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1. Problem

Some problems of the testing of hypotheses in the theory of normal
regression have been already discussed by “Student” [22] and
A. A . Markoff [9] at the beginning of the present century. R. A. Fi-
sher [1,2], J. Neyman and E. S. Pearson [11,12], J. Ney-
man [13], St. Kotodziejczyk [7], C. R. Rao [21] and many others
have also dealt with these problems.

The assumptions connected with the problem of the testing of linear
hypothesis in the theory of normal regression are the following.

Uncorrelated random variables

(1) Ya = g+ Cu
with expected values
(2) tta=E(Ya) = Zat i + XTaz P2+ -+ 1+ Tap By

(a=1, 2, ..., n) depending on p (p < n) parameters f,, f,, ..., fp are normally

distributed with the common variance o2 The symbols e. denote re-

siduals, and xq (j=1, 2, ..., p) denote elements of given matrix X with n

rows and p columns, which is marked by X=X. The g independent
np

linear restrictions denoted by matrix relation

(3) Gp=n,

2
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where G =G is the given matrix and % is the given column vector with
44

components #,, %y, ..., g, are imposed on the unknown parameters £, fa, ..., fp
being the components of column vector £.
The problem consists in testing of linear hypothesis

(4) Hf=yv

that h of given and independent parameter functions H g which are line-
arly independent of (3) (where matrix H=H, h + g<<p, h>0, g =0)
hp

have certain values »,,,,..., »» that are components of vector ».

This problem, with the omission of the restriction (3) and on the
assumption that the rank r of matrix X is equal to p, has been dealt with
and solved by St. Kotodziejczyk [7] by means of the test of
significance (cf. sec. 3 in [7]) which he obtained as a likelihood ratio test 4,
following a procedure due to J. Neyman and E. S. Pearson
([14], [15], [16] and [23]).

The general solution for r << p is due to C. R. R ao. In the papers [20]
and [21] he proved the theorem that under conditions (1), (2), (3) and (4)

random variable ¢72-Min Y e} (cf. (1)) where minimalization is performed
i=1

with respect to parameters f,,f,...,8p, is distributed as x* (chi-square)
with an appropriate number of degrees of freedom. Giving two proofs of
this theorem C. R. Rao under the conditions (1)-(4) deduced an expression
for the random variable F of the form similar to that in the theorem 1 of
the present paper (cf. [19]). Since this random variable may be used for
testing the linear hypothesis (4) in the model defined by the relations
(1)-(3), when r <p, it provides a general solution for the discussed pro-
blem.

The other above mentionned authors mainly give different ways of
testing linear hypothesis.

R. A. Fisher assigns for the model expressed by relations (1) and (2)
the Student’s t test for testing hypothesis that regression coefficient in
population, 8, assumes the given value ff (i=1,2,...,p).

As far as the further course’of research in normal multiple regression
is concerned, the corresponding sections in textbooks by R. A. Fi-
sher [3], A. M. Mood [10], S. S. Wilks [25], H. B. Mann [8],
C.R.Rao[19] and O. Kempthorne [6] deserve attention.

The survey of the methods of proofs applied in the above publications
permits us to see certain gaps in the theory of normal multiple regression.
To fill these gaps at least partly is the task of the present paper.
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This paper deals with some problems connected with testing linear
hypothesis in the theory of normal regression in the case of C. R. Rao’s
model [cf. (1), (2), (3) and (4)] restricted to the condition r(X)=p.

The solution of problem as defined on p. 18 in a general form and ex-
pressed in the present paper in the theorem 1 has been reached by gene-
ralizing H. B. Mann’s lemma 4.1 and also by generalizing the theorem 4.1
of the same author (cf. [8]). Though C. R. Rao’s results includes the
theorem 1, it is given here another proof. This is justified by the fact
that theorem 1 presents a general method of determining the form of
random variable F (on the assumption that the linear hypothesis is true)
for any linear regression model with restrictions given in (3).

Apart from the general problem we are primarily concerned with eli-
minating the minimalization marked in the formula for F in the theorem 1
and with presenting in the explicit form the expressions for the random
variables which are to be deduced from this formula in connection with
different types of multiple regression models under different variants
of the linear hypothesis. The expressions so obtained are given in
theorems 3, 4 and 5. To find these expressions [cf. (56), (57) and (58)] we
express the known theorem [25] (cf. the theorem 2 of the present paper)
in the matrix form [cf. (47) and (48)], while proving this theorem by the
matrix calculus. It should be noted that the mentionned minimalization
is unavoidable, if the theorem 1 is applied directly.

The random variables F given in the theorems 2, 3, 4 and 5 may be
used for testing corresponding linear hypothesis (cf. sec. 6 and in par-
ticular (120)).

To show that the tests of significance based on random variables
appearing in theorems 2, 3, 4 and 5 are right-tailed, a number of expected
values for corresponding quadratic forms have been worked out. Inci-
dentally other matrix relations have been found, such as some identities
with conditional and unconditional estimates of parameters, related to
multiple regression model, covariance matrix for linear combinations of
parameter estimates, and other relations presented in sections 3 and 5.

Because of the simplicity of formulae and ease of operations with
matrices we use matrix calculus and deal in particular with sub-
matrices [4].

All throughout this paper the equality of variances for all random
variables y; is assumed. Some types of hypotheses met in the problems
of regression analysis for any number of samples in the case of non-
homogeneous variances have been considered in W elch’s investigations
[24]- In this paper however this case is not considered.
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We divide vectors into subvectors in the following way:

B
s
ﬂ: 8, Ba+1
© p=|-"|=|-" |, where y= Bel and s=|Per2 ;
pi ﬂq-}-l (5 A 4
Ba+2 e Baq Br
- B _
For the sake of brevity we introduce the following notation:
(7) A=X|X,, B =X'X,, D =XX,.
a9 9.p— P—4.p—q
The reciprocal matrix S—! of the matrix S= X" X is devided into four
7
submatrices: S'"'=S", S*= S8 §*= §? and $¥*= S§?? , and
99 9., pP—a.q P—a.P—q
is represented in the relation:
11 Qi2
(8) S_I :ls...sl
»SBI ' 822-

The unconditional estimates of parameters g, P> d,... are denoted 3,73, 6,
respectively (strictly speaking: the estimates B, y, 6, ... are vectors, whose
components are estimates of the corresponding components of vectors
B, 7, 6, ...). Toconvey that we estimate the parameters 8,, ., ..., fp forming
the vector 8, we say briefly that we estimate parameter 8. The symbol ¥
is used to denote the parameter estimate y assuming that 4=4,, where 4,
is the known vector; sismilarly 6 denotes conditional estimate of para-
meter 6 when y =1v,, where y, is the known vector.

The sample varian"for n observations x,, T, ..,x, is denoted by

n
1 ¥ =g

=1

8

and the sample covariance for x;,X;,..,Zn and ¥, Ya,..,Yn by

b

Sxy = % (l‘[ — ) ('yi_y):

-
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2. Notation

In the present paper we use in general large italic letters G, H, M,
P, R, ... for matrices and small italic letters x, vy, 2, u, », 8, 9, o, .. for
column vectors with exceptions which will be evident from the text. We
admit the following definitions and notations. Matrix P = {py},
i=1,2,..,n; j=1,2,.., m; with n rows and m columns is called matrix
of order n-m and is marked with symbol P= P Let the transpose of

of a matrix P have corresponding symbol with a star i. e. P*. The tran-

nm

Y
spose of the column vector 3/1=- Y21 is called the row vector y* =
n 4 in
| Yn_
= [Y,, Y2 .., Ynl, and conversely; the small italic letters with indices

Y1, Y1, .-, Yn denote elements of the vector y. The submatrices are se-
parated by broken line and are written in square brackets i. e.

P
H=[W G | or H=| -
nm |np n.m—p| nm R
n—q.m
"
Symbol E is reserved for expected values and e = ‘fz for residual vector.
r L]
€n
The reciprocal matrix of the matrix P is written, as usual, P~' = {p“};

i,j=1,2,...,9. The unit matrix and the zero matrix are marked by sym-
bols I and O respectively. Let r (P) denote the rank of matrix P. The de-
terminant of the matrix P is marked by |P|. Definite matrices and vec-
tors preserve throughout the paper consistent symbols. We admit con-
.vention

r=E(y)=X§p,

where
'yl' u, L1 X12... L1g L1,9 1L1,g+2 .. T1p
y=|B] =t [P0 T T T Rl x, %, |,
3 % g n,p—q
Yn Hn LntXn2-..&ng Ln,q+1Xn.q+2+--Tnp

X, and X, are corresponding submatrices of the matrix X, where r(X,) =gq,
7(Xy)=p—q and r(X)=0p.
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where n

.1.'=—:l— Zx,- and y= :z,; Yi;

=1

thus the sum of squared deviations from the mean and sum of product
deviations are defined by symbols nS% and nS;, respectively.

Population covariance is written E (y;— u) (yi— ) or cov (yi, y)),
where u; = E (y;) and E (y;) = u;.

Mean of squares of x,, x,, ..., , is marked by

In the text we shall use the symbols @, = Min (e*e) and Q, == Min e*e;
in the first case the minimalization is to be performed with respect to
B4, B3, ..., fp under the restrictions imposed on these parameters, and in the
second case the minimalization is to be performed under the same re-
strictions plus restrictions expressed in the null hypothesis. The mini-
malization with respect to the parameters f,, 8, ..., fp may be replaced
by the minimalization with respect to the expected values u,, ua, ..., tin
(cf. 5°-7°).

The meaning of other symbols is explained in the text.

3. Matrix relations

We deduce some relations which are used in the proofs of theorems
presented in the following section. We are concerned with simple multiple
regression model:

p=E@y)=Xpg=X,y+ X,
where 7 (X)=p, 7 (X))=q, 7 (X)) =p—q and X =[X,: X,], 1,8,y and 8
are defined in the precending section.
1°. Let us write matrix S = X*X in the form including matrices 4, B

and D (cf. sec. 2). Considering the partition of the matrix X into two
submatrices X, and X, we obtain:

. X ‘ X Xyl xs X._,'l
S=X*X =X, X,]"| X} Xg)=}2} [X,: Xq] =] =d50u00 0.
1, 1 )= = BT
and using the notation introduced in (7) we obtain
AJE]

9 S=|--- 2
©) [B*D
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On account of the identity SS '==1 and of the partition (8) of the
matrix S™! into four submatrices S!t, S12, S2! and S22 we have

Sllzslzl-—l Asll +Bszl:Asla +3822 J= _q_{l ‘7'_?'__"’

SS_,_I_A:B'JI S
'B"' D lSz‘:S"’2 B*S'' + DS%1'B* S'? 4 DS*#? 0] 1

_P~9.9 P—q.p—q _
and hence from indirect comparison of submatrices we obtain the follow-
ing four identities:

(10) AS" + BS*' =1,
(11) B*S'" + DS*' =0,
(12) AS" 4+ BS** =0,
(13) B*S" + DS*=1.

2°. The following relations of S!, S!2, S?! S22, A, B and D hold:

(14) S"=(A—BD'B*) ',
(15) S' = — A~'BS* = —§'' BD,
(16) S — —D'B*S"= —§2B* A,
an §* =(D— B* A~'B)"".
Proof: From (11) we recei\.'e S# —— D ! B*S"". Substituting this

into (10) we obtain AS!'' —BD~! B*S!' —1 and hence (A—BD ! B*)S11 —],
and S'! obtains in the form (14). Similarly using the identity (12) and (13)
we prove the relation (17).

Now we shall deduce the formula (15). From identity (12) we obtain
AS'* = — BS®, hence immediately

(18) S'* = -— A" BS*,
Similarly from (11) we find
(19) S = —D~'B*S",

\
As the matrix S = X*X is symmetric, the reciprocal S is also symmetric.
From this we infer that S!2= (S?!)* = (—D'B*S"')* = —S'"BD!, which
proves the relation (15). Taking into consideration (18) we ‘obtain S?' —
= (S12)* = (—A "' BS22)* — —S22B*A~!, which jointly with (19) gives the
result (16). The proof is concluded.
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3°. The parameter estimates y and ¢ in the model E(y)= X,y +X, 4,
when r(X)=p, are marked with symbols y and 5. We express them by
submatrices X, and X, and by y.

It is known that the estimate of parameter § in the model E (y) = X §,
where r(X)==p, is $=S"1X"y (cf. [6]). Dividing the vector 8 according
to (6) into two subvectors y and 4 we obtain:

3. s | SH Sl2 R S1' X"
p=|5|=s e v=[g g 0o a=| Gl |
3 s g suisz||xyy|”
_[SU Xy ST y)
hence IS X5 y+S%Xi y
(20) y=S"X|y+S%X3y
(21) o =8"X\ y+S2Xy.

Using the relations (14), (15), (16) and (17) the estimates y and 8 are
given in the form:

(22) y=(A—BD 'B") (X y—BD'X}y),
(23) 8=(D B*A'B)' (X, y—B A"'X}y).

Hence it is evident, that in the case of B— X} X, =0, i. e. when the
parameters y and 4 are orthogonal, the independent estimates of simple
form are obtained:

(22°) F=A'Xy=(X' X,)' X% v,
(23") =D "X y=(X)X) 'X5y
These forms are similar to =S X"y = (X" X)"' X" y.

4°. For the model E (y)=—= Xpf=X,y + X,6 and any parameters 7,
and 4, we have the identity :

(24) (y—X, }'o_xzéo)'(y_xx yo— Xa6,) =
—(y— X, 7—X20)" (y— X, 7 — X5 0) + (6 — 8o)" (S2)~1 (6 — 8,) +
+[7 — 9o+ A" B(6—8)|* Aly —yo+ A"  B(6—4,)]

where ;"+A—‘B(¢§—6o)=j7 is the estimate of the parameter y when

- a

4 =4,, while as usual ﬁ=| g—]=8_‘X'y.
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On account of the symmetry of the parameters y and 4 in the model
we have also the identity:

(25) (y—X, 70— X, 00)" (y— X, y— X2 6,) =
=(y—X, ?_Xza)'(y_xl ?_Xﬂd) + (?"_70).(8”)_1()-’ — ) +
+[8—8,+D ' B* (57— y))|* D[6— 8+ D' B* (y— o)}
where é + D' B* (;'l—yo)=6 is the estimate of the parameter 6 when
Y ="%o-

Proof: To prove the relations (24) and (25) it is sufficient to prove
the identities

(26)  (B—Bo)* S(B—Bo) = (6— 6,)* (S22)' (6 — 8,) +

4 + [p—v+ A 1B —8)]" A|p—y, + A B(— &),
an

(21 (B—B)" SB—B) =— )" (") (7 —v0) +

+[8—8,+ D' B* (5—y,)|* D [6— &, + D' B* G— )],
respectively, both with aide of identity
(28)  (y— XB)* (y— XBo) = (y—XB)" (y— XB) + (6—Bo)" S (6—Bo),
given in |6], where ﬂ0=l}t°| is any vector.

Let us first prove the identity (27). For the sake of brevity we write:
p=9—1y, and vp—é d,. Let us find the difference R = (8—f,)*S(B—f,)—
—(y— )" (")~ (— ¥,). On account of (9) we have:

= I)'_Yol l A B

_________ | [7 =20 — 5 — 0y (st G — ) =
16—sl IB*D] 55l (r— 2" (") (p— o)

g lé'"ﬁ] [:l_¢'(s“)“¢=q)'Aw+ p*'B'e+¢"By +
+¢'Dy—¢"(S") 'g=¢"|A—S8")"" o+ yp"B'p+¢"By+yp" Dy.

Using (14) we have (S!')"'==A—BD~!'B" and hence A—(S'')"'=BD'B".
Then R=¢"BD'B*¢+ y¢*'B'¢+ ¢"By+y9"Dy=(y+D'B*¢)*D(yp +
+ D~'B"¢). We have thus proved the identity (27) and because of (28)
also the identity (25).

The identity (24) is proved in the same way using (26) instead of (27).
To prove it it is sufficient to use the relation D — (S*?)—'= B*A~'B, which
is obtained from the expression (17).
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5°. It may be noted that the multiple regression model u=E(y)= X8,
where r(X)=p, includes the implicit relation (cf. [8]):

(29) K -u=0,
n—p.n nil
where
K =| 1 — L™
(30) 2 el I
and
L
—| PP
(31) 55_ E ;

with matrix £ including p independent rows of matrix X and matrix L —
the remaining rows.
To prove the relation (29) let us divide the vector x into two subvectors
a and b, corresponding to the matrices L and £. Thus we obtain

n—p.1 pi
o[-
and hence
(32) b==%8
and a = Lp. From expression (32) we obtain
(33) p==L£"1b,

which exists since r(X)=p. It then follows that

a=LEL'b and a—LE 'b=0=|I'—L&™'|

a

which we were to prove. Thus the expected values pu,,pu,,...,un 0of ran-
dom variables y,, Ys, ..., Yya are connected with n — p linear relations given
in (29), where the matrix K of rank n—p is in the form (30).

6°. Consider the same multiple regression model as in 5° with the
restrictions
(34) G-p=n,

gy p1 gl

imposed on parameters §’s, where the matrix G (of order g-p) is of rank
g <p and 7 is the column vector with g components. We shall prove
that both relations (34) and (29) connecting the expected values u,,u,, ... un
and the parameters 8,,8,, ..., fp may be replaced by one relation of the
form
(35) Mu=29,
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where =
1 —L-LE

36 M=M= |"=prpin=eepp|
( ) n—p4g.n O 0 G‘L—l

g.n—p . gp pp

is the matrix of order (n — p+g):n and of rank n—p-+g, and

37 9=0=|"""}|.
n—p+g.1 n
g1

In fact, let us write (34) as O :-a + Gf = 1. Using (33) we have Oa +
GLE'b=nor [0 GE'] §]=n. Hence considering [I: —L£™!] [ %]= 0,

and ¢ in (37) we obtain (35). It is evident, that rank of matrix M equals
n—p+g, since diagonal matrices I and G£™!, being its submatrices, are
of ranks n—p and g respectively.
7°. The restrictions
Hf=v,

may be replaced by the restrictions expressed by means of the relation

(38) Pu=y
where
(39) P= [0 HL|.

In fact, introducing 8 in the form (33) into (4) we obtain Hf—HL£~'b=v
or Oa + HE~'b=1, from which follows [O: HE™| [ ; !=v.

4. l.emma and Theorems

In this paper we discuss the model given by the relation (1), (2), (3)
and (4) when 7 (X) =np.
It should be noted that some multiple regression models with matrix
X =—X of rank r <p may be transformed into models discused in the
np

present paper i. e. into such models in which the numbers of independent
parameters are equal to the ranks of matrices whose elements are the
coefficients of these parameters (cf. for instance the model of the type a)
in the “Applications”).
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In view of the great importance of the problem of testing linear hy-
pothesis in the theory of experiment, and its extensive application in the
analysis of data obtained from experiments carried out in different fields,
such as agriculture, industry, biology, etc. (cf. paper by K. Iwaszkie-
wicz [5] and J. Neymamn [13] and [17]), it is necessary to discuss it
most thoroughly (cf. the two proofs of the same theorem given by C. R.
Rao in [20] and [21]).

We present the lemma which generalizes H. B. Mann’s lemma 4.1
(cf. [8]) for unhomogeneous relations.

Lemma. Let matrix relation

(40) Mp=19

where M=M={my}, i=1,2,.,k j=1,2,.,n, u"=|u, e, pal,
kn

0" = [9,,9,, ..., 0], define k linearly independent linear restrictions im-
posed on n expected values p,,ps,...,un. Then we may determine the
system of restrictions

(41) Wu=6

which is equivalent to (40), where W=W= |wy}, i=1,2,..,k, j=1,2,..,n,
kn
0*'=[0,,0,,...,6;], and where the matrix W is orthogonalized and nor-
malized i.e. WW*=1.
Rk

Proof: The elements of matrix W are obtained according to Mann's
recurrent method given in lemma 4.1. We use therefore the formulae:

n
(42) = Y Wamia, §=1,2,..4 where 1<k,
a=1
(43) w'l=1,a=mlfl.a_'lllwla—”“—iﬂwhr’
w',,,“ a=1,2,..,n,
(44) wH-l,uzz — ’

E ok 1—0,1,2,.. k—1,
V Zl wl%l,a

where for =0 we write w,, =m,,.
Considering (40), (41), (42), (43) and (44), the components of vector @
are obtained immediately:
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n
0
. {, 24 w( 1.«:“1:
: =1
'(45) (-), b saer wl l,l(lNl(—« e - — ]
a—1 . Zw'2
" {1, e
a1
u !
o e
/ Myit,a ™ Wil Be =
5 n-' j=1 /
'/ 2{ wl 1«
a=1
T n
s ¢ l y m[ L alla™ ;“ Z wlﬂ”“ ‘}‘H Z wh( l“"‘,| A
S‘ ‘2 L a=1
' ._4 I 1, e«
=1

1 ' i "
- 0,y — 4,0, —24,0,— - —1,0)),

] Zwlla

a=1

where t-:0,1,2, .., k-1, and for 1 =0 we admit w;,=m,, and A, =0.
The expression (45) is a recurrent formula, which permits effectively to
determine the coefficients appearing on the right sides of the relations (41).
In particular we have

l‘h

' l«
@= 1

Theorem 1. Let the random variables y. in the multiple regression
model y= Xf+e—=pu+e, where E(y) =u= X8, be normally and inde-
pendently distributed with expected values pa, a=1,2,...,n and common
variance o®. Let also matrix relation Kpu=0 (cf. (29)) determine n—p
independent linear restrictions for expected values y,, pu,, ..., ua derived
from the model with p parameters f,, fis, ..., fip, which are subjected to g
independent linear restrictions G =17 (cf. (34)) where g <<p. Let hypo-
thesis be true that h<<p-—g further linear restrictions Hf =» with
respect to B,, Bs, ..., Bp independent of preceding g restrictions and mutually
independent, assume the values determined by the components of the
vector » (cf. (4)). Then the random variable

Q_r'_Qa_l Qa
h ‘n—p+g

0, =

F:

has F distribution with h and n — p+ g degrees of freedom.
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Proof: In the section 3 we proved, that both relations Ku=10
and Gf =17 may be replaced by one relation Mu=19 (cf. (35), (36), (29)
and (30)), and that the restrictions Hf =» may be expressed in the form
Pu=yv (cf. (4), (38) and (39)).

From the lemma it follows that the relations Mu =@ and Pu=» may
be transformed into their corresponding two equivalent sets of restric-
tions with such property that rows of two sets of these restrictions will
belong to orthogonal and normalized matrices. Let the relations My =19
and Pu=7» be such transformed sets of restrictions i.e. let MM*=1I;
PP*=1, MP* = O. Add orthogonal and normalized matrix

M
n—p+g.n

P

h,.n

with n—p+ g+ h rows and n columns to orthogonal and normalized
square matrix

which is always possible to do. Then CC* =1, MM* =1, PP*=1, [III"=1,
MP*=0, MII"=0 and PI[1*=0. Consider orthogonal transformation
t==Cy, where

z —f_—_z?

and where the number of components of vectors 2, 4 and w are equal-
n—p+g, h and p—g—h respectively. Since t=Cy and CC*=1 we
have 2 + 9 =My, u+ »=Py, w+ o =Ily and hence

(46) z2=My—1{, u=Py—y and w=Ily—o.

Denoting E(z) =m., E(u)=m, and E(w)=m, we obtain: m,=Mu—1,
my, = Pu—» and my, = IIu—p.

Before finding Q. note that (y — p)*(y — u) = (t—m* (t—m,), where
E(t)=m,. In fact, since t=Cy and CC*=1I we have y=C~'t=C"t and
u=E(y)=C"m:. Hence (y—p)* (y—pu)=(C*"t—C*"m)* (C*t—C*"m,) =
=(t— m,)' cc* (t—m)=({t—m)" (t—m,).
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Now let us find Q., by minimalizing corresponding expression with
respect to u. We have Q,,=AI{V1ina(y—p)"(y Q) == Mm (t—m)* (t—my)==
= Min [(z+ 0—m.—3)"* (z+0im,—0) -+ (u+v—muLv) (u+v—m,—v») +
+ (w+ o —mw —p)* (W+ o —mw—p)|] and writing m; = Mu— 9 we ob-
tain Q,=2"2z + Min [(u —m.)" (u — m.) + (W — Mw)* (W —my)] = 2" 2.

Similarly we find Q, by minimalizing the sum of squares of residuals
e*e=(y—u)*(y—p) with respect to u, this time under two restrictions
Mu=29 and Pu=v» We obtain in succession: Q, = Mine" e = Min [(z—
—m.)" (z—m;) + (u — my)* (u — ma) + (W — M) (W — mu)| = 2" 2+u" u+
+ Min(w—mg)* (W—mw)=2"2+u"u and hence Q,— Q.= u"u, where u=:i.

We shall prove that components of vectors 2z 1and :/1. are uncorrela-

n—p+g,
ted and normally distributed random variables with variance ¢® and
means equal to zero. For this purpose let us find covariance matrix of
vector t:

z2—m.
E(t—m)(t—m)*=E u—my |z m.)* (u—m,)* (w—my)'| =
w_mw

(z—m:) (z—m2)" (z—m;) w—m.)" (z—m.) (w—mw)*-

=E| (u—m,) (2— mz) (u == 7-nu) (u- mu) (u _mu) (w mw)

(w—my) (z—m.,)* (w M) (W —my)* (w—me) (w—my)*

I

o -+ 1 (0] 0]
n—p+g.n—p+g |

e (0] ‘g% 1 (0]
I hh'

(0] O ng?l- 1

p—g—h p—g—h-
(since on account of relations (46) we obtain successively:
E(z—m,)(z—m;)*=E [(z + 9) — (m: + 9)| [(z + ) — (m. +I)|* =
= (My —Mu)(My—Mp)*=M(y—p)(y —p)*M*=MIo*M*=0* - 1
and further n—p+g,n—p+g
E (z—m;) (u — m,)* = E(My— Myu) (Py — Pu)* = Mlo® P* = ¢* IMP* =0, etc.).

Noting that E(2) =E(My—9)=Mu — 9=0 and that by hypothesis:
Pu=yv we obtain E(u)=E (Py —v)=Pu—v=0. Thus it has been pro-
ved that Q, is the sum of squares of n —p + g normal and independent
random variables with the means zero and common variance o? i. e.

Qa_z*z_ ; »
2= 2 T Xnpog

o
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which means that Q./¢® is distributed as Chi-square with (n—p+g) de-
grees of freedom. Similarly Q,—Q,=—=u*u is the sum of squares of h
independent normally distributed random variables with means zero and
common variance o i. e. (Q, — Qa)/o” is distributed as Chi-square with h
degrees of freedom. It has been also shown (cf. covariance matrix of
vector t) that Q, and Q,—Q, are independent. Consequently we conclude
that if the hypothesis Hf = » is true, the random variable

Qr_ Qa‘ Qa

F="h noptg

has F distribution with h and n—p+g degrees of freedom. Consequently
it can be used to test the null hypothesis that Hf = 1.

Theorem 2. Consider the multiple regression model y=Xf+e=Xy+
+ X,0+e where according to the notation introduced on pages 20—21 we

have E(y)= Xf =y, and f = lg] . Let further the components of vector e

be normally distributed with zero means, common variance ¢® and zero
covariances, and finally let rank of matrix X be equal to the number of
parameters f;,f,,...,fp i.e. let r(X)=p. Then on the null hypothesis:

9 =y, the random variable defined as the ratio
& F=g5¢ggg>u%—mJleMWy—&@
q n—p

has F distribution with q and n—p degrees of freedom, and on the hy-
pothesis: 6 = §, the random variable

(38" (8*)~' (8—0,). (y— XB)' (y—X§)
p—q n—p

(48) F

has F distribution with p—q and n—p degrees of freedom (the symbols
here used are introduced in the sec. 2).

Proof: For the proof we shall apply the theorem 1. As it is known
(cf. [6])
(49) Qu=Min(y—Xp)'(y—XP =(y—Xp)" (y —Xp) =y y— " X"y
where f=S-!'X*y and S= X" X.

On the hypothesis that y =9, the model y=Xp+e=X,y+X,dte
assumes the form y=X,y, + X.46 + e or

(50) ' E(y— X,y)=X,0.



On the Linear Hypothesls in t.he Theory of Normal Regression 33

Now Q. by (49) has for the model (50) the form:
Qr= Min(y—XB)" (y—Xp) = Min(y—X,yO—X._,é)'(y—X,yO—X26) ==
=(y—X,y0—X,6)‘(y—X‘ Yo 'Xad)=(y_xl)’(l)i(y—xl Vo) —
i X;(y'_ X,iv)=y"y—2y" X, p, + 34 Ay, — 8" Xi(y—X, ),

where the conditional estimate

(51) =D "X} (y—X,y)=D"'(Xiy—B"y,)

is deduced from the normal equations
(52) Dé=X3(y— X,y
where, as usual, A= X X,, B=X X, and D= X X,.

Since from the theory of normal regression it is clear that the esti-

mete ﬂ is found from the normal equation Sp=X*y, we obtain (cf. p. 21
and (9)):

hence

i | GA B Fa s B
|B*5 + Dé

(53) Ay + Bd= X}y

(54) B*y + Dé= X'y

Using the relation (54) we obtain

(55) =D '(B*3+Dd—B*y)=0+D "'B*(5 —y,)

instead of (51). By (49), (565), and the form of Q., as well as by the ex-
pression

=m X, X |*y=7"X{y + & Xi v,

we have further

RQr—Qa=—2Y"X 7+ Ays— [3 +D ' B*(y—yJ)|* (X5 y—B* 70)+B‘X"y

and using (53) and (54) we find after the reduction:

Q- — Qa==(y —¥,)"|A— BD"' B*| (y — 7).
Comparing this with (14) we obtain

Qr— Qo= ('}-’—70)* (S”)_l (); _)’0)
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and finally by (49) it appears that random variable F mentionned in the
theorem 1 assumes the form of the ratio (47). It may be used thus for
testing the hypothesis y =1y,.

The alternative to the null hypothesis: y =y, is y #y,, which means
that at least one of the parameters 8,, f,, ..., B¢ does not assume the value
mentionned in the null hypothesis.

The formula (48) is deduced in the same manner. Here should be used
the relation (17), from which it follows that (S??)~! = D—B*A~'B. The
proof of the theorem 2 is concluded.

Theorem 3. Consider the multiple regression model u=E(y)=XB,
where the components of vector y are independent random variables
normally distributed with means g, gs, ..., ix and common variance o*.
Besides, let the rank of matrix X be equal to the number p of parameters
B and let the hypothesis that g=E£B=¢, be true, where & ={;},
i=12,..,q; ij=1,2,..,p) and r(£)=q. Then the random variable

(56) F= EB—g) ES'E) ' (kf—9) . (y—XB) (y—XB)
q : n—p

has F distribution with ¢ and n—p degrees of freedom.

Proof: Since by assumption the rank of the matrix £ is g we can add
to this matrix such a rectangular matrix M with p—q rows and p co-
lumns, as to make the resulting square matrix pXp non-singular. Let

such a matrix be R :[:“] Similarly let us add to vector ¢" =|,, @, ..., g4l

with g components a vector ¢"={gg+1, @¢+2, -, @p] With p—gq compo-

nents, such that the relation zp=|l ‘2 JI=R5 is obtained. For this purpose
2 .

it is sufficient to put p==Mp. Then =R 'y and the multiple regression

model E(y) = Xf becomes:

E(y)=XR‘yp=2Zy=X[R" R" l|-‘5]=XR“¢+XR‘29=2,¢+299,

np | pg ip.p—aql

where
R'=|[R!" R"“] and Z Z, 2, |=XR' or Z, = XR"
PP P9 ' p.p—q nq ‘n.p—q

and Z, = XR'2. Since the model x= E(y)= Xp has on the null hypothesis
¢p=~LB =g, been transformed into the model E(y)=2Zyp=2,¢+ 2,9,
the situation described in the theorem 2 is obtained. Consequently
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=(y— Xﬁ)" (y=3 ij), where ;§= S—'X"y and, as usual, S=X" X and
Qr—Qa=(p—g)" (W") ' (p —@,), where W'! is the submatrix of matrix

Wu; le
W= "&;‘12’1‘: q“l;;q' ’

 P—4.9. P—q.P—q

which is the reciprocal matrix of W=2"2Z. Let us find the matrix W!'.
pp

To do this let us observe that W=2*Z=(R™")* X" XR ' =(R~")*SR™!

W._1:_ IWll:Wl’

_|W___| W""| =[(R—")*SR—'| '=RS—'R* =

s Vs ESTEM EST M*
_l'MlS " M7 ] = _MS“L"':MS—‘M*' :

Hence comparing the corresponding submatrices we have:

WU=ELES'L", WQR=LES'M', W*=MS'L*, W22 =MS'M"
99 9.p—q P—a.q P—q.p—q

Thus Q, Qa=(p—q,)" (LS~ '£")"(p—¢@,). By the relation p=£8 we obtain
¢=Lﬂ £S—'X"y. In consequence Q,— Qa—(Lﬂ @) (ES~'EY)~ ‘(Lﬂ @o)-
Considering further the form @, represented above, we obtain by the
theorem 2 the random variable F defined in (56).

Similarly as in the theorems 1 and 2 this random variable may be
used for testing the null hypothesis £§ =¢,. The alternative to the null
hypothesis £ =g, is: £ is equal to any ¥,, different from ¢,. The alter-
native hypothesis states that g linear parametric functions expressed in
the matrix form by £8 have values different from components of vector g,.

Theorem 4. Let g linearly independent restrictions defined by the
matrix relation Gg=n (cf. (3)), where G=G and 5=17, g<p, be
ep el

imposed on the parameters f,, f,, ..., o of the multiple regression model
n=E (y)= Xp, where the components of vector y are independent random
variables normally distributed with means g,, u,, ..., u» and common va-

riance o2, and where r(X)=p. Let also the null hypothesis H fli=h1; be
hp p

true, where r(H)=~h and g +h <<p, when all the g+ h linear parametric
functions, expressed by Gf==7n and Hf=7», are mutually independent.
Under these assumptions the random variable given by the ratio
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51 F_ TE—D @S T)TF—1) —(GE—n)"(GS™'G) Gh—1)
; h ;
 Y—XP(y—XB) +(G—n*' G5 G (G—1)
' n—p+tg

has F distribution with h and n—p+g degrees of freedom, where

G
H] - nl#‘:,lu

1
:-'_'

T =

E+h.p

Proof: Under the assumptions of the theorem 3, where Gf =1 plays
the role of the restrictions £8=g¢,, we obtain:

Qr =(GB—n"(GS™' G (GB—n) +(y—X Py — X ).
Under the conditions of theorem 4 Q, has the latter form, so that:
Qa=ggin(y —Xf) (y—Xp) =
=N = 1 a -
=@y —Xp)'(y—Xp) +(GB—)"(GS' G (GB —n)
with n—p+g degrees of freedom, where as usual p=S""'X"'yand S=X"*X.
Similarly we find @, after performing the minimalization under the
restrictions Gf =1 and Hf =»: Since these restrictions are replaced by
one relation T8 =1, where the matrix T and vector r are defined in the
theorem 4, we have:
Q- = Min(y — XB)" (y — Xp) =
=(y—Xp)* (y—XP) + (T— " (TS~'T*)(T—71)
with n—p+ g+ h degrees of freedom. Hence
Q — Qa=(TB— )" (TS~'T*) (T f—1) — (G — )" (GS~' G}~ (G —1)-

Applying the theorem 1 we may state that random variable expresser!
by the ratio (57) has F distribution with h and n—p+ g degrees of freedom.

Let us observe that this theorem may be also proved (at a greater
length) using Lagrange’s multipliers method.

Theorem 5. Let there be given the multiple regression model
u=E(y)=Xp, where the components of vector y*=|vy,, y,, ..., Yn| are
independent random variables normally distributed with means y,, ptg, ..., tin
and common  variance o2, and the rank of the matrix X is equal to the
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number p of parameters . Let the null hypothesis be true that the
parameters f,,f,, ..., fp are represented by linear combinations of p—gq pa-
rameters 9.1, 9¢+2, ..., 9p, ¢ =0, expressed by the matrix relation §="U0,
where the rank of matrix U= U is p—qand §* = 8" -—[:9q+1, 9942, .0y 0p].

p.p—a4 P—a.

Then the random variable expressed by the ratio

- p_ SIS~ —U@E*SU) UM Sp (vy—XBY y—XB)
q n—=p

has F distribution with ¢ and n — p degrees of freedom.

Proof: Let matrix P=P complete the matrix U to obtain the
Pe P.P—q
non-singular matrix T =[P U]. In the same way the vector J with p—q

PP
components is completed by vector =, to get the vector 91=I g with p
9 P

components. Thus we have the transformation of vector g into the
vector ¢, which is expressed by the matrix relation

(59) ﬂ=Tg=[P:U][»§]=Pn+Uﬂ.

By (59) the hypothesis = U¥ may be written: # =0. Then the mul-
tiple regression model assumes the form:

E(Yy=Xp=XTo=XPa+XUd=Z,a+2,9=2Zp
where we put Z,=X-P, 2, =X U and Z—[Z Z,] = XT, and where
nq np pq n.p—q np p.p—q
r(2)=p, since r(X)=p and T is a non-smgular matrix. Thus we come
to the problem, which is dealt with in theorem 2: Considering the model

E(y)=2Z,n+ 2,9 and assuming that the null hypothesis n==o0 is true,
we conclude that the random variable

(60) poH A (G —XB) y— XP)
q n—p
has F distribution with g and n—p degrees of freedom, where H=—=H =

pp
== 2Z* Z and according to the symbols introduced in the sec. 2 the matrix
H'" is the submatrix of

Hll f Hl2
H~ = ';;2'1":"@{52?"
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and 2= H"Z{y + H'*Ziy = (H" P* + H*U*)SB (cf. (20)). In the appli-
cations it is more convenient to use the formula (58), which is deduced
in the following way.

We have Q.= Min(y— Xp)*(y—Xp) = (y— Xp)* (y—Xp), where
B=S~'X"y. Further when the null hypothesis f=Ud is true Q,=
= Min(y — X p)" (y— XpB) where the minimalization is to be performed
with respect to parameters f,, f,, ..., Bp. Let us find an explicit expression
for Q-— Qq. On the hypothesis: f§=U?d the multiple regression model
has the form

(61) E(yy=Xp=XU8=2,9

where Z, = XU .and 7(Z,) = p — q, since under the assumption r(X)=p
n.p—q

and 7 (U)=p—q.
The estimate of parameter # in the form
9=(Z:Z,)'Zty=(U"SU)"'U* X"y
is obtained from the normal equations (Z¥ Z,) 9 = Z'y, where Z'Z,=U"* SU.
Hence
(62) Q— Qu=(y—2Z,9)" (y — Z,9) — (y— XB)* (y— Xp)
and by
(y—XB)'(y—Xp) =y y—F SB=y"y —y" XS' X"y
we have
(63) @ —Qu=y"y—y " Z,(U'SU)"'Ziy—y ' y+y" XS ' X"y=
=y* XS 'X'y—y" XUU*SU)'U* X" y=
=y* X[S—'—U(U*SU)"' U*| X* y =(SB)* [S~'— U(U" SU)~'U*| S B.
Using the theorem 1 we obtain the random variable F in the form (58)
with g and n—p degrees of freedom. This random variable may be used

for testing the null hypothesis = U4¥ in the case of model (61). The same
is true of the theorem 4.

5. Expected values of quadratic forms, covariance matrices,
and other matrix relations
The problem of testing a null hypothesis against an alternative hypo-

thesis is connected with the problem of determining the type of test i. e.
whether the test is to be one-tailed or two-tailed. Since the random
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variables F discussed in this paper are the ratios of quadratic forms,
the determination of the type of test based on these random variables
requires finding expected values of corresponding quadratic forms. To
do this it is necessary to deduce a number of matrix relations. Inci-
dentally some covariance matrices and other matrix expressions which
can be applied in the multiple regression will be deduced.

1°. Let ¥y, %3, Yn be random variables with covariances cov (y;, y;) =
=E(yi— w) (Yi— ), i,j==1,2,..,n, and means u,, s, ..., in. Let further
Y =1Yi, Y2, Yn| and u* =g, s, wy tn] =E (y"), and let ’5=lpif’ be the

matrix of quadratic form y* Py. We shall prove that under these assumptions

(64) E(y"Py)=u"Pu+ _}: E pij cov (Yi, yj)-

Proof: /

Eiy"Py)=E(y"Py) —Eu"Py + Ey" Py=E(y — )" Py +p" Pu=
=E(y—p)'Ply—p) +E(y—p)" Pu+p* Pu=E(y— p)* Ply—p) +4* Pu=

=E S‘ 5‘ yi— 1) Py (Y — ) + 4" Pu=p* Pu+ Y D pyj cov (i, -
i

1°a. When the random variables y,, ¥, ..., Y, are uncorrelated and have
variances equal to ¢?, o2, ..., o} respectively, then cov(y:y;) =0 for i#j,
,j=1,2,..,7m, and cov(yi, ¥;) =o0% for i=1,2,...,n. Then the identity (64)
assumes the form

<
(64 a) E(y" Py)=u"Pu+ ,E P, -

2°. The sum of diagonal elements of matrix

(65) L=A-b-(A-c)"=Abc* A" is equal to (A4b)*Ac

nn nm ml nm mi

where A=A, b=0>, and c—c

nm m!

Proof: Let A*=|[a,] [as] -+ |aa]] i.e. let

[01]:
7 |a,‘|
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where [ai]*, i=1, 2, ..., n, is the vector with the components constituting
i-th row of matrix A. Then

(66) A'A= D fai] [al®

and matrix L has the form:

lag]*be® [a)], [a]" be® [ay], ..., [ay]" be” |an]

[an|*bc” |a,], [an]*bc” [as], ..., [@n]” bc”* [an]

Thus the sum of diagonal elements of matrix L equals:
Y lail* b [ai] = 3'b* [ai] [a]*c=b" ( Dlal [a,-]‘)c=b'A'Ac=(Ab)'Ac.
3°. For the multiple regression model y = Xp+ e we have

(67) Ee* XS—' X*e = pa?

where, as usual, S=—= X*X and ¢® is the variance of each of m inde-
pendent random variables y,, ys, ..., ¥, that are the components of vector y.
Proof: By the identity (64a) we obtain

]
Ee* XS~ X*e=a* Y fu,

where f;; are diagonal elements of matrix F — XS 'X*. To show this it is
sufficient to prove that the sum of diagonal elements of matrix F equals p.
This is proved immediately by writing explicitely the elements of this

matrix. Thus, if by L we denote the matrix L= XS !=/{(l;), then
np
P
= 3 xys*;  j=1,2,u,n,  k=1,2,.,p.
1
Hence

Lig '™ Tmn; g,.h=1,2..,n.

I
3 l,j‘
[ =

p
fgh — E lgmxmh
m

When g=h then
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Hence

n nop p B il
Sie=3 5 Senstn= 3 S Saenudn= 3 Sews)
4 g m i m 1 g

since on account of S = X" X we obtain

n

Sim = Z Xig Tmg «
14

3°a. Note that
(68) E(y— XB)* (y— Xp) = (n—p) o™

In fact, by E(y — Xf)" (y— Xp) = Ee* e— Ee* XS~' X" e and by (64a) we
have Ee* e =no? and hence the expression (68) follows from (67).

4°. For any g,

(69) E(y—XB)" (y— XB) = (B—B)" S(B—p.) + na.

Proof: The result (69) is obtained immediately with the help of the
relation (68), of the identity (cf. [6])

(y—XB) (y— XB)=(y— X (y— XB)+ (B — o) S(B— Bo)
and of the matrix expression (cf. loc. cit.)
E(B—B0)* S(B—Bo) = (B —B)* S(B—Bo) + po®.

5°. The matrices of covariances between the unconditional estimates
y and the 4’s for parameters y and & appearing in the multiple regres-
sion model of the form E(y)=Xg=X,y+ X,

(where, as usual, X = |X, X._, and B l 5 I) are:

BT [
(70) E(—y) (g —p) =a*-8",
(71) E@G —7y) (6 —6) =0o-5",
(72) E(b —0) (y —9)' =0 8%,

(73) E( —9) (6 — )" =g%- 82,
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where according to sec. 2: the symbol o® denotes common variance of
each of n components y,, ¥y, ..., Yy, of vector y, and S, S'2, S?! and §*
are submatrices of S™! (cf. (8)).

Proof: It is known (cf. [6]) that covariance matrix of vector ﬂ is equal
to M=E (§—p)(B— B)* = 0 S~ . Utilizing the fact that ,§=l | We TR
on the one hand é |

(714) E

E(@0— &) (y—9)" E(6—8)(6—0d)"
and on the other hand

o® SYi 0% SM)

(;,'2! '5}2"1'?;7'2'3&5! i .

1 12
(75) M=a=-s—*=a“|§2, 222\-—_

The comparison of corresponding submatrices given in (74) and (75)
leads to the covariance matrices in the form (70)-(73).

Remark 1. In particular case when the sets of parameters represented
by vectors y and d are orthogonal i.e. when the matrix B= X} X, =0,
we deduce using the relations (14)—(17):

(76) SN —=A='=(X} XD, - SH=SU=0;1 1 ¥ S2=D"=(Xj X,)"".

Consequently the covariance matrices (70)—(73) are equal to:

(77) EG—y)G—pf =04,
(78) E(y —y) 0—8)* =E(@—08) (3 —p)* =0,
(79) E@0—8)(6—d)=a’D".

6° Under the assumptions given in 5° for any parameter §,= l :;“I we
have: v

(80) E(y —y) (y —p)' =0*-8" +(y —y)) (y —7))",
(81) E(—y) (6 —8) =0 8"+ (y —p) (6 — o),
(82) E@B—6,) (p —p) =08 + (6 —4,) (y—y),
(83) E(6 —8,) (6 — 6,)* = o*- 8% + (6 — &) (6— 8,)",
[7
h =%
where g l £
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Proof: Using the relation (71) we obtain successively:

E(y —y0) (6—8)" =Ey 8 —Ep 8} —Ey,d* + 7,0 =
=E§é" —y8l— 8" + 7,8} = o® S+ y8* — oy — y, 6"+ y, 0 =
=" SP -y —y0) (6— )"
Thus we have proved the relation (81). The three remaining relations:

(80), (82) and (83) may be proved in the same way; it is sufficient only to
consider the relations (70), (72) and (73).

7°. Under the assumptions given in 5° we have for any parameter (any
vector) y, and any parameter (any vector) d,, respectively:

(84) E(y—y)" (8" —v) =y — )" (§") (y — o) + q0?,

(85) E(6— 8,)" (S22 (6— 6,) = (6 — 8,)* (S2)" (6— &,) + (p — q) &2,

where y, is any chosen set of §; for i ==1, 2, ..., q and ¢, is any chosen set of
Bi for i=q+1, q+2,..,p.

Proof: To prove the relation (84), let us put for brevity y»=9—1y,.
Let 1¥ be the elements of matrix (S*)7!, i,j=1,2,..,q. Considering
E(y) =1y and the relation (64) we obtain:

q
EG— 0" (S (F —yo) = (y — )" (S) " (y—yo) + )

[

1 cov (i, 9y)-

\.l\/}e

Let us determine now the covariance matrix for vector y. Using
p—E(p) =y —y and (70), we see that it is equal to

E(py—E@) (¢ —E@)"=E@—y) (y—y)"=0o°S".

Thus we have cov (y., y;) = 6*l;;, so that

¢ Nq
E(y — 0" (") (y —y) = (y — )" (§") " (y — o) + &* E 2 Wly=
f I

'

=(p—yo)" (S")' (y — yo) + qo°.

The relation (85) is proved in the same manner.

7°a. From the relation (84) it is evident that, when the null hypothesis
y =1y, is true then E(y —y,)* (S'")~! (y — y,) = qa*. Using this we shall now
show that test based on random variable (47) is right-tailed. In fact, it is
sufficient to prove that when y # y, the quadratic form (y — y,)* (S'")~"(y—y,)
is positive definite.
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Proof: First consider two known theorems:

Theorem 1. If the quadratic form is positive definite, the reciprocal
form is also positive definite. Theorem II. Any principal submatrix of
a positive definite symmetric matrix is a positive definite matrix.

To prove that matrix (S'')~! is positive, it is sufficient to show (by
theorem I) that its reciprocal matrix i.e. matrix S!' is positive definite.

Since S is the principal submatrix of matrix S=3S=X"X, then by
PP
theorem II it is sufficient to prove that matrix S is positive definite. We

exclude here the trivial case X = O when the matrix S~! does not exist.
Let u=u4=0 be any vector with p components, not all of which are

Zeros. Then u*Su — u*X*Xu — (Xu)*(Xu) is a quadratic form (sum of
squares) which means that the matrix S is positive definite. It has been
thus proved that the test based on random variable (47) is right-tailed.

8°. Under the assumptions given in 5° the covariance matrices of
conditional estimates 7 and 4 which are obtained when =4, and y=y,
respectively, are equal to

(86) Ey—ED|ly—E@)N" =747,
(87) E[6—E@©)] |[6—E(d)]* =o*-D.

Proof: First we shall deduce the relation (86), whose left side we shall
denote by C. Since E(y)=y and E(d)=34, and the conditional estimate
y=y+A'B(6—4,) (cf. formula (55)), we can write y—E (¥) = (y—y)+
+ A7'B(6—4) and hence

C=E|3—y)+A"'B@6—0){p—y)+A'B(d—0))* =
=E(y—9)(9—p)'+E(3—9)(6—8*B*A'+ A"'B-E(0—8)(y— )"+
+ A'B-E(6—8)(3—d)"B* A~".

Utilizing the expressions (70)—(73) and reducing the corresponding
matrix relations we obtain:

C=g® (S"+S®? B*A— '+ A'BS*+ A 'BS??B*A~!). Note further that
from the relations (10) and (12) follow the corresponding matrix relations:
S12B*—]—S"A and BS?—-—AS'. Hence S?’B*A'—A'—S", A7'BS*—
=A—1—S" and A"!'BS2B*A-'— —A"! (AS'?) B*A'=—_S"¥B*A"1 —
=—(I—S“A) A '=_S'""— A~'. Using these relations and performing
appropriate reduction we obtain C=E[y —E®)] [y —E(®)]* =0o* A~".
Thus we have proved the relation (86).

To prove the relation (87) we proceed similarly, but in place of the
relations (10) and (12) we use the relations (11) and (13).
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Remark 2. Note that the right sides of (86) and (77) are identical, and
also the right sides at (87) and (79). This means that covariance matrix
of unconditional estimate y, determined under the assumption that vectors
y and ¢ are orthogonal, is identical with covariance matrix of conditional
estimate y determined without assumption of orthogonality. Mutatis mu-
tandis the same is true of the vector 8. The estimate y is, of course, de-
termined under the condition that 4 =4, and estimate 8 is determined
when y =y,.

9°. Under the asumptions given in 5° the following equalities hold:
(88) E(y—y)' Ay — vl =
=ly—v +AT'B(d—d)N"Aly—y,+ AT B(6—4,)} + qo?

(89) E(6—d,)" D(d—0,) =
={0—0,+D~'B*(y—y)|" - D{0—6,+D ' B*(y—,)] +(p—q) 0*
where ’77 =34 A-'B(6—4,) is the estimate of the parameter y under

assumpt1on that 6 =4, while 6— 8+D~" B* (y —y,) is the estimate of the
P—q.1

parameter 0 under assumption that y = y,.

Proof: First we shall prove the relation (88). Let ¢ =y —y,. Con-
sidering formula (64) which gives the expected value of quadratic form
we have:

Ey—y)" A(7—y) =E¢* Ap=|y —y,+ A~ B(6—d,)}"-

qa q
‘Aly—yo+ A" BO—8)) + Y Y ay cov G0, )

[
where a;j; i,j=1,2,...,q; are the elements of the matrix A==XX,. Since

% N
the covariance matrix of vector ¢ (on the account of ¢—E(@)=y—y,—
—E(7—y)=7—E(7) and (86)) is equal to

Elp—E@[p—E@I|"=E[y—E@I[y—E@)]"=o"A"",

it follows that
q

q
2 2 aij cov (¢i, @) = Za 6®-a;-a’ = qa?,
[ [i

which completes the proof of the relation (88).

In the same way we prove the relation (89) taking into consideration
the result (87).
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9°a. From the relations (88) and (89), where it has been put

(90) v%o=EF)=E(y+A'B@—d)=y+ A"'B(6—8)
and

(91)  8=E(§)=E {6+ D' B*(—y)} =8+ D' B* (y—o)
respectively follow directly two expressions:

(92) E[y—E@N"A[y—E®)]=qd

(93) E[6—E@)|*D[6—E@®)]=(—aqd

9°b. When the sets of parameters represented by the vectors y and ¢
are orthogonal, we have

(94) E(');_'Vo)* A(')’_'}’o) =(7—70)* A(Y—)’o) + q0'2
(95) E(d—é,)* D(d—é,) = (86— 8,)* D (6—6,) + (p— q) o>

The relations (94) and (95) are obtained directly from expressions (88)
and (89) under the condition B = X} X, =0 (which determine the ortho-
gonality of parameter sets y and d). Under this condition ‘the unconditional
and conditional estimates are identical i.e. y =17 and d=24.

9°c. When the sets of parameters determined by the vectors [y,],[v.], ...,
[yr] (with p,, ps, ..., D, components respectively) are reciprocally orthogo-
nal in the linear regression model

(96) n=E@Q)=Xg= 3 Xi[v]

where

r
X = Xl X2 X,] and ﬁ: 1?’?! and pz__zp"

np np, ' np. ! npy

then
97) E([w:i]l —[?D" Xi Xi([p:i]—[49]) = ([wi] — [?D* X7 X ([9i] — [¥2])+pio®

where [yp.]=(X! Xi)~'X!y,i=1,2,..., 1, is the estimate of the parameter
lyi] under the condition that the remaining parameters equal zero. As
usual, o® is the common variance of each of n independent and normally
distributed randcm variables y,, 3, ..., ¥, that are the components of vector
y whose expected value is u.

To prove the relation (97) it is sufficient to substitute X{X; for A and
[vil = [wi], and [y§] for 7 and y, respectively.
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Remark 3. Note that the expression ([pi] — |9i])* X! X ([9i] — %))
whose expected value is determined by the formula (97), is the de-
nominator of the random variable (47) which may be used for testing
the null hypothesis [y = [¢!], i=1,2, ..., 7. In particular, when the null
hypothesis [y:] = 0 is true, this expression becomes equal to [y:|* X! X; |yl
and constitutes the sum of squares of regression y on X;.

10°. Under the asumptions given in 5° consider g independent linear
relations of parameters B,,8,;...,fp defined by the matrix relation £8=y¢,
where the rank of matrix £ =£ is equal to q and vector ¢=¢. The
following relation holds: L @

(98) E (RS — o) B — @) = ES'L* 6 - (B — ¢,) (B8 — ¢o)"

where ¢, is any vector and E is, as usual, equal to S~' X" y.

Proof: Using the relation Eﬂﬂ =g’ ST' 488", whxch is obtained from
the known form of covariance matrix of vector ﬂ i. e. from expressmn
E(ﬂ p) (ﬂ B)=d*-S— ‘=Eﬂﬂ —Bp", we obtain successively E(Lﬂ—¢p0)>
X (B — 9.)" =LEF" L* — ELBpy — @ Ef"L* + gogd = £(a* S+ pf") &
— Efgt — o "L + g0 =LST'£" 0® + (BB — @) (B — @)

10°a. In particular case when ¢, is the true value ¢ of the product Lg
i.e. when gy=9¢9p=£%1£8= E(Lﬂ), then the matrix expression (98) defines the

covariance matrix of linear parametric function Lﬂ. It can be immediately
seen that this matrix is equal to

(99) EXS —¢) (B —¢)* — LS '£*-0°

where ﬂ =S""'X"y.

Remark 4. The covariance matrix (99) is applied in the formula (56) to
determine the random variable F in the theorem 3.

11°. Under the assumptions given in 10° we have

(100) E@®F—g,) (EST'EY) " BF—g) = (BE—q0) (S ') EE—q0)+ qo*

Proof: Let 1}=Lf}—% be the vector and let by, i,j=1,2,...,q, be the
elemants of matrix £S~!£* Then by the formula (64) and by E (£8) = &8
we obtain:
E (b6 — go)" (S £*)~' (& — 90) =
q

= (B — )" (BST L) EE— ) — )

6" cov (v, ),

‘[,ﬁ
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which is denoted by M. Let us find the covariance matrix of vector .
Note that

E(y —E(§) (4 —E(p))* = Eypy* — (Ey) (Ep*) =
=E&f—g¢,) (BB — qo)* —E(Rf—g@,)-E(Ef—q,) = LS~ L* - o2,

which follows immediately from the relation (98). Thus

q q9 q
SR L T Y g .
cov (yi, y,) =bijo* and ) }J b cov (yi, y' 2 S 2 b by; = qa®.
1 J fi

Hence we obtain
M= (Lf — )" (LST' L")~ (B — ¢,) + qo™.

11°a. In particular case when g, is the true value ¢ of the parametric
function £ i.e. when ¢,=¢ =L =E (L£f), we have

(101) E (L8 — @o)* (RS~ £*)' (£ — ¢,) = qo™.

11°b. The test based on random variable F given in (56) is right-tailed.

Proof: The comparison of relation (100) with result (101) indicates that
to prove that the test based on random variable (56) is right-tailed it is
sufficient to show that the quadratic form

(BB — @a)" (BS™'£7)"' (£8 — @)

is positive definite, in other words it is sufficient to prove by the theorem
I (cf. p. 44) that the reciprocal of the quadratic form of the latter (i.e. of

the form u*LS '£*u — W, where u==u is any vector non-equal to zero),
q1

is positive definite. Since the quadratic form W may be given as

W = (E*u)*S ! (L*u) = m*S 'm, where m — m — L*u, it suffices to prove
pl Pq qt
that the matrix S—! is potitive definite. The latter statement follows

directly frcm the theorem I and from the fact that matrix S is positive
definite (cf. proof on p. 44 in 7°a).

Remark 5. Note that the quadratic form, whose expected value is given
in the relation (100), appears in the formula (56) that gives the random
variable F in the theorem 3.

12°. Under the assumptions of the theorem 4 the following relation
holds

(102) E{(Tf —2)* (TS~ T*) " (TB—1) — (GB — 0" (GS—' G*) (GB — )} =
=(Tf— v)* (TS~' T*)""(TB—1) + ha®.
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Proof: Note that under the assumptions given in the theorem 4
E(Gﬂ)=G-ﬁ=1;, and for any vectorha; we have generally E(Hf})=H-ﬂ=;éai.
gp g hp

Hence from the fact that T =

g] and T = :" l, it follows that generally

we have E(TB)=Tﬂ # 7, and the equality here holds only, when the null

hypothesis Hf = » is true. Hence using the relation (100) and noting that

r(T)=¢g + h we find
g+hp

E(TB—1)* (TS~ T*) ' (Tf— 1)} = (T — )" (TS~ T*)~' (Tf— 1) + (g+ h)o™.
Further, since 7(G) = g, we obtain by relation (101) the value

E(GB— )" (GS™' G*)~' (GB—n) = go".
Since the difference of the latter two expressions constitutes (102), the

theorem is proved.

12°a. Note that when the null hypothesis Hf = is true, the relation
(102) (on the account of E(HB) = HB ==», and what follows E (T = 1)
assumes the form :

(103) E((TB—1)"(TS 'T*) " (TB—1)—(GB—1)" (GS~' G*)~'(Gh— 1)} =ho®
where h is the rank of matrix H appearing in the null hypothesis.
hp

12°b. The test based on random variable (57) which appears in the the-
orem 4 is right-tailed. To prove this, it should be noted that from the
relations (102) and (103) it follows that it is sufficient to prove that, when
TB + 7, the quadratic form (T —7)* (TS~ T*)~*(TB — ) is positive defi-
nite. The latter statement is proved similarly as in 11°b.

13. Let f=Wa, where W= W is any matrix of rank m, 1 <m < p,

and a=a is any vector with m parameters a;, ay, ..., am. The relation
mil

f= Wa expresses p parameters f,,f,,.., p in terms of m parameters

a,, ay, ..., am. Under these assumptions and under those of theorem 5 the

following relation holds:
(104) E(SP)* (S~ —W (W* SW)~' W*| Sf =
= (Sp)* |S! —W (W* SW)~'W*] SB + (p — m) o>
Proof: Let L denote the left side of the expression (104). Utilizing the
fact that the covariance matrix of vector B is equal to S~!-0® and using

the formula (64), we obtain:
4



50 Wiktor Oktaba

rop
(105) Ef*Sp=p"Sp+ Y D sijcov(bif)=
Lo
[
=858+ X X syso*=F"Sp+ po”.
i

Putting ¢=W* S, we may state that covariance matrix of vector ¢ is
m1
equal to ¢®- W*SW. In fact,
(106) E(p—E(@)(¢—E @))' =E W*Sp—W"* S) (W* S — W* Sp)* =
=W*'S-E{(B—B)(B—P*") - SW=W*SS—'¢*- SW = o> W* SW.

Applying expression (106) and formula (64), and putting (W* SW)-'={h'/},
we find

(107) E(SP)* W (W* SW)—! W* S = E (W* SB)* (W* SW)~' W* S =

— (W* SB)* (W* SW)~' W* S8 + S’ N hi cov (§1, ) =
T 7

= (W* SB)* (W* SW)—! W* S8 + mo>.

Hence by the formulae (105) and (107) we get the result (104). In fact,
L =EB* SB— E(SP)* W (W* SW)—' W* S —

—B* SB + po® — (W* SB)* (W* SW)—' W*Sf—m - o> =

=(S)" [S~' —W (W* SW)~' W* |SB + (p —m) 0.

13°%. Let the null hypothesis g=U - 9 1be true under the assum-
pP.P—q P—Qq.
ptions of the theorem 5. Then the relation (104) assumes the form

(108) E(S)*[S '—U(U*SU)~' U*| S§ = qa®.

To prove this we substitute in (104): p—q, U and U9 for m, W and g res-
pectively; we thus obtain

E(SB)’* |[S~'— W (W* SW)—'W*| SB = (SB)* S~ SB—
—(SP)* U (U*SU)~" U* SB + qo* = (U9)* SUH + qo® —
— (SU9)* U (U* SU)~' U* SUY = 9" U* SUJ — 9" U* SUS + qa® = qa®.
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13°b. The test based on random variable (58) given in the theorem 5
is right-tailed ?).

Proof: The random variable (60), which has the form of the random
variable (47) in the theorem 2 is equivalent to the random variable (58).
Since the test based on random variable (47) (cf. p. 44) is right-tailed we
conclude that the test in question is also right-tailed. The proof is con-
cluded.

Note. It should be noted that the null hypothesis g=U - ¥ 1is

Pp—q P4,
tested against the alternative hypothesis that g equals any W - 19,1where
P.pP—q p—q,
W = U, meaning that p parameters p,,f;,..,6p of the given multiple
regression model may be represented by the linear combinations of p—q
parameters, and that these combinations are different from those of the
null hypothesis.

Note that the tests of significance based on random variables F given
in the theorems 2, 3, 4 and 5 are right-tailed; this follows from the fact
(cf. [8]) that these F's may be expressed as the decreasing functions of
random variable lambda which by the maximum likelihood ratio criterion
may be used as the left-tailed test. Using in this paper the theorems of
matrix calculus we have presented the direct proofs that the tests based
on random variables F (given here) are right-tailed.

6. Applications

In the present section we shall give some examples of the applica-
tions of random variables F given in the matrix notation in the theorems
2, 3, 4 and 5 for testing the linear hypotheses. Since the random variables
have the matrix forms, their deduction in the case of any particular con-
crete form of linear hypothesis in the given linear regression model (de-
sign of experiment) is different from that presented in the papers pu-
blished so far.

We shall consider three types of the multiple regression models:

a) the model, which may be transformed into a model with matrix
whose rank is equal to the number of independent parameters,

b) the model of the one-way classification, and
c) the model with the regression lines y on x in several populations.

') From 13°b it follows that the quadratic form (Sg)* [S™' — W(W*SW) ' W*] Sg
(cf. also (104)) is non-negative. In particular, considering the linear regression model
Vg = Xyq iy + TogBy: @ =1,2,..,n; and treating the matrix W as the column vector
W =|[!], we obtain the Schwarz's inequality for the sums: (Jx}) (Zx2) > (3x, x,)"
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Ad a). If in the multiple regression model y = Xg the number of
independent parameters among p parameters g, fa, ..., fp is equal to the
rank 7 of the matrix X, the number of restrictions imposed on the para-
meters f is equal to p—r. As a result of the elimination of the p—r de-
pendent parameters f we obtain the model with r parameters. If the
matrix rank of this model on such reparametrization does not change
and remains equal to r, we obtain the situation which is being discussed
in this paper i.e. we have the multiple regression model whose number
of parameters is equal to the rank of the matrix formed from the coef-
ficients of these parameters.

To illustrate such model, consider a model of the two-way classifica-
tion with one element in each cell, i.e. design of randomized blocks. If
the effects for the treatments and for the blocks are marked by a;;
i=1,2,..c¢ and by b;; j=1,2,.., k; respectively, the model assumes
the form:

(109) E(ya)=0a1 X1a+a Toa+ -+ +A—1Tc1,a + A Tca+ b1 Tei1, e +
+be Xerz,at o b1 Teir—t,a + OrTeika + 4

where 4’ (ordinary number) is the mean in population embracing all the
elements arranged in ck cells. Note that when a=1,2,...,n, we have
simultaneously i=1, 2, ...,¢, and j=1,2, ..., k. Two restrictions

c k
(110) Ya=0, D=0
' J

are imposed on the parameters of the model. The assumptions with regard
to matrix X are as follows: a) xcix+1, o =1 for a=1,2,...,n; b) when i=1,
j=1, then x, =1 and x.;1=1, and the remaining x’s except Tcir:1, 4
are equal to zero; ¢) when i=1, j=—2, then x,=1, x;;2 =1, and the
remaining x’s except Xc:r+1, « are equal to zero; and so on. We are concern-
ed with the testing of the null hypothesis that no differences exist between
the treatments i.e. that a,—a,=...=—=a.=0. It is easy to verify that
under these assumptions the rank of the matrix X of the order n X(c+k-+1)
is equal to ¢t+k—1 i.e. is less by two than the number p=c+k-+1 of
parameters in the model. Thus we cannot make direct use of the F test
that follows from the theorem 2. However if we determine a. and b. from
the restrictions (110) and if thus obtained expressions are introduced into
relation (109) the following model with the c+k—1 parameters will be
obtained

(111) E(Ya)=0121a+a222a+ -+ +0—12c-1,a + b1 Zc41,a + b2 2c42.a +
+ o+ brt Zesh—t.a+ 4
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where
2im = Lta — Xca, t=1,2,..,c—1; 2ma = Tma— Tc+k,ay
m=c+1, ¢c+2,.,c+k—1.
The rank of matrix Z=— Z is equal to the number of the parameters

n, c+k—1

i. e. is equal to c+k—1. Putting

‘}’. =[al’a‘_’) ---,ac—ll, 6.=Ibl! b‘.!’ eoey Dh—1, ,ll'l and ﬁ.= [7‘.6']
1, c—1 1k

we obtain the model

(112) E(y=2=2,y+2,4,
where
Z={Zl Z,| and Z=|{z4}, u=12,..,c—1; a=12,.,n.
n,c—1 nk

Since the null hypothesis is: y ==0 we may test it by using the random
variable F given in the theorem 2.

The estimates of_the parameters a,, @z, ..., @¢—1, by, b, ..., be—1, u’ are found
from the relation g ==(2Z2*Z)~'Z*y which holds since the number of para-
meters is equal to 7(2*2Z)=c+k—1. Since Z/Z,==0, which can be
easily verified, the parameter sets y and 4 are orthogonal. The matrices
Z,Z, and Z, play here the rdle of the matrices X, X, and X, respectively
in the model discussed in the sec. 3. Hence, on the account of
B=2!Z,=0 and the relation (14) we find S!"' = A—'=—(2} Z,)~’, and the
random variable (47) assumes the form:

p_ 7 A7 (y—28"(y—2p
c—1" (c—1)(k—1)

with ¢—1 and (c—1) (k— 1) degrees of freedom, where, as it can easily
be verified,

2k k ... k
a=zz=| 7T
k k 2k

Using the formula (22'), which in the actual case has the form
y=(2{Z,)~' 2}y, and noting that the determinant of the matrix A has value
|A|=|2;Z,| = ck‘—! (by application of the well known algebraic formulae
(cf. [18]), and next by obtaining
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we get the known formulae for the estimates of parameters a;: 4, =y, — 1y,
i=1,2,..,c—1. Since it follows that y*=[y,— Y, ¥2— Y, ..., Ye—1 — Y],
by performing some simple calculations we get

. enna o
P A=k Y @i—9"
i

The numerator of the random variable F is thus found. Writing the

matrix Z in explicit form we derive without difficulty the denominator
of F,

(y— 26" (y— 2h) = 22 (Y — i — U+ D)

Ad b). Consider some examples of the testing of linear hypothesis in
the case of the model of one-way classification under the assumptions
given in the theorem 3.

We take p random samples from p populations in such a way that the
ith sample with n; observed values, i=1,2,..,,p, is drawn from i‘th

p
population. The total number of the observations is equal to n=3n;. The
i

multiple regression model = E(y)= X expressed in symbols used in this
paper takes the form:

(113) ‘Ua=E(ya)=xluﬁ1 +x2nﬂ2+"'+xpaﬂp

where we put: xj.=1 for a=1,2,..,n;, and x1.=0 for the remaining
a’'s; xee=1 for a=n,+1, n,+2,..,n,+n, and r:»=0 for the remaining
a’s, etc. Let B, B,,...,8p define the means in the corresponding popu-
lations. Then pe=4§, for a=1,2,..,n,; gya=4p, for n, +1, n, + 2, ..,
Ny + Ng, ...; te==_pp for

p—1 p—1

a= Y m+1, a= ) m+2.,a=
==k =T

It is obvious that the matrix S = X*X has the form S= ’
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and the reciprocal matrix of S is equal to

1, 0,.., 0
L
1
Sene s 0‘?12,... 0
1
0, 0, ',

Example 1. Under the above assumptions of one-classification and
under the usual assumption that random variables y. are all normally

distributed with the common unknown variance o?, we shall verify the

null hypothesis that the linear combination of p parameters is equal to

p
zero i. e. Y 1= 0, where the coefficients i1, ...

,tp are known. To

deduce the form of random variable F which may be used to test the
mentioned hypothesis it is sufficient to apply theorem 3. In this connec-
tion we note that the matrix £=2£% 1is in our case the row vector:

£ = L— 23, .,
We find dlrectly that

I qp

®STE) =%, B=ST'X"y=|3,
Z LYr

n;

ru

(B6)" (BS™'£*) ! (B) =
and finally that
P ]'I'

(y — XP)* (y— XB) =

J

1 —yl-

Z E(y,j—g,)‘a, where y;=

n

I §
,n";_, Yy

is the mean of the observations in the i’th sample. Using theorem 3 we

obtain the following expression for the random variable F which may

P
be used to test the null hypothesis that Y g:=0:
p 2
(n—p) (2 L "g,)
. p 12 P
(2- -3 3 wi—ur

with 1 and n—p degrees of freedom.

(114)
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In particular case, when the samples have identical numbers of ob-
servations i.e. when n;=k for i=1,2,..,,c the random variable F
assumes the form
2

2 ,
k(n—p) (;‘li 371)

p pi By ’
(Z l?) Z ;(yii—@)“’

The test based on random variable (115) may be applied, for example,
in the analysis of factorial experiments performed in the glasshouse. In
fact, if in the pot experiment with two factors, we investigate the effect
of the two fertilizers “N”> and “W” on the yield of a wheat variety and
if each of the factors is introduced at two levels 0 and 1, then we get the
four following treatment-combinations: n° w°, n'w® n°w' and n' w'. When
each of these treatment combinations is replicated k times, the experiment
contains n = 4k pots. Let the means of the four populations correspond-
ing to the four treatment combinations be denoted by §,, f,, s and f,.
The experimenter is generally interested not only in the main effects
but also in the interaction “WN” of the investigated factors. The corres-
poding hypothesis that interaction is equal to zero we express as the
parameter linear function: g, — 8, — B; +f, = 0. The null hypotheses that
the main effect of the factor “W” and that of the factor “N” are not
significant are expressed by the relations —fg, —g,+f,+6,=0 and
— B, +P:—Bs+B,=0 respectively. Each of these hypotheses may be
separately tested by means of test based on random variable (115).

It is evident that these remarks also apply in the case of testing the
null hypothesis that the interactions of any order are equal to zero, if in
the factorial experiments the treatment combinations constitute the one-
way classification. In the experiments of this type one may verify by
means of the test based on random variable (115) the significance of the
regression components and in particular case the significance of the
linear, quadratic and cubic components of the main effects and the com-
binations between these components of the two- and more-factor inter-
actions.

For example, consider the 4 X4 factorial experiment, where each of the
two factors “W” and “N” occurs at 4 levels denoted successively by 0,1, 2
and 3; let 8, B., -.., f1s be the means of the populations corresponding to
the combinations: n°w° n°w', n®w? ..., n®w?. Since for four levels of
a factor the orthogonal coefficients determining the linear and quadratic
effects are equal to: —3, —1, 1, 3 and 1, —1, —1, 1 respectively the null

(115) F=
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hypothesis ,that the regression linear X quadratic component N,W, of the
interaction “NW” is equal to zero, assumes the following form of the
linear combination of the 16 parameters:

—3ﬂ1+3ﬂ2+3ﬁs_3ﬁ4—ﬁs+ﬂe+ﬂ7—'ﬁs+ﬂn_ﬂ10—ﬂn+ﬁ12+
‘*’3ﬂ13_351|_3ﬂ15+3ﬂm=o-

The significance of this function is tested by the test based on random
variable (115).

Now let us present one more example of the application of theorem 3.
Consider the third type of the multiple regression model, which contains ¢
parameter groups i.e. vectors:

Bo—11
p

[711—[ﬂ’] lyl—[ﬂ‘l o [yl = I

forming jointly the vector 8* ={[y,|*:[ys]* - [yc]*]. This model takes
the form:

(116) E (ya) = (xla ﬁ] +-1?2aﬂ2) + (x34 ﬂ;; + T4ee ﬂx) + -+ (xp 1.aﬂp-—l + Lpe ﬂp)

c
where p=2c¢, a=12,..,n, n=23n; Ti.=1 for a=1,2,..,n, and

T1. =0 for the remaining a; x3a=1 for a=n,+1, n,+2, .., n,+n, and
T3 =0 for the remaining a, etc.; suppose also that each of the X2,
Tiq, .-y Xoc,« takes at least two different values. As usual we suppose that
Ye s are independently and normally distributed with unknown common
variance ¢® This model may be interpreted in the following way. In each
of ¢ partial populations P;, i=1, 2, ..,, ¢, we observe the linear regression
y on x. The sample drawn from the population P; contains n; observations.
Under these conditions the parameters with the even indices denote the
unknown regression coefficients y on x, while the remaining parameters g
with odd indices determine the points of the intersection of the successive
linear regressions with the coordinate axis OY.

Note that r(X) = p. In fact, to prove this it is sufficient to take from

each of the c pairs of columns two such rows of matrix X =X that the
np
elements of the even columns should be different. Under the above assump-

tions this is always possible to do. In this way we obtain the p==2c in-
dependent rows, which means that the rank of the matrix X is equal to
p i. e. to the number of the parameters of the model.
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Having the matrix X we easily find the form of the matrix S = X*X:

n,, _Sx,_., 0, {}5033 0, 0

Ny, Dz, 0, 0., 0, 0

0, 0, my D, 0o, 0

=g o, 0, Yz, Nal ., 0, 0
e

0, 0, 0, 0,.., ne, ngc
4 ac
%)

0, 0 0, 0., Dm, Dk

Since the value of the determinant of this matrix is equal to
|S|="n,n5...7.(n,82)(n,S?)...(n_S), where according to the notation in the
sec. 2, the expression n,S;, denotes the sum of squared deviations of
observations x belonging to the i'th sample (i=1,2,..,,¢), the matrix
S—! assumes the form

.’cﬁ — T,

= 0, o,.., 0, 0
n,S; n,S;
—x2.! 2 P 0: 0""' : 0! 0
n;Ss n,S;
0 0 =% 0 0
' L
8= prt Ty, 0, ol

:_tg —Ec?r
0’ 0’ 0! 0’ ’ e 1
n S5 n.S;,
—_hzc 1
0, 0, 0, 0, sz W =
L ncsgr ﬂ.,_,S:‘_
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The symbols x,, and x%; i=1,2,..,c; denote the mean and the mean
square of x’s appearing in the i'th sample (cf. sec. 2). Using the known
matrix relation §=S""' X"y, we find the following estimates of the pa-
rameters:

Bi=Yi1— T for i=1,3,..,2¢—1

and B,=S,-,-,"Sf- for j=2,4,...,2c, where y,;.1 denotes the mean of y’s in
the (i+ 1)/2 —th sample, and S;.1,;:1 — the covariance in this sample.
The symbol S;; stands for the covariance in the j/2 — th sample, while
Si+1 and S represent corresponding variances for x’s. Developing the
expression (y— XB)" (y—XB) =y "y—y" XS~'X"y, we easily find that
it constitutes the sum of squares of deviations of %’s from the regression
“within the samples” i.e.

n; Sai i)

"3
ni SEJ

(117) y—XP) (y—XB) = Y |mS§m~—(

where S:I’,z,- is the variance of y’s in the i'th sample, i—=1,2,...,c.

For the model (116) we may verify by means of the test based on
random variable in theorem 3, the null hypothesis that the c linear re-
gressions intersect the coordinate axis OY at the same point; we may
also test the null hypothesis that the regression coefficients y on x are
all equal in the ¢ populations. The latter problem raised by K. Iwas z-
kiewicz ([5]) has been solved by St. Kotodziejczyk ([7]). This
paper offers the following solution of this problem: .

We derive the corresponding random variable from the form (56) i. e.
from the formula:

P E8—0)' &S BB —p) . (y—XB)" (y— XB)
q n—p

with g and n— p degrees of freedom, where the null hypothesis is:
¢ =L =¢,. In the actual problem this hypothesis assumes the form:

q1
ﬁa_ﬂp:—:q;(l)z(), 54—-ﬂp=(pg=0,_"’ﬁp_2—ﬁp=q_‘? 1=0.
Hence q=r(£)=c—1=(p/2) —1 and
01000mm00—41

000100,..,00 —1

Lt=t£=]000001,.,00—1
c—1,p

| 000000,..,1 0 —1
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To find the expression for the random variable F, it is sufficient to
calculate its denominator. We note that

g . 1 1 1 T
nS T nS’ nSL " 5T,
1 = 1
s T g soey -
K=4S"'L*= n, Sgc n Sgt‘ n, Si n, Sgc
c—1,c-1
1 1 L e
e nt Sgc ' nc S;t‘ LA "r. Sgc "’t‘—l 830—2__

Since the determinant of the matrix K has the value:

Zc: n, Sy,

|K|=|ES1£*| = "—

c

i
” 2
1 Sy
i

the reciprocal of the matrix K is the matrix

(W —m,)m,, —m, My, .., — M, Mc—1
K1 P —m,m,, (W—m,)m,, .., —mym_
w
_ —moaamy, — M1 Mo,y (W—mMeeg) Mgt _

i

where for brevity we put m;=mn;S}; j=1,2,..,c—1; and W= 3nS},.

Knowing the form of the matrix £, we have directly: (LB)" — [ﬁ, — 5,,,
B_, —fip, ...,Ep_g—ﬁp], and taking into account the form of the matrix K—!,
we obtain the following expression for the numerator of the random va-
riable F

c—1 c c
& A = e ¢ A R
(BH)* &S £ (Lﬂ)={ > D sk S (ﬁzi—ﬂaj)‘}: D niSh.
i=1 j=i+1 i=1
As a result, the random variable which may be used to test the null

hypothesis that the regression coefficients y on x in the c=p/2 sam-
ples are identical has the form:
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(n—2¢) 2 2 (ni S3i) (n; S3) (Bei— o)

F=- _¥ll]l Spp—

(c—1) ( S Sz:) 2 nis§2i 1) (ni Sza;m‘lu.l
=1 n; Sy I
with ¢c—1 and n—2c degrees of freedom.

Next we will deal with the problems, whose solutions are reached
by the application of the theorem 4. We shall illustrate this by the
following example.

In the model of one-way classification with different numbers of
observations in the subclasses (defined in the present section under b)
we assume that the known linear combination of the parametersf,,f.,....8p
has the given value 7 i. e.

p
(118) D upi=n.
Let us find the form of random variable under the null hypothesis

14
(119) D) tifi=0.

1

The comparison of the present model with the assumptions of the
theorem 4 shows that the matrices G = G and H= H are vectors i. e.

G=F= [t,t,....lp] and H= H—-—[t,,tz, tp] and that
P

As usual, we assume that the functions (118) and (119) are independent.
In order to apply the random variable given in (57) we calculate easily:

2”: 2 2"1 Lt AN 117

- ;' < oy s 4o

TSI T* = and (TS—'T*)~' = ,
fu $d 4 I
— n;' = n — n o

where
P a2 . » 2
W — | TS-! T* =(E !;)(E t,_)__‘ b3 hu)'
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Considering further

P
leyl—"] n

] - 1 3
F where 'yi—_—ﬂi:;; Z yys; 1=1,2,..,p;
2 ti Y :

Tﬁ—1=

we obtain:

(TB— )" (TS~ T*)~'( ﬂ—r)—

M Sri—of $ &z Sui—)( 3 ) (3 +

oSl (22

and finally

\Zl,y.—n;
s
TN

(GB—n)* (GS—'G*)~ (Gﬁ— 7)) =

Introducing the obtained expressions in the formula (57) we obtain the
following expression for the random variable F:

(120) e Lt o i
1'!g 3

(b o = o

\ 1.'?'; n,- blzij% Yii— Y + (c ﬂ)l

with 1 and n—p + 1 degrees of freedom, where

L P2 [

a=2t1@,~, b——-‘;\-_: :; iUin= El,-y,, d=2l"tl'-and n=leﬂ1
i=1 1=1 X i=1 I=1

(t;, t; and # are given; i=1,2,...,p).

The random variable (121) may be used by the experimenter, who
takes an interest in the problem connected with the factorial experiments
performed in a glasshouse. Suppose that in the pot experiment one inve-
stigates the effect of the factor “N” (for example the fertilizer) occuring
at four levels 0, 1, 2 and 3, on the yield of some corn variety. Let $,, £, 8
and f; be the means of the populations corresponding to the given le-
vels. Let the difference, 7, between the yields obtained at the first and
second level be known from the former experiments and be expressed
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by the relation —f,+ fa=2. Then one is frequently interested in the testing
of the null hypothesis that the linear regression component N, is equal to
zero i.e. —3B,— B4+ s + 38, =0. This hypothesis is verified by test based
on random variable (121). In the case of rejection of the hypothesis we
have the basis to conclude that the regression of the yields on the levels
of investigated factor is significant.

Now we present a second example of applying test based on random
variable (121). Observe the experiment described on p. 56. Using the
random variable (121), one may verify the null hypothesis that the main
efect of one of the factors is equal to zero, when it is known that the
interaction between the factors also equals zero; this is equivalent to the
testing of the hypothesis that §,—f,+p;—p8,=0 when g,—8,—p,+8,=0.

The significance of the main effects in the field factorial experiments
performed according to the model of randomized blocks may be also
verified on the basis of random variable (57) (cf. theor. 4). According to
the reparametrization of the model described on p. 52—53 we transform
it into the model of the form (111). Let for illustration ¢ =4 denote the
number of combinations n°w’, n’w', n'w® and n'w' obtained by com-
bining two levels 0 and 1 of each of the two factors “N” and “W”. Then
the treatment effects a,, a;,a, and a, are identical with the effects of
the respective combinations. Let the corresponding means of four popu-
lations represented by the four combinations be denoted by v, v,, v,
and v;. Then, it is easy to see that

(122) vi=ai1+u, i=20,1,2,3.

The null hypothesis that.the mean effect, “N”, is equal to zero, under
the assumption that the interaction WN between the factor “W” and “N”
equals zero, is expressed by the relation — v, — v, 4+ v, + vy =0, while the
assumption about the interaction WN is expressed by the relation
v,—V,— V,+v,=0. Using (122) these may be written as —al—a._,-{;a:,+a,=0

and a, —a.—a,+a,=0 respectively. Since the restriction Ya;=0 is
i

imposed on the parameters a; (i=1, 2, 3,4), we obtain, instead of the
latter three relations, only two relations: a,+a,=0 and a,+a.=0. The
first of these constitutes the null hypothesis, and the second — the
restriction for the parameters of the model (111), where we put c=4.
Thus we obtain for the actual problem the model with the restriction
and with the null hypothesis ,that satisfies the assumption of the
theorem 4. It then follows that the test based on random variable (57)
may be applied here.
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We shall mention briefly one more problem, which requires the
application of the theorem 4. Let the c=p 2 regression straight-lines y
on x pass through such points on the Y axis, whose distances from each
other are equal to the quantities %%, %3, ..., 5_,. The remaining assumptions
are presented on p. 57. Now we are interested in the test which under
these conditions verifies the null hypothesis that the differences among
the regression coefficients y on x in the ¢ populations are equal to the
given quantities »{,4),...,9%_,. It may be easily observed that the ranks
of both matrices H=H and G = G appearing in the theorem 4 are iden-

h,

tical and equal to c—pl. The appffcation of this problem in the experi-
mentation may be illustrated by means of the following example. Knowing
differences between the yields of the ¢ wheat varietes obtained at the zero
level of investigated factor (for example: a fertilizer), one will be intere-
sted in verification the null hypothesis that the differences in the yield
increment in successive levels have a priori given values, and in parti-
cular that these differences are identical.

We proceed to present one of the problems, which may be solved by
means of theorem 5. Consider the multiple regression model determined
by the relation (116). For this model (which represents the regression
lines y on x in the c populations, and which contains the p=2c para-
meters), we shall find a test of significance of the null hypothesis that
all lines are identical. This hypothesis is expressed in the form: §;=1¥,
(i=1,3,5,...,2c—1) and ;=104 (j=2,4,..,2c¢) which in the matrix
notation is written as

(123) p=Ud
where, according to the symbols given in the theorem 5, the rank of the
matrix U= U is in the actual case equal to p— q=2, since

pP.P—q

U [12.0 0120451 O |

= while 9= o =|0' .
lo1o1...01 et | 8,]

Since the assumptions specified in the theorem 5 are here satisfied,
and since the null hypothesis determines each of the parameters §,,f,,...,fp
as the linear combination of two parameters #; and #, the random
variable (58) may be applied. Let us find the matrix expression for its
numerator. Using the form of matrix S presented on p. 58, we obtain:

1 e =]

(U*SU) = —— 3
W —Yax n
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where summation in extended over all n observations and
st=1 ¥ @—ap
n —

is the sample variance of x. Further we find

‘MM ..M )
U sSUr'v'=z=2z2= —1—2 MM...M |, where M=| 2% —2=I
GO P [=5mpz ']
and finally
2 - 2
(124) y* XU (U SUY- U* x* y = (WSl | (S9)

nS? n

where nS.; = 3 (x — x)(y —y). Utilizing the matrix S—! given explici-
tely on p. 58, we have

. "f 1
s o - ; (nl SZA 21)2 (2 y2i)2
125) XS xty= N [T

where Y, ni Sz and n; Sy,2: (i=1,2,...,c) denote successively the obser-
vations belonging to the i-th sample, the sum of squared deviations of
x's in the i-th sample, and the sum of the product of mixed deviations
in this sample. Considering the relation (Sp)* [S—! —UU* SU)~'U*|Sf=
=y"'XS'X"y—y" XU (U"SU)"'U* X"y and the expressions (124), (125)
and (117), we may state that the random variable (58) in the actual model
assumes the form

V| Sun? | (S| _(nSo)? (Syr
i n; S5 n; nS* n
(126) F= - o

2c—2
c 9
n S (n4S2i, 2:)
d Lo = 2
i L n; S

Hn—2c¢

with 2¢—2 and n— 2c degrees of freedom, where n; Sf;zl. stands for the
sum of squared deviations of y’s in the i-th sample; i—=1,2,...,,c. Thus
the test based on random variable (126) verifies the null hypothesis that
the c regression lines are identical.

5
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Streszczenie

Zagadnienie sprawdzania hipotezy liniowej w teorii normalnej re-
gresji, ktorym zajmujemy sie w niniejszej pracy i ktérym interesowalo
sie od niemal p6t wieku wielu autoréw, mozna zreferowaé¢ w sposéb na-
stepujacy:

Niezalezne zmienne losowe

(1) Ye=mut+ e
o wartosciach oczekiwanych
(2 me=E(y)=In B+ T B+ -+ TupPp

zaleznych od p (p < n) parametrow f,, fs, ..., fp; k==1,2, ..., n; maja roz-
klad normalny ze wspdlng wariancjg o®. Znak E okresla wartosé oczeki-
wang, symbol X = {axy }, k=1,2,..,n; j=1,2, ..., p; oznacza dang ma-
cierz a e, — rezidua (por. [6]). Na parametry B, B,, ..., fp modelu (2)
nalozono g znanych liniowo niezaleznych restrykcyj opisanych relacjg
macierzowg

(3) Gp=n

gdzie g jest wektorem kolumnowym o p skladowych g,, f,, ..., fp i gdzie
macierz G =|[gg}; 9=1.2,..,9; t=1,2,...,p; jest znana podobnie jak
wektor kolumnowy 7 o g skladowych 7,, 9,, ..., 1.

Ogélny problem polega na sprawdzeniu stusznosci hipotezy liniowej

(4) Hf=v

ze h znanych i liniowo niezaleznych funkcyj parametrycznych okreslonych
za pomocs relacji macierzowej (4) jako iloczyn macierzy H = {hy};
i==1,2,..,h; j=1,2,..,p; i wektora f majg okreslone wartosci »,, ¥;, ..., vn
bedgce skladowymi wektora ». Zaklada sie przy tym, ze funkcje podane
w (3) i (4) sa liniowo niezalezne.
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Rozwigzanie tego problemu mozna bezposrednio uzyska¢ opierajac sie na
twierdzeniu z teorii rozkladow, ktorego autorem jest C. R. Rao (por. [21]).

Ze wzgledu na podstawowe znaczenie tego twierdzenia w teorii nor-
‘malnej regresji i w zastosowaniach podaje inny jego dowéd w przypadku
gdy rzad macierzy X wynosi p (por. twierdzenie 1 w niniejszej pracy oraz
tw. 4.1 Manna [8]).

Poza wymienionym ogélnym zagadnieniem zajmuje sie wyprowadze-
niem wyraznych form zmiennych losowych F w postaci macierzowej dla
najczesciej spotykanych w zastosowaniach modeli regresji liniowej.
Zmienne te (por. wzory (47), (48), (56), (57) i (58) w twierdzeniach 2, 3, 4
i 5) mozna traktowaé¢ jako podstawy testéw istotnosci F sprawdzajacych
rézne hipotezy liniowe w zaleznosci od typu modelu regresji wielokrotnej.

Test F wynikajacy ze wzoru (56) moze stuzyé do sprawdzenia hipotezy
(4), gdy na parametry § modelu (2) nie nakladamy restrykcji (3), a test
oparty na zmiennej losowej (57) moze stuzyé¢ do sprawdzenia tejze hipo-
tezy, gdy restrykcje (3) sa nalozone. Wreszcie test oparty na zmiennej loso-
wej (58) (por. tw. 5) moze sluzy¢ do sprawdzenia hipotezy zerowej, ze
parametry modelu wyrazajg sie jako okreslone z géry kombinacje liniowe
mniejszej liczby innych parametréw.

Uzyskane formy testéow ulatwiajg w znacznej mierze wyznaczenie ich
postaci dla konkretnych modeli eksperymentalnych i danych hipotez linio-
wych bez przeprowadzania minimalizacji wzgledem parametréw, co by-
loby nieodzowne w kazdym przypadku, gdyby bezposrednio stosowano
twierdzenie 1. Nalezy zauwazy¢, ze te minimalizacje trzebaby réwniez
zawsze stosowa¢ przy korzystaniu z twierdzenia C. R. Rao (loc. cit.). Tym-
czasem dla uzyskania testu istotnosci na podstawie twierdzen 2, 3, 4i 5
wystarczy jedynie wykona¢ kilka prostych operacyj na macierzach. Od-
powiednie przyklady na zastosowanie twierdzen 2, 3, 4 i 5, jak réwniez
przyklady zagadnien wystepujacych w doswiadczalnictwie polowym
i szklarniowym, ktérych rozwigzanie badz naswietlenie wymaga zastoso-
wania tego rodzaju testow przedstawiam w paragrafie 6.

Dowoéd twierdzenia 2 jest nowy, jakkolwiek inny dowdd nie w formie
macierzowej, znajdujemy u Manna (por. tw. 4.3 w [8]). Wszystkie dowody
przedstawiam w rachunku macierzowym.

Korzystajac z ogblnej postaci zmiennej losowej F wymienionej w twier-
dzeniu 4 znajduje wyrazng jej forme (wzér (120)) stuzaca do sprawdzania
w modelu klasyfikacji pojedynczej (one-way), z réznymi liczebnosciami
obserwacyj w podklasach, hipotezy, ze kombinacja liniowa parametréw
jest zerem, gdy wiadomo, ze pewna inna kombinacja liniowa tych para-
metréw ma okreslong wartosé.
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Nadto podaje dowody (oparte na rachunku macierzowym) na to, ze
wszystkie testy F rozpatrywane w niniejszej pracy s3 prawostronne.
W zwigzku z tym wyznaczam szereg wartosci oczekiwanych odpowiednich
form kwadratowych. Poza tym wyprowadzam: tozsamosci dla warunko-
wych i bezwarunkowych ocen parametréw (por. (24) i (25)), macierz ko-
wariancji miedzy kombinacjami liniowymi ocen parametréw oraz szereg
innych macierzy kowariancji przedstawionych w paragrafach 3 i 5.

Pe3zwme

IIpobiieMa NMpPOBEPKM JIMHEHHOM IUIIOTE3bl B TEOPUMM HOPMAJbLHOM pe-
rpeccuy, KOTOpOii Mbl 3aHMMaeMcA B 3TOi1 paboTe ¥ KOTOpOil MHTepeco-
BaJIMCh TIOYTH OT ITOJIYyCOTHM JIET MHOTME aBTOPbI, MOXeT ObITh M3JIOXKEHa
COKpalEHHO cJaefylolmmM obpa3oMm.

HezaBucumbie ciy4aitHble BeJIMYMHBI

(1) Yr =My + ey

C MaTeéMaTU4YECKMMHU OKUNAaHUAMU
(2) mk:E(yk)=xklﬁl+xk2ﬂ‘3+"'+xkpﬂp

3aBUCALMMY OT P (P<<n) MapaMeTpPOB CJEAYIOT HOPMaJbLHOMY 3aKOHY pac-
npenenenusa ¢ obwen aucnepeueit . Cumsos E obGo3Hayaer mareMaTy-
yeckoe oxugauue, cumBoa X = |xp;) (k=1,2,..,n; j=1,2, ..., p) oBo3HauaeT
MaHHyl MaTpuiy, a ex— pe3uayymel (cp. [6]). Ha napamerpsr 8, fs, ..., fp
Monesm (2) HaJIOPKEHO § M3BECTHBIX JIMHEMHO He3aBUCHMMBIX OrpaHuye-
HMM, ONMMCAHHBIX MATPUYHBIM COOTHOLIEHMEM

(3) GB=r

rae f ecTh CTOJOLIEBOI BEKTOP C P KOMIIOHEHTaMu fy,f.,, ..., fp, a MaTpuua
G=|ga)(@q=1,2,..,9; t=1,2,..,p) usBecTHa, paBHO KakK ¥ CTOJOLEBO
EEKTODP 1) C § KOMIIOHEHTAMMU 1), Ua, «-y Tg-

O6ujaa npobseMa COCTOUT B TIpOBEPKE NPAaBUILHOCTU JIMHENHON TI'M-
noTe3bl

(4) Hp=v

4yTO0 h M3BECTHBIX M JIMHEMHO HE3aBUCMMBIX IlapaMeTpUYecKuUxX yHKLMit,
OTpPEeNEeNEéHHBIX C TMOMOLIBI0O MaTPUYHOIO COOTHOIIeHMA (4), KaK Mpous-
semenue marpuupr H = lhy} (i=1,2,.., h); j=1,2,..,p) u BekTopa f,
MMEIOT OTpefeNIEHHbIe 3HAYEHUA ¥,¥, ..., Vs, ABJAIOLIMECH KOMITOHEHTaMMU
pekTopa ». Ilpu sToM nosaraeM, YTo AaHHble B (3) n (4) dyHxuum au-
HENHO HEe3aBMCUMBEIL.
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Pewenne 3Toit MpobJsieMbl MOXHO INOJYYUTh HEMOCPEACTBEHHO, OCHO-
BbIBafiCh Ha TEOpPEMEe M3 TeOpMM pachpefeseHui i, KOTOPOi aBTOPOM ObLI
L. P. Pao (cp. [21)).

M3-3a dyHIaMeHTaJIbHOrO 3HAaYEeHUA 3TOi TeOpeMbl B TEOPUM HOp-
MaJIbHOM perpeccMyu M B NTPUMEHEHMAX S IPOBOXKY MHOoe e€ JoKa3aTellb-
CTBO IJIA cJyd4as, [Korja MmopARok matpuubl X ectb p (cp. Teopemy 1
B 9Toi pabore u Teopemy 4.1 ManHa [8]).

Ceepx mnpuBenéHHoro obuiero Bompoca f 3aHMMAalOCh BRIBEAEHMEM fAB-
HbIX QOPM CJYy4YaiHBIX BeJMYMH F B MaTpUYHOM Buae IJA dYallle BCEro
BCTpPe4YaeMbIX B INPMMEHEHMAX MOJeJIeil JIMHENHOo!l perpeccuyu. IDTU nepe-
MeHHbIe (cp. dopmyas! (47), (48), (56), (57) u (58) B Teopemax 2, 3, 4 u 5)
MOXXHO pacCMaTpuBaTb, KaK OCHOBaHMA KpUTEpMEB 3Haummoctu F, mnpo-
BEPAKILUX Pa3JMYHbIe JIMHENHbIE TUIIOTe3bl B 3aBMCUMMOCTM OT TMUIIA MO-
JeJIM MHOXKECTBEHHOI perpeccum.

Kpurepuit F, Bbrrekaroumin U3 ¢opMyJasl (56), MoxKeT CIOyXKUTb AJA
NnpoBepky rumoTe3bl (4), KOoraa Ha mapaMmeTpbl  Momeau (2) He HaJjo-
JKeHbl orpaHuyeHuda (3), a KpUTepuit, ONMPAIOLIMICA Ha CJYyYaiHONU Be-
JumayHe (57), MOXKEeT CJYXKUTh JJA IPOBEPKM 3TON XKe TUIoTe3bl, KOoraa
HaJlo2KeHbI orpaHuyenua (3). HakoHel, oCHOBaHHbIN Ha CJIy4aiHOM BeJU-
uyuHe (98) Kpurepuit (cp. Teop. 3) MOXKET CJYXKMUTb AJIA NPOBEPKM HyJle-
BOJl 'MIIOTe3bl, YTO MapaMeTphbl MOJEJM BbIPazKalOTCH, KaK Hamnepén olpe-
AeJIéHHble KOMOMHaALMM MEHLIIEr0 4YucJia MHBIX NMapaMeTpOB.

INosyyenHusle popMbl KpuUTepueB 0OJEryaloT B 3HAYUTEJBLHOMU CTEMeHU
ompeneJieHMe MX BUAA AJA KOHKPETHBIX 3KCII€DVMEHTAJbHBIX MOJeJiei
M JaHHBIX JIMHENHBbIX runore3 6e3 nmpoBegeHMA MMHMMAJIM3ALUMM OTHOCU-
TeJBHO napaMmeTpoB, 4To 6bl1o ObI Bcerma Heu3berkHo, ecayu Obl Mpume-
HATb HETIOCpeJCTBEHHO TeopeMy 1. Cieayer 3aMeTuTh, YTO 3Ty MMHWMAa-
JM3aLMIo cJjegoBaJsio Obl Tozke Bcerja NPUMMEHATbh NPU TIOJNB3OBAaHUM TEO-
pemoit II. P. Pao (tam xke). Mexay TeM, AJiA MOJIy4EeHUS KpPUTepuA 3Ha-
YMMOCTM Ha OCHOBaHMM Teopem 2, 3, 4 # 5 AOCTAaTOYHO JMUIIL BBINOJHUTD
HECKOJIbKO MPOCThIX AeMCTBuM ¢ MaTpunamu. IlogxonsAiuue npumepk! npu-
MeHeHuA TeopeM 2, 3, 4 u 5, KaK M TpumMephbl NnpobieM, BbICTYTIAIOILMX
E [I0JIEBOM ¥ IMAaPHMKOBOM OIbITaX, KOTOPbIX pelleHMe MM pa3bACHEHUE
TpebyeT NMpuMeHeHMA 3TOrO poja KpUTEpueB, MpejacTaBJeHbl B § 6.

Joka3aTeqbeTBO TeopeMbl 2 HOBO, XOTA MHOE [0OKAa3aTeJbCTBO He
B MaTPUYHOM Buae HaxoauMm y ManHa (cp. Teop. 4.3 B (8]). Bce nmoka3za-
TEJILCTBA A NMPEACTABJAI B MAaTPUUHOM UCYMCIIEHUM.

Ione3ysace o6lMM BUAOM CJyYaitHOi BeauMyMHbl F, ynoMaAHyTbM
B Teopeme 4, A HaxoXy fBHyI0 ero cdopmy (dopmyna (120)), cayxaluyro
AJS TIPpOBEPKM, B MOJEJM E€AMHMYHOM KJaccuduxkaumu (one-way) ¢ pas-
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JUYHBIMM YUCJIEHHOCTAMM HabJlofeHMit B KJaccaxX, TUIMOTe3bl, YTO JIM-
HelfHasA kKoMOMHalMA NapaMeTpoB paBHAa HYJIO, KOrAa M3BECTHO, YTO He-
KOTOpas Apyrasa JMHeiHas KoMOMHauMA 3TMX MapaMeTpOB MMEET oITpe-
leJIEHHOe 3HAaYEeHMe.

CBepx TOro A nalw JoKalaTeJbCTBa (MAaTPUYHLIM MCYUCJIEHMEM) TOTO,
YyTO BCAKMEe Kpurepum F, paccmaTpuBaeMble B 3T0i1 pafoTe, cyTh mpaBo-
CTOpOHHMe. B cBA3M Cc 3TMM A HaXoXy pAA 3HAYEHWUH OKMAAEMBIX COOT-
BeTCTBYIOLUMX KBaApaTHM4YHBIX popM. CBepx TOro §i BBIBOXKY: TOXKJAECTBO
IJIA YCJIOBHBIX M 6e3ycJIOBHbIX OLIEHOK NMapaMeTpoB (cp. (24) u (25)), ma-
TPULy KOBapuMalMy MeXAY JMHEeMHbIMM KOMOMHAUMAMM OLIEHOK Mapa-

METpPOB, a TaKXe PAN MHbIX MaTPUL KOBapuauuy, MpeAcTaBJIEHHBIX
B §§ 3 u 5.






