -Eyod* + yoô* =

= Ey<5*-yd;-y0d*+yX = a2S‘2 + yd*-yd0‘-y0<5* + yX =

= a2 S12 + (y — y0) (ô — <50)*.

Thus we have proved the relation (81). The three remaining relations: 
(80), (82) and (83) may be proved in the shme way; it is sufficient only to 
consider the relations (70), (72) and (73).

7°. Under the assumptions given in 5° we have for any parameter (any 
vector) y0 and any parameter (any vector) <50, respectively:

(84) E (7- y0)* (S’1)'1 (y - y0) = (y - y0)* (S'1 )“’ (y - y0) + q a2,

(85) E (d — <50)* (S22)“1 (ô - <50) = (d- <$„)* (S22)-’ («5 - <50) + (p - q) a2,

where y„ is any chosen set of (h for i = 1, 2,..., q and <50 is any chosen set of 
f)i for i = q+l, q+2,p.

Proof: To prove the relation (84), let us put for brevity y> = y — y0.
Let 1° be the elements of matrix (S11)“1, i, j=l,2..... q. Considering
E(y) = 7 and the relation (64) we obtain:

1 Q

E(y — 7o)* (S”)_l (y — y0) = (y — y„)* (S11)-1 (y — y0) + cov (fa, fa).
‘ j

Let us determine now the covariance matrix for vector y>. Using 
ip— E(fa = y— 7 and (70), we see that it is equal to

E (ip — E (fa) (ip — E (fa)* = E(y — y) (y — y)* = a2 S”.

Thus we have cov (y>/, yy) = o2 hj, so that
E(7-Yo)*(S")-' (y-y0) = (y-y0)*(S”)->(y-y0)+a2 V J; l"lzy = 

= (y-yo)*(S!1)-’ (y-y0)+q<A

The relation (85) is proved in the same manner.
7°a. From the relation (84) it is evident that, when the null hypothesis 

7 = 7o is true then E (y — y0)* (S11)-1 (y — y0) = qa2. Using this we shall now 
show that test based on random variable (47) is right-tailed. In fact, it is 
sufficient to prove that when y7^y0 the quadratic form (y—y0)*(*Sll)—1 (y—y0) 
is positive definite.
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Proof: First consider two known theorems:
Theorem I. If the quadratic form is positive definite, the reciprocal 

form is also positive definite. Theorem II. Any principal submatrix of 
a positive definite symmetric matrix is a positive definite matrix.

To prove that matrix (S11)-1 is positive, it is sufficient to show (by 
theorem I) that its reciprocal matrix i. e. matrix S11 is positive definite.
Since S11 is the principal submatrix of matrix S = S =X*X, then by 

pp
theorem II it is sufficient to prove that matrix S is positive definite. We
exclude here the trivial case X = O when the matrix S*1 does not exist.
Let u = u 4= 0 be any vector with p components, not all of which are 

pi
zeros. Then u*Su = u*X*Xu = (Xu)*(Xu) is a quadratic form (sum of 
squares) which means that the matrix S is positive definite. It has been 
thus proved that the test based on random variable (47) is right-tailed.

8°. Under the assumptions given in 5° the covariance matrices of 
conditional estimates y and 6 which are obtained when <9 = <5O and y=y0 
respectively, are equal to

(86) E[y-E(y)l[y-E(y)]* = a*.A-‘,

(87) E|d —E(d)] [d —E(d)J* =o2-D“1.

Proof: First we shall deduce the relation (86), whose left side we shall 
denote by C. Since E(y) = y and E(<5) = 6, and the conditional estimate 
y = y + A~'B(d— <50) (cf. formula (55)), we can write y—E(y) = (y—y)-(- 
+ A-’ B (&— d) and hence

C = E {(y- y) + A~l B(6 — d)} ((y- y)+A“1 B (3 — d)}* =

= E (y—y) (y—y)*+E(y— y) (<$ — <5)* B* A-1 + A-' B • E («5 — <5) (y- y)*+ 
+ A-' B • E (<5 — <5) (3 — <5)‘ B* A~\

Utilizing the expressions (70)—(73) and reducing the corresponding 
matrix relations we obtain:

C = c2 (Su + S12 B*A_1 +A_1BS21 +A ~,BS22B*A_1). Note further that 
from the relations (10) and (12) follow the corresponding matrix relations: 
S12B*=f—S“A and BS22=—AS’2. Hence S12B*A“‘=A-1—Sn, A-’BS2,= 
=A—*—S11 and A-1BS22B*A“1 = —A-1 (AS12) B*A~~i = —Sl2B*A~1 = 
= —(f—SnA) A1 = S11 — A-1. Using these relations and performing 
appropriate reduction we obtain C = E [y— E (y)J [y— E (y)]* = a2 A~'. 
Thus we have proved the relation (86).

To prove the relation (87) we proceed similarly, but in place of the 
relations (10) and (12) we use the relations (11) and (13).
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Remark 2. Note that the right sides of (86) and (77) are identical, and 
also the right sides at (87) and (79). This means that covariance matrix 
of unconditional estimate ÿ, determined under the assumption that vectors 
y and Ô are orthogonal, is identical with covariance matrix of conditional 
estimate y determined without assumption of orthogonality. Mutatis mu­
tandis the same is true of the vector ô. The estimate y is, of course, de­
termined under the condition that Ô — d0 and estimate ô is determined 
when y = y0.

9°. Under the asumptions given in 5° the following equalities hold:

(88) E(y-y0)*A(y-y0) =

= \y — 7o + A~' B(ô-«„)f A {y —y0 + A~' B(ô — <50)} + qa2

(89) E(d —<S0)*D(d —d0) =

= {«5-d0+D-’B*(y-y0))‘ • D{<5—A0+D~'B*(y—y0)} +(p-q) a2

where y = y + A~' B(ô — <50) is the estimate of the parameter y under 
<?i ~ .

assumption that ô — ô0 while <5 = <5 + D~' B* (y — y0) is the estimate of the 
P—9.1

parameter ô under assumption that y == y0 •
Proof: First we shall prove the relation (88). Let <?> = y — y0. Con­

sidering formula (64) which gives the expected value of quadratic form 
we have:

E(y — Xo)* A (y — y„) = Ey* A q> = (y — y0 + .A“1 B (Ô — d0)}* •
Q Q

• A (y — y0 + A“1 B(ô — <50)} + £ an cov (<?/,£;)
i 7

where a,y; i, j = 1, 2,..., q; are the elements of the matrix A—X*XV Since 
~ ~ 99 ~ ~

the covariance matrix of vector <p (on the account of q>—Ely)—y—y0— 
— E(y— y0) = y — E(y) and (86)) is equal to

E[y-E(^)] [y-E(y)]‘ = Efy-E(y)l [y-E(y)]*-ffM~’, 

it follows that
9 9 9 9

y an cov (£z, yj) = a2-a/j- aV = qa2,
‘ i < y

which completes the proof of the relation (88).
In the same way we prove the relation (89) taking into consideration 

the result (87).
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9°a. From the relations (88) and (89), where it has been put

(90) y0 = E(y) = E{y + A-1B(d-d0)}=y + A~'B(Ô-ÔO)

(91) ÔO = E(Ô) = E {d + D-1 B* (y - y0)} = <5 + D-1 B* (y-y0) 

respectively follow directly two expressions:

(92) E[y-E(y)]*A[y-E(y)]=qa2

(93) Eld — E(d)J*Dld — E(d)]=(p — q)a2.

9°b. When the sets of parameters represented by the vectors y and ô 
are orthogonal, we have

(94) E (y — y0)* A (y — y0) = (y — y0)‘ A (y — y0) + qa2

(95) E (d — d0)* D (d — d0) = (d — d0)* D (d-da) + (p — q) a2.

The relations (94) and (95) are obtained directly from expressions (88) 
and (89) under the condition B — X*X2 = O (which determine the ortho­
gonality of parameter sets y and d). Under this condition the unconditional 
and conditional estimates are identical i. e. y = ÿ and d = d.

9°c. When the sets of parameters determined by the vectors [y’lbfy’al»—» 
[yv] (with pi, p2,pr components respectively) are reciprocally orthogo­
nal in the linear regression model

(96) p = E(y) = X/?= X,[yi(]
i

where
JviJ_

X = \X, X3
np I «P, : zip,

then

and ß and p = £ pt,

(97) E ([£,] - MJ)* X*X,([w]-Ml) = ( W - [y>?])‘ X* X, ([Vi] - MD+p/o8

where [^] = (X‘X‘)~'X*i/, *=1, 2..... r, is the estimate of the parameter
[y>z] under the condition that the remaining parameters equal zero. As 
usual, a2 is the common variance of each of n independent and normally 
distributed random variables yu y2,..., y„ that are the components of vector 
y whose expected value is p.

To prove the relation (97) it is sufficient to substitute X*X,- for A and 
[y-,] = fv’d, and [y>® 1 for y and y0 respectively.
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Remark 3. Note that the expression (|y>z] — [y>z))* X* Xz ([yz]— [y?|) 
whose expected value is determined by the formula (97), is the de­
nominator of the random variable (47) which may be used for testing 
the null hypothesis [y>z] = [yz], i= 1, 2,r. In particular, when the null 
hypothesis [yz] — 0 is true, this expression becomes equal to [yzl*X?Xz [yz] 
and constitutes the sum of squares of regression y on X-,.

10°. Under the asumptions given in 5° consider q independent linear 
relations of parameters /?,, /J2,..., pp defined by the matrix relation Lp = <p, 
where the rank of matrix L — L is equal to q and vector <p — <p. The 
following relation holds:

(98) E (Lp - To) (Lp — To)* = LS~'L*o2 + (Lp - t0) (Ep — To)*

where To is any vector and p is, as usual, equal to X* y.
Proof: Using the relation Epp*=a2 • S~'+PP*, which is obtained fromA »

the known form of covariance matrix of vector p i. e. from expression 
E (P—p)(p — P)* — d3 • S_1 = Epp*—PP*,Vi/(- obtain successively E(Lfl—ipnYx 
X (LP — To)* = LEpp* L* — ELpri ~ To EP* L* + To yo* = E (a2 S~' + pp*) L*
— LP(po — To /5* E* + To <Po — ES~' L* a2 + (Lp — To) (EP — To)*-

10°a. In particular case when To is the true value t of the product Lp 
i. e. when <p0 — qp = Lp = E(Lp), then the matrix expression (98) defines the 
covariance matrix of linear parametric function Lp. It can be immediately 
seen that this matrix is equal to

(99) E(LP — <p)(Lp — q>)* = LS~3 L* • d3

where p~S~'X*y.
Remark 4. The covariance matrix (99) is applied in the formula (56) to 

determine the random variable F in the theorem 3.
11°. Under the assumptions given in 10° we have

(100) E (LP-Vo)*(LS-'L*)~' (Lp-Vo) = (Lp—cfJnr(LS'L*)-'(Lp-Vo-} + qa-

Proof: Let y = Lp — <p0 be the vector and let by, i, j = 1, 2,q, be the 
elements of matrix LS~lL*. Then by the formula (64) and by E (L(i) — Lp 
we obtain:

E (LP - to)* (LS-1 fc*)“1 (Eft - y0) =
Q Q

= (Lp — To)* (ES~' L*)-1 (LP - to) b" cop (yz, y,),
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which is denoted by M. Let us find the covariance matrix of vector y>. 
Note that

E (ip — E (ip)) (ip — E (,/>))* = Eipij* — (Eip) (Eip*) =

= E(L0 — q,0) (Lp - ?>„)* -E(Lp — <p0) -E(Lp — <p0)* = LS~'L*- a2,

which follows immediately from the relation (98). Thus 
9 9 . 9 9

cov (y>,, yy) = by a2 and JV b1^ cou (y>,, ÿy) = J. 5 a2 blJ bij= qa2.
‘ i ‘ J

Hence we obtain

M = (Lp - <p0)* (LS~' L*)~' (LP - <pa) + qa2.

ll°a. In particular case when <p0 is the true value tp of the parametric 
function Lp i. e. when <p0 = tp = L/J = E (L/S), we have

(101) E (Lp - <p0)* (LS~l L*)~l (LP - tp0) = qa2.

ll°b. The test based on random variable F given in (56) is right-tailed.
Proof: The comparison of relation (100) with result (101) indicates that 

to prove that the test based on random variable (56) is right-tailed it is 
sufficient to show that the quadratic form

(LP — <pn)* (LS-1 L*)~' (Lp — <p0)

is positive definite, in other words it is sufficient to prove by the theorem 
I (cf. p. 44) that the reciprocal of the quadratic form of the latter (i. e. of 
the form u*LS~1L*u = W, where u — u is any vector non-equal to zero),

9>
is positive definite. Since the quadratic form W may be given as' 
W = (f,*u)*S_1 (L*u) = where m = m = L*u, it suffices to prove

pi P9 9l
that the matrix S~l is potitive definite. The latter statement follows 
directly frcm the theorem I and from the fact that matrix S is positive 
definite (cf. proof on p. 44 in 7°a).

Remark 5. Note that the quadratic form, whose expected value is given 
in the relation (100), appears in the formula (56) that gives the random 
variable F in the theorem 3.

12°. Under the assumptions of the theorem 4 the following relation 
holds

(102) E\(Tp — r)* (TS-1 T*)~' (Tp — r) — (GP — rj)* (GS~‘ G*)-'(Gp— rj)} =

= (Tp - t)* (TS-' T*)~’ (Tp — t) + ha2.
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Proof: Note that under the assumptions given in the theorem 4
E(Gp)=G • p=rj, and for any vector rwe have generally E(Hp) — H'P=£v. 

gp gl hl hp

Hence from the fact that T~ | j and T = follows that generally

we have E (Tp) = Tp y= r, and the equality here holds only, when the null 
hypothesis Hp = v is true. Hence using the relation (100) and noting that 
r (T) — g + h we find
g + h,p

E((Tp—x)* (TS~' T*)-' (T/l — t), = (T0 — t)* (TS-1 T*)~' (Tp — x) + (g+h)a2. 

Further, since r(G) = p, we obtain by relation (101) the value

E (Gp - r,)* (GS~' G*)-' (Gp -r,) = ga2.

Since the difference of the latter two expressions constitutes (102), the 
theorem is proved.

12°a. Note that when the null hypothesis Hp= v is true, the relation
(102) (on the account of E (Hp) = Hp — v, and what follows E (Tp = x) 
assumes the form

(103) E((Tp-x)*(TS-}T*)-}(Tp—x)—(Gp—,l)*(GS~' G*)-'(Gp—i))}=ho2

where h is the rank of matrix H appearing in the null hypothesis.

12°b. The test based on random variable (57) which appears in the the­
orem 4 is right-tailed. To prove this, it should be noted that from the 
relations (102) and (103) it follows that it is sufficient to prove that, when 
Tp^x, the quadratic form (Tp — x)* (TS“1 T*)_1 (Tp — x) is positive defi­
nite. The latter statement is proved similarly as in ll°b.

13. Let P — Wa, where W = W is any matrix of rank m, 1 m p,
pm

and a = a is any vector with m parameters cq, a2, ..., am. The relation 
ml

P = Wa expresses p parameters Pi, P2, -, Pp in terms of m parameters 
a,, a2, ..., am. Under these assumptions and under those of theorem 5 the 
following relation holds:

(104) E (Sp)* [S-1 — W (W* SW)"' W*] Sp =

= (Spy [S-’ — W (W* SW)-1 W‘] sp + (p- m) a2.

Proof: Let L denote the left side of the expression (104). Utilizing the 
fact that the covariance matrix of vector p is equal to S-1 • a2 and using 
the formula (64), we obtain:

4
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(105) Ep* Sp = p*Sp + % £ SiJ cov (fi,, Pj)=
I i

= P*Sp + 2 E s‘j slJ o2 = P*Sp + pa2, 
i j

Putting <£> — W‘ Sp, we may state that covariance matrix of vector $ is 

equal to o2-W*SW. In fact,

(106) E (<p — E (<p)) (<p — E (£))* = E (W* Sp — W* Sp) (W* Sp — W* Sp)* =

= W*S-E((p — p) (p — P)*} • SW = W* SS-1 a2 • SW = a2 W*SW.

Applying expression (106) and formula (64), and putting (W* SW) ~1={h'-'}, 
we find

(107) E (Sp)* W (W* SW)“1 W* Sp = E (W* Sp)* (W* SW)~' W* Sp =

= (W* spy (W* SW)-1 W*sp+ £ y h‘j cov (fa, fa) = 

= (W* spy (W* SW)-1 W* sp + mo2.

Hence by the formulae (105) and (107) we get the result (104). In fact,

L = Ep*Sp — E(Sp)*W(W*SW)-1W*Sp =

= P*SP + po2 — (W* Sp)* (W* SW)-' W*Sp — m- o2 =

= (spy [S-l — W (W* SW)-’ W* ]S0 + (p — m) o2.

13°a. Let the null hypothesis P — U • 0 be true under the assum-
P.p—Q p—q.l

ptions of the theorem 5. Then the relation (104) assumes the form

(108) E (Sp)* [S-1 — U (U* SU)-1 U*J Sp = qo2.

To prove this we substitute in (104): p—q, U and Ud for m, W and p res­
pectively; we thus obtain

E (Sp)* [S^ — W (W* SW)-1 W‘] sp = (Sp)* s—1 Sp —

— (SP)* U (U* SU)-1 U* Sp + qu2 = (U0y SU& + qo2 —

— (SW)* U (U* SU)-1 U* SUd = 0* U* SUd — d* U* SUd + q<r2 = qa2.
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13°b. The test based on random variable (58) given in the theorem 5 
is right-tailed *).

Proof: The random variable (60), which has the form of the random 
variable (47) in the theorem 2 is equivalent to the random variable (58). 
Since the test based on random variable (47) (cf. p. 44) is right-tailed we 
conclude that the test in question is also right-tailed. The proof is con­
cluded.

Note. It should be noted that the null hypothesis /J = U • 0 is
P.P-Q p-q.i

tested against the alternative hypothesis that fi equals any W • &, where 
p.p—q p—q.i

W 4= U, meaning that p parameters ft,/32,...,/3p of the given multiple 
regression model may be represented by the linear combinations of p—q 
parameters, and that these combinations are different from those of the 
null hypothesis.

Note that the tests of significance based on random variables F given 
in the theorems 2, 3, 4 and 5 are right-tailed; this follows from the fact 
(cf. [8]) that these F‘s may be expressed as the decreasing functions of 
random variable lambda which by the maximum likelihood ratio criterion 
may be used as the left-tailed test. Using in this paper the theorems of 
matrix calculus we have presented the direct proofs that the tests based 
on random variables F (given here) are right-tailed.

6. Applications

In the present section we shall give some examples of the applica­
tions of random variables F given in the matrix notation in the theorems 
2, 3, 4 and 5 for testing the linear hypotheses. Since the random variables 
have the matrix forms, their deduction in the case of any particular con­
crete form of linear hypothesis in the given linear regression model (de­
sign of experiment) is different from that presented in the papers pu­
blished so far.

We shall consider three types of the multiple regression models:
a) the model, which may be transformed into a model with matrix 

whose rank is equal to the number of independent parameters,
b) the model of the one-way classification, and
c) the model with the regression lines y on x in several populations.

>) From 13°b it follows that the quadratic form (S^)* [S'1 — W(W*SW) 'W‘) S/? 
(cf. also (104)) is non-negative. In particular, considering the linear regression model 

== + x2als2: a = l, 2,..., n; and treating the matrix W as the column vector
W = ({|, we obtain the Schwarz’s inequality for the sums: (5x?) (2x^) > (Jx, x2)‘.
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Ad a). If in the multiple regression model y = Xp the number of 
independent parameters among p parameters Pi,Pa,—,Pp is equal to the 
rank r of the matrix X, the number of restrictions imposed on the para­
meters /5 is equal to p—r. As a result of the elimination of the p—r de­
pendent parameters 0 we obtain the model with r parameters. If the 
matrix rank of this model on such reparametrization does not change 
and remains equal to r, we obtain the situation which is being discussed 
in this paper i. e. we have the multiple regression model whose number 
of parameters is equal to the rank of the matrix formed from the coef­
ficients of these parameters.

To illustrate such model, consider a model of the two-way classifica­
tion with one element in each cell, i. e. design of randomized blocks. If 
the effects for the treatments and for the blocks are marked by a,; 
i =1,2, ...,c; and by by; j=l,2,..., k; respectively, the model assumes 
the form:
(109) E(ya) = ai xi„ + a2 x2a -J--------H ac-i xc-i,« + ac xca + bi xc+i,« +

+ b2 Xc+2. a 4* • • • 4* bft—l Xc + k—i, a + b* Xc+k.a + ft

where // (ordinary number) is the mean in population embracing all the
elements arranged in ck cells. Note that when a== 1,2..... n, we have
simultaneously i = l,2,..., c, and j = l,2,..., Jc. Two restrictions

c k
(no) Ea‘=°> 2’b>=°

< i
are imposed on the parameters of the model. The assumptions with regard 
to matrix X are as follows: a)xc+*+i><« = l for a = l,2,...,n; b) when i=l, 
j = l, then Xi = l and xe+i=l, and the remaining x s except xc+*+i, „ 
are equal to zero; c) when i=l, j = 2, then x1=l, Xc+2 = 1, and the 
remaining x's except xc+*+i,« are equal to zero; and so on. We are concern­
ed with the testing of the null hypothesis that no differences exist between 
the treatments i. e. that a1 = a2 =... = ac — 0. It is easy to verify that 
under these assumptions the rank of the matrix X of the order nX(c+k+l) 
is equal to c+k—1 i. e. is less by two than the number p = c + k+l of 
parameters in the model. Thus we cannot make direct use of the F test 
that follows from the theorem 2. However if we determine ac and bc from 
the restrictions (110) and if thus obtained expressions are introduced into 
relation (109) the following model with the c + k—1 parameters will be 
obtained
(111) E (ytt) — at Zla + 02 Z2n + • • • -|-ac—1 Zc-i. a + bl Zc+l, « + b2 Zc+2. a +

+ • • • + bk-l Zc+k-1, a + n'
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where
Ztm^^Xla Xca't l==l,2,...,C lj Zma == Xm« Xc+k,a'i 

m = c + l, c + 2,...,c + k — 1.

The rank of matrix Z = Z is equal to the number of the parameters
n. C+ft—1

i. e. is equal to c+k—1. Putting

y* = [a,, a.,, .... ac_i], <5* = |b,,b2, 
1. C-1 1ft

we obtain the model

b*_i,y'l and 0* = [/;d*]

(112) E (y) = Z/3 = Z, y-f-Z2 <5,

where
Z = f Z, Za| and Z = {zaa), u = l,2, ...,c 1, a —1,2,

[«, C— 1 flft |

Since the null hypothesis is: y — 0 we may test it by using the random 
variable F given in the theorem 2.

The estimates of the parameters a,, a2,..., ac-i, b,, b2,..., b*_i,y'are found 
from the relation /3 — (Z*Z)_1Z*y which holds since the number of para­
meters is equal to r(Z*Z) — c + k— 1. Since Z*Z2 — O, which can be 
easily verified, the parameter sets y and d are orthogonal. The matrices 
Z, Z, and Z2 play here the role of the matrices X, X1 and X2 respectively 
in the model discussed in the sec. 3. Hence, on the account of 
B — Z*Z2 = O and the relation (14) we find Su — A~1=(Z*Z1)~i, and the 
random variable (47) assumes the form:

= y* Ay . (y-Zp)*(y-Zp) 
c —1 ' (c —l)(k —1)

with c — 1 and (c— 1) (k— 1) degrees of freedom, where, as it can easily 
be verified,

1" 2k k . .. k 1
k 2k . .. k

k k . ..2k

Using the formula (22'), which in the actual case has the form 
y=(Z*Z,)_1Z*y, and noting that the determinant of the matrix A has value 
| A | = |Z*Z,| = ckc_1 (by application of the well known algebraic formulae 
(cf. [18]), and next by obtaining
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we get the known formulae for the estimates of parameters a,-: &i — yt— y, 
i = 1,2,c — 1. Since it follows that y* = [y1 — y, y2 — y, yc-i — y], 
by performing some simple calculations we get

c

y*Ay = k (yt — y)2.
i

The numerator of the random variable F is thus found. Writing the 
matrix Z in explicit form we derive without difficulty the denominator 
of F,

c k
(y — Z^*(y — Z^ = £ £ (yij — yi — yj + y)2.

I i

Ad b). Consider some examples, of the testing of linear hypothesis in 
the case of the model of one-way classification under the assumptions 
given in the theorem 3.

We take p random samples from p populations in such a way that the
i‘th sample with ti/ observed values, i = l,2..... p, is drawn from i‘th

p
population. The total number of the observations is equal to n = 2'n,. The 

i
multiple regression model /j, = E(y) — Xfi expressed in symbols used in this 
paper takes the form:

(113) ya = E(ya) = xiaß1+x2„ß2-]------- \-xpaßp

where we put: Xi« = l for a = l,2,...,n1 and xi« = 0 for the remaining 
as; Xi„=l for a = n1+l, rij + 2, + n2 and X2«=0for the remaining
as, etc. Let /?2,..., (Sp define the means in the corresponding popu­
lations. Then = for a = 1, 2, .... rij; ya — ^2 for nj + 1, n, + 2......

+ n2, ...; ,«« = &, for

p—i
a — nt -(-1, 

z=i

p—i
a— n/+ 2, ...,a = n. 

z=i

It is obvious that the matrix S = X*X has the form S —

'«i, 0,.. ,0
0,n2,.. .,0

0, 0... .,np
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and the reciprocal matrix of S is equal to

, 0, .... 0

0, 0, Up

Example 1. Under the above assumptions of one-classification and 
under the usual assumption that random variables y« are all normally 
distributed with the common unknown variance a2, we shall verify the 
null hypothesis that the linear combination of p parameters is equal to

p
zero i. e. 2 h Pi = 0 > where the coefficients t2, —,lp are known. To 

z
deduce the form of random variable F which may be used to test the 
mentioned hypothesis it is sufficient to apply theorem 3. In this connec­
tion we note that the matrix L = L is in our case the row vector :
£ — £ = Pi» l2,Ip |. 

ip
qp

We find directly that

(LS“1 £*)“’ =
1

p 12

i ni

P = S~' X*y =

(it, s,)’

Vi
H2-
yP

(Lp)* (LS~' L*)-1 (Lp) =

and finally that

(y — Xp)*(y — XP) = £ (yij — yî)\ where ÿc

p J2

z H/

«7 ' J

is the mean of the observations in the i’th sample. Using theorem 3 we 
obtain the following expression for the random variable F which may

p
be used to test the null hypothesis that 2k Pi — 0 :

i

(n —p)^ iz yzj

(114) F =
P ?2 \ p ni

i nil i j 

with 1 and n—p degrees of freedom.
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In particular case, when the samples have identical numbers of ob­
servations i. e. when n, — k for i = l, 2......c the random variable F
assumes the form

(115)

The test based on random variable (115) may be applied, for example, 
in the analysis of factorial experiments performed in the glasshouse. In 
fact, if in the pot experiment with two factors, we investigate the effect 
of the two fertilizers “N” and “W” on the yield of a wheat variety and 
if each of the factors is introduced at two levels 0 and 1, then we get the 
four following treatment-combinations: n°w°, n'w°, n’w1 and n'w'. When 
each of these treatment combinations is replicated k times, the experiment 
contains n = 4k pots. Let the means of the four populations correspond­
ing to the four treatment combinations be denoted by /?,, /L, 03 and 
The experimenter is generally interested not only in the main effects 
but also in the interaction “WN” of the investigated factors. The corres- 
poding hypothesis that interaction is equal to zero we express as the 
parameter linear function: — fi2 —/13 + /34 = 0. The null hypotheses that 
the main effect of the factor “W” and that of the factor “N” are not 
significant are expressed by the relations — /34 — /J2 + /S3 + 04 = 0 and 
— & + — /J3 + /?4 = 0 respectively. Each of these hypotheses may be
separately tested by means of test based on random variable (115).

It is evident that these remarks also apply in the case of testing the 
null hypothesis that the interactions of any order are equal to zero, if in 
the factorial experiments the treatment combinations constitute the one­
way classification. In the experiments of this type one may verify by 
means of the test based on random variable (115) the significance of the 
regression components and in particular case the significance of the 
linear, quadratic and cubic components of the main effects and the com­
binations between these components of the two- and more-factor inter­
actions.

For example, consider the 4X4 factorial experiment, where each of the 
two factors “W” and “N” occurs at 4 levels denoted successively by 0,1, 2 
and 3; let ft,/?,, —.be the means of the populations corresponding to 
the combinations: n°w°, n°w', n° w2, ..., n3 ia3. Since for four levels of 
a factor the orthogonal coefficients determining the linear and quadratic 
effects are equal to: —3, —1, 1, 3 and 1, —1, —1, 1 respectively the null
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hypothesis .that the regression linear X quadratic component NtWq. of the 
interaction “NW” is equal to zero, assumes the following form of the 
linear combination of the 16 parameters:

---3 0, + 3 02 + 3 03----3 04 --- 05 + 06 + 07 ---  08 + 0»---010------011+012 +

+ 3 0i3 3 01) 3 015 + 3 018 — 0.

The significance of this function is tested by the test based on random 
variable (115).

Now let us present one more example of the application of theorem 3. 
Consider the third type of the multiple regression model, which contains c 
parameter groups i. e. vectors:

10p-i I
I r

forming jointly the vector 0* = |[yj* : fya]* : • • •: fye]*]. This model takes 
the form:

(116) E(y«) = (Xl„01+X2a02) + (X8„03+X4«04)H------- H(Xp l.«0p-l + Xp„0p)

c
where p = 2c, a = l,2,..., n, n = ^n,; Xi«=l for a = l,2,..., n, and

xi« = 0 for the remaining a; xaa — l for 0 = 114 + 1, nj + 2,..., il + iu and 
X3« = 0 for the remaining a, etc.; suppose also that each of the X2«, 
Xta, ..., Xzc, a takes at least two different values. As usual we suppose that 
y'as are independently and normally distributed with unknown common 
variance <x2. This model may be interpreted in the following way. In each 
of c partial populations Pi, i = 1, 2,.... c, we observe the linear regression 
y on x. The sample drawn from the population Pi contains n,- observations. 
Under these conditions the parameters with the even indices denote the 
unknown regression coefficients y on x, while the remaining parameters 0 
with odd indices determine the points of the intersection of the successive 
linear regressions with the coordinate axis OY.

Note that r(X) = p. In fact, to prove this it is sufficient to take from 
each of the c pairs of columns two such rows of matrix X = X that the

np
elements of the even columns should be different. Under the above assump­
tions this is always possible to do. In this way we obtain the p = 2c in­
dependent rows, which means that the rank of the matrix X is equal to 
p i. e. to the number of the parameters of the model.
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Having the matrix X we easily find the form of the matrix S = X*X:

«1, 0, 0,... 0, 0
«1
V-,2
/j X2 > 0, 0,... 0, 0

o, 0, n2
n,

^x4l... 0, 0

o, 0,
«2

x4,
n,

0, 0

nc

0, 0, 0, 0,... nc, Zj&c

0, 0, 0, 0,...
nc
2x2c>

nc

2
Since the value of the determinant of this matrix is equal to 

\S\=n1n2...nc(niS%)(n2S%)..AvcS%c), where according to the notation in the 
sec. 2, the expression nzS|, denotes the sum of squared deviations of
observations x belonging to the i’th sample (i==l,2..... c), the matrix
S_1 assumes the form

xl
n,S^ ’ ntSf

0, 0,.. 0, 0

— X2 1
0, 0,.. 0, 0

Wj So njSl’

0, 0,
—x4

0, 0
n2S4’ n2Sf

0, 0, — «4 1 0, 0
n2Sf n2S4’

0, 0, 0, o,. *2c —
ncSlc’

0, 0, 0, 0,-
x2c 1

".S’ ’
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The symbols x2(. and x|z; »=1,2..... c; denote the mean and the mean
square of x’s appearing in the i’th sample (cf. sec. 2). Using the known 
matrix relation /? = S_1 X* y, we find the following estimates of the pa­
rameters:

= yz+i —Xz+i^—for i= 1,3,...,2c — 1 
*/+1

and 3/==-Syy/Sy for j = 2, 4, ...,2c, where y/+i denotes the mean of y’s in 
the (i + l)/2— th sample, and S/+1./+1— the covariance in this sample. 
The symbol Slt stands for the covariance in the j/2 — th sample, while 
S?+i and Sj represent corresponding variances for x’s. Developing the 
expression (y— X/3)*(y— X()) = y*y— y*XS~'X*y, we easily find that 
it constitutes the sum of squares of deviations of y’s from the regression 
“within the samples” i. e.

a » V? I o2 (21/S2(',2i)2(117) (y - Xp)* (y~xp)= X\ni Sy* ~ '

where Sj2Z is the variance of y’s in the i’th sample, i = l,2 c.
For the model (116) we may verify by means of the test based on

random variable in theorem 3, the null hypothesis that the c linear re­
gressions intersect the coordinate axis OY at the same point; we may 
also test the null hypothesis that the regression coefficients y on x are 
all equal in the c populations. The latter problem raised by K. Iwasz­
kiewicz ([5]) has been solved by St. Kołodziejczyk ([7]). This 
paper offers the following solution of this problem: *

We derive the corresponding random variable from the form (56) i. e. 
from the formula:

p = (Łp-Va)*(ŁS~'Ł*)-'(Łp-<pj. (y — X/?)*(y — X/?)
q n — p

with q and n — p degrees of freedom, where the null hypothesis is:
ę, = Ł/3 = ę,0. In the actual problem this hypothesis assumes the form:
«1

P2 — Pp~$ — 0, $4 ftp = <p2 = 0, •••, Pp~2 Pp — 1 = 0-

Hence q = r (Ł) = c — 1 = (p/2) — 1 and

Ł = Ł =
C—l.p

0 1 0 0 0 0,..., 0 0 — T
0 0 0 1 0 0......0 0 —1
0 0 0 0 0 1...... 0 0 — 1
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To find the expression for the random variable F, it is sufficient to 
calculate its denominator. We note that

K = LS~'L*
c—l.c—l

1 1 1
Mi ’ "’Mi

1 1 , 1 1
ncSie ’ ncSlc Mi”"’ncSlc

1 1 1
Mt’ Mi” +

J2c-2_

Since the determinant of the matrix K has the value:

the reciprocal of the matrix K is the matrix

(W —m,)™,, — Tn,m2J — m, mc-i

k~’=4? — m2m}, (W—m2)TMo,. — m2mc-i
w

— nif-im,, — mt_i m2, (W—

where for brevity we put = nyS^.; j = 1,2,c— 1; and W = nz S|(..

Knowing the form of the matrix L, we have directly: (£,/})* — [3a — (ip, 
(i.t— (ip, ...,Pp-2—(ip], and taking into account the form of the matrix K-1, 
we obtain the following expression for the numerator of the random va­
riable F

As a result, the random variable which may be used to test the null 
hypothesis that the regression coefficients y on x in the c — p/2 sam­
ples are identical has the form:
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(n — 2 c) i 2 (rti si) (ny sly) (fa — faY
F=_________ i=l >=<+1______________________

(c-1> (2 n, si) • 2 «< s;„ -(n'
v=i / <=1 riiSa |

with c—1 and n—2c degrees of freedom.
Next we will deal with the problems, whose solutions are reached 

by the application of the theorem 4. We shall illustrate this by the 
following example.

In the model of one-way classification with different numbers of 
observations in the subclasses (defined in the present section under b) 
we assume that the known linear combination of the parameters 
has the given value r/ i. e.

p

(118) =
i

Let us find the form of random variable under the null hypothesis

p

(119) =
z

The comparison of the present model with the assumptions of the
theorem 4 shows that the matrices G = G and H = H are vectors i. e. 

, bp ,
G = G= [I,and H = H = [t,, t2,tp\, and that

ip ip

t= T
B + h’P I. I L rl, r2..... L

and t = »?
0

As usual, we assume that the functions (118) and (119) are independent. 
In order to apply the random variable given in (57) we calculate easily:

TS“’ T* _

where

2i
P

2

JI
n,’

lit, 
n, ’

2'n 
Hi

p -1
V 11
V n,-

and (TS-1 T*)-1 =

V A _ V e
V n‘’ t 7 

_ yijt> y1 1

liti
n,-1

W
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Considering further

Xlt y‘ ~ y
Tß — i = p

2 ti'y‘

where 1 V
yi = ßi = ~- 2j yn'> * = i»2,...,p;

we obtain:

(T/J — t)* (TS“’ T*)-’ (T/5 — t) =

and finally

-£ $• =i y i +

+(M(M

/ P \2
\2l<yi — V)

(Gß — rß* (GS-' G*)-' (Gß—rß = P j2

I TI/

Introducing the obtained expressions in the formula (57) we obtain the 
following expression for the random variable F:

(120)
(n — p + 1) |a2b2 — 2 (c — tß abd + (c — j?)2 d21
/ P f2 \ P ni I

\ i=l n,' /
b 2 2 (yu—yiY + (c—2?)2

L i=i/=i J

with 1 and n — p + 1 degrees of freedom, where

r
a= X t,yi, b

p i2

i=i n‘
2 L y> , d = 2 l~ and y = 2 1‘ ß<

(ti, li and y are given; i= 1, 2, ..., p).
The random variable (121) may be used by the experimenter, who

takes an interest in the problem connected with the factorial experiments 
performed in a glasshouse. Suppose that in the pot experiment one inve­
stigates the effect of the factor “N” (for example the fertilizer) occuring 
at four levels 0, 1, 2 and 3, on the yield of some corn variety. Let /J](/32,0S 
and be the means of the populations corresponding to the given le­
vels. Let the difference, rj, between the yields obtained at the first and 
second level be known from the former experiments and be expressed
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by the relation —p2+ ^a=rj. Then one is frequently interested in the testing 
of the null hypothesis that the linear regression component Ni is equal to 
zero i.e. —3/?4— /32 -(-/38 + 3/34 = 0. This hypothesis is verified by test based 
on random variable (121). In the case of rejection of the hypothesis we 
have the basis to conclude that the regression of the yields on the levels 
of investigated factor is significant.

Now we present a second example of applying test based on random 
variable (121). Observe the experiment described on p. 56. Using the 
random variable (121), one may verify the null hypothesis that the main 
efect of one of the factors is equal to zero, when it is known that the 
interaction between the factors also equals zero; this is equivalent to the 
testing of the hypothesis that /?,—/J2+/l3—/34 = O when&—/?2—/J3+/J4=0.

The significance of the main effects in the field factorial experiments 
performed according to the model of randomized blocks may be also 
verified on the basis of random variable (57) (cf. theor. 4). According to 
the reparametrization of the model described on p. 52—53 we transform 
it into the model of the form (111). Let for illustration c = 4 denote the 
number of combinations n°w°, n°w', n' w° and n1 w’ obtained by com­
bining two levels 0 and 1 of each of the two factors “N” and “W”. Then 
the treatment effects a„ a2, a3 and a4 are identical with the effects of 
the respective combinations. Let the corresponding means of four popu­
lations represented by the four combinations be denoted by v0, v„ v2 
and v,. Then, it is easy to see that

(122) v/ = a/+i + /Z, i = 0,1,2,3.

The null hypothesis that .the mean effect, “N”, is equal to zero, under
the assumption that the interaction WN between the factor “W” and “N”
equals zero, is expressed by the relation —v0 — u, + u2-t-u3 = 0, while the
assumption about the interaction WN is expressed by the relation
u0—vt— u2+u3 = 0. Using (122) these may be written as —a,—a.,4-a3-t-a,=0 

4
and cq — aa — a3 + cq = 0 respectively. Since the restriction a,• = 0 is

i
imposed on the parameters a; (i= 1, 2, 3, 4), we obtain, instead of the 
latter three relations, only two relations: ai+a2==0 and a2 + a3 = 0. The 
first of these constitutes the null hypothesis, and the second — the 
restriction for the parameters of the model (111), where we put c = 4. 
Thus we obtain for the actual problem the model with the restriction 
and with the null hypothesis .that satisfies the assumption of the 
theorem 4. It then follows that the test based on random variable (57) 
may be applied here.
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We shall mention briefly one more problem, which requires the 
application of the theorem 4. Let the c=p/2 regression straight-lines y 
on x pass through such points on the Y axis, whose distances from each 
other are equal to the quantities »7° »7",..., ?7°_r The remaining assumptions 
are presented on p. 57. Now we are interested in the test which under 
these conditions verifies the null hypothesis that the differences among 
the regression coefficients y on x in the c populations are equal to the 
given quantities v2, ...,v°c_r It may be easily observed that the ranks
of both matrices H — H and G — G appearing in the theorem 4 are iden- 

qp gp
tical and equal to c—1. The application of this problem in the experi­
mentation may be illustrated by means of the following example. Knowing 
differences between the yields of the c wheat varietes obtained at the zero 
level of investigated factor (for example: a fertilizer), one will be intere­
sted in verification the null hypothesis that the differences in the yield 
increment in successive levels have a priori given values, and in parti­
cular that these differences are identical.

We proceed to present one of the problems, which may be solved by 
means of theorem 5. Consider the multiple regression model determined 
by the relation (116). For this model (which represents the regression 
lines y on x in the c populations, and which contains the p — 2c para­
meters), we shall find a test of significance of the null hypothesis that 
all lines are identical. This hypothesis is expressed in the form: /9/ = »9,
(»=1,3,5..... 2c—1) and/9, = (j = 2, 4,..., 2c) which in the matrix
notation is written as

(123) /S = Utf

where, according to the symbols given in the theorem 5,
matrix U = U is in the actual case equal to p — q = 2,

p.p—q

the rank of the 
since

U*
11 0 1 0 ... 1 01 
|o 1 0 1 ... 0 l| while {)—{} = 

q—p.1
0,1

d'
Since the assumptions specified in the theorem 5 are here satisfied, 

and since the null hypothesis determines each of the parameters 
as the linear combination of two parameters and the random 
variable (58) may be applied. Let us find the matrix expression for its 
numerator. Using the form of matrix S presented on p. 58, we obtain:

(U*SU)-’ = n o
I'x2, — I'xl 

— Sx, n
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where summation in extended over all n observations and

S2 = — Y (x-5)2 
n "

is the sample variance of x. Further we find

U(U*SU)-'U*

and finally

(124)

MM . . M
MM . . M
MM . . M

where M = 2*2, 
I— Ex ,

-2*1
n I

y* XU (U*SU)~' U* X* y = (nSxy)2 (Zy)2 
nS2 n

ZI
where nSxy = 2(x— x)(y — y). Utilizing the matrix S_1 given explici- 
tely on p. 58, we have

(125) y* XS_1 X y = (n, S2,,2,)2 , (2y»z)
n,- Siz n/

_ V +

where y-u, tiiSu and n,S2,,2/ (i = 1,2,.... c) denote successively the obser­
vations belonging to the i-th sample, the sum of squared deviations of 
a?’s in the i-th sample, and the sum of the product of mixed deviations 
in this sample. Considering the relation (S/S)* (S_l—U (U* SU)~'U*]S/3 = 
= y*XS~'X*y — y* XU (U* SU)~' U* X* y and the expressions (124), (125) 
and (117), we may state that the random variable (58) in the actual model 
assumes the form

(126)

«<•
(n, S2,. 2/)2 (2 y2,)2

n,si, «<•
2c —2

(nS,^_(2y)2 
nS2 n

n, Sv2, ■
(n/S2/. 2/)2

2c
n, si,

F =

V

V

with 2 c — 2 and n—2 c degrees of freedom, where n, Syii stands for the 
sum of squared deviations of y’s in the i-th sample; i =1,2,.... c. Thus 
the test based on random variable (126) verifies the null hypothesis that 
the c regression lines are identical.
5
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Streszczenie

Zagadnienie sprawdzania hipotezy liniowej w teorii normalnej re­
gresji, którym zajmujemy się w niniejszej pracy i którym interesowało 
się od niemal pół wieku wielu autorów, można zreferować w sposób na­
stępujący:

Niezależne zmienne losowe

(1) yn = mu + e*

o wartościach oczekiwanych

(2) mk = E (yk) = 0, + x«> 02 H------- H xkp (fp

zależnych od p (p < n) parametrów 0i, 02, —>Pp> k — 1, 2,..., n; mają roz­
kład normalny ze wspólną wariancją a2. Znak E określa wartość oczeki­
waną, symbol X = {xkj}, fc = l,2..... n; j = l,2,.... p; oznacza daną ma­
cierz a ek — rezidua (por. [6]). Na parametry 0,, 02, ..., 0P modelu (2) 
nałożono g znanych liniowo niezależnych restrykcyj opisanych relacją 
macierzową

(3) Gp = r!

gdzie 0 jest wektorem kolumnowym o p składowych 0j, 02......0P i gdzie
macierz G = {p9z); q=l,2......g; ł = l,2.......p; jest znana podobnie jak
wektor kolumnowy y o g składowych yx, y2, ..., yg.

Ogólny problem polega na sprawdzeniu słuszności hipotezy liniowej

(4) H(f = v

że h znanych i liniowo niezależnych funkcyj parametrycznych określonych 
za pomocą relacji macierzowej (4) jako iloczyn macierzy H = {h,y);
i —1,2..... h; j = 1, 2,.... p; i wektora 0 mają określone wartości ra,vh
będące składowymi wektora v. Zakłada się przy tym, że funkcje podane 
w (3) i (4) są liniowo niezależne.
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Rozwiązanie tego problemu można bezpośrednio uzyskać opierając się na 
twierdzeniu z teorii rozkładów, którego autorem jest C. R. Rao (por. [21]).

Ze względu na podstawowe znaczenie tego twierdzenia w teorii nor­
malnej regresji i w zastosowaniach podaję inny jego dowód w przypadku 
gdy rząd macierzy X wynosi p (por. twierdzenie 1 w niniejszej pracy oraz 
tw. 4.1 Manna [8]).

Poza wymienionym ogólnym zagadnieniem zajmuję się wyprowadze­
niem wyraźnych form zmiennych losowych F w postaci macierzowej dla 
najczęściej spotykanych w zastosowaniach modeli regresji liniowej. 
Zmienne te (por. wzory (47), (48), (56), (57) i (58) w twierdzeniach 2, 3, 4 
i 5) można traktować jako podstawy testów istotności F sprawdzających 
różne hipotezy liniowe w zależności od typu modelu regresji wielokrotnej.

Test F wynikający ze wzoru (56) może służyć do sprawdzenia hipotezy
(4), gdy na parametry fi modelu (2) nie nakładamy restrykcji (3), a test 
oparty na zmiennej losowej (57) może służyć do sprawdzenia tejże hipo­
tezy, gdy restrykcje (3) są nałożone. Wreszcie test oparty na zmiennej loso­
wej (58) (por. tw. 5) może służyć do sprawdzenia hipotezy zerowej, że 
parametry modelu wyrażają się jako określone z góry kombinacje liniowe 
mniejszej liczby innych parametrów.

Uzyskane formy testów ułatwiają w znacznej mierze wyznaczenie ich 
postaci dla konkretnych modeli eksperymentalnych i danych hipotez linio­
wych bez przeprowadzania minimalizacji względem parametrów, co by­
łoby nieodzowne w każdym przypadku, gdyby bezpośrednio stosowano 
twierdzenie 1. Należy zauważyć, że tę minimalizację trzeba by również 
zawsze stosować przy korzystaniu z twierdzenia C. R. Rao (loc. cit.). Tym­
czasem dla uzyskania testu istotności na podstawie twierdzeń 2, 3, 4 i 5 
wystarczy jedynie wykonać kilka prostych operacyj na macierzach. Od­
powiednie przykłady na zastosowanie twierdzeń 2, 3, 4 i 5, jak również 
przykłady zagadnień występujących w doświadczalnictwie polowym 
i szklarniowym, których rozwiązanie bądź naświetlenie wymaga zastoso­
wania tego rodzaju testów przedstawiam w paragrafie 6.

Dowód twierdzenia 2 jest nowy, jakkolwiek inny dowód nie w formie 
macierzowej, znajdujemy u Manna (por. tw. 4.3 w [8]). Wszystkie dowody 
przedstawiam w rachunku macierzowym.

Korzystając z ogólnej postaci zmiennej losowej F wymienionej w twier­
dzeniu 4 znajduję wyraźną jej formę (wzór (120)) służącą do sprawdzania 
w modelu klasyfikacji pojedynczej (one-way), z różnymi liczebnościami 
obserwacyj w podklasach, hipotezy, że kombinacja liniowa parametrów 
jest zerem, gdy wiadomo, że pewna inna kombinacja liniowa tych para­
metrów ma określoną wartość.
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Nadto podaję dowody (oparte na rachunku macierzowym) na to, że 
wszystkie testy F rozpatrywane w niniejszej pracy są prawostronne. 
W związku z tym wyznaczam szereg wartości oczekiwanych odpowiednich 
form kwadratowych. Poza tym wyprowadzam: tożsamości dla warunko­
wych i bezwarunkowych ocen parametrów (por. (24) i (25)), macierz ko­
wariancji między kombinacjami liniowymi ocen parametrów oraz szereg 
innych macierzy kowariancji przedstawionych w paragrafach 3 i 5.

Резюме

Проблема проверки линейной гипотезы в теории нормальной ре­
грессии, которой мы занимаемся в этой работе и которой интересо­
вались почти от полусотни лет многие авторы, может быть изложена 
сокращённо следующим образом.

Независимые случайные величины

(1) уА = тп./е + е*

с математическими ожиданиями

(2) тк = Е (ук) = х« 0, + х*2 & Ч------- Н хкр рР

зависящими от р (р<п) параметров следуют нормальному закону рас­
пределения с общей дисперсией ст2. Символ Е обозначает математи­
ческое ожидание, символ X = }х*у{ (к=1,2,...,n; j = 1,2,...,р) обозначает 
данную матрицу, а е*—резидуумы (ср. [6]). На параметры 01(02, —>Рр 
модели (2) наложено д известных линейно независимых ограниче­
ний, описанных матричным соотношением

(3) Gfł — r)

где 0 есть столбцевой вектор ср компонентами 0Р02, ...,0Р, а матрица 
G = {р9г, (q = 1, 2,..., р; t = l,2,...,р) известна, равно как и столбцевой 
Еектор у с д компонентами »/,, у2, ..., yg.

Общая проблема состоит в проверке правильности линейной ги­
потезы
(4) Н0 = г

что h известных и линейно независимых параметрических функций, 
определённых с помощью матричного соотношения (4), как произ­
ведение матрицы Н = {h/y} (i = 1, 2, ...,/г); j=l, 2,..., р) и вектора 0, 
имеют определённые значения ^,»»2, ...,гл, являющиеся компонентами 
вектора v. При этом полагаем, что данные в (3) и (4) функции ли­
нейно независимы.
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Решение этой проблемы можно получить непосредственно, осно­
вываясь на теореме из теории распределений, которой автором был 
Ц. Р. Рао (ср. [21]).

Из-за фундаментального значения этой теоремы в теории нор­
мальной регрессии и в применениях я провожу иное её доказатель­
ство для случая, (когда порядок матрицы X есть р (ср. теорему 1 
в этой работе и теорему 4.1 Манна [8]).

Сверх приведённого общего вопроса я занимаюсь выведением яв­
ных форм случайных величин F в матричном виде для чаще всего 
встречаемых в применениях моделей линейной регрессии. Эти пере­
менные (ср. формулы (47), (48), (56), (57) и (58) в теоремах 2, 3, 4 и 5) 
можно рассматривать, как основания критериев значимости F, про­
веряющих различные линейные гипотезы в зависимости от типа мо­
дели множественной регрессии.

Критерий F, вытекающий из формулы (56), может служить для 
проверки гипотезы (4), когда на параметры /? модели (2) не нало­
жены ограничения (3), а критерий, опирающийся на случайной ве­
личине (57), может служить для проверки этой же гипотезы, когда 
наложены ограничения (3). Наконец, основанный на случайной вели­
чине (58) критерий (ср. теор. 5) может служить для проверки нуле­
вой гипотезы, что параметры модели выражаются, как наперёд опре­
делённые комбинации меньшего числа иных параметров.

Полученные формы критериев облегчают в значительной степени 
определение их вида для конкретных экспериментальных моделей 
и данных линейных гипотез без проведения минимализации относи­
тельно параметров, что было бы всегда неизбежно, если бы приме­
нять непосредственно теорему 1. Следует заметить, что эту минима- 
лизацию следовало бы тоже всегда применять при пользовании тео­
ремой Ц. Р. Рао (там же). Между тем, для получения критерия зна­
чимости на основании теорем 2, 3, 4 и 5 достаточно лишь выполнить 
несколько простых действий с матрицами. Подходящие примеры при­
менения теорем 2, 3, 4 и 5, как и примеры проблем, выступающих 
в полевом и парниковом опытах, которых решение или разъяснение 
требует применения этого рода критериев, представлены в § 6.

Доказательство теоремы 2 ново, хотя иное доказательство не 
в матричном виде находим у Манна (ср. теор. 4.3 в [8]). Все доказа­
тельства я представляю в матричном исчислении.

Пользуясь общим видом случайной величины F, упомянутым 
в теореме 4, я нахожу явную его форму (формула (120)), служащую 
для проверки, в модели единичной классификации (one-way) с раз­
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личными численностями наблюдений в классах, гипотезы, что ли­
нейная комбинация параметров равна нулю, когда известно, что не­
которая другая линейная комбинация этих параметров имеет опре­
делённое значение.

Сверх того я даю доказательства (матричным исчислением) того, 
что всякие критерии Г, рассматриваемые в этой работе, суть право­
сторонние. В связи с этим я нахожу ряд значений ожидаемых соот­
ветствующих квадратичных форм. Сверх того я вывожу: тождество 
для условных и безусловных оценок параметров (ср. (24) и (25)), ма­
трицу ковариации между линейными комбинациями оценок пара­
метров, а также ряд иных матриц ковариации, представленных 
в §§ 3 и 5.




