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1. INTRODUCTION

Level densities play an important role in an emission of photons, which 
is a way of deexcitation of nuclear states populated in fusion reactions or 
deep inelastic processes. Gamma spectrum — the number of photons vs. 7  

transition energy — shows the exponential tail at high transition energies 
and a characteristic bump on the top of the exponential dependence [1 , 2 ] 
at low energies. The exponential part reveals its statistical origin while the 
bump is the result of the collective rotational gamma transitions. We try 
to understand the origin of such a spectrum in a framework of microscopic 
model of the total nuclear level densities.

An interesting effect can also be observed in a side feeding spectra [3]. 
The side feeding spectrum is a dependence of the number of statistical pho­
tons which fall down onto the yrast line1 on angular momentum (see Fig. 1). 
The existence of two bumps in this kind of spectra for some nuclei cannot be 
explained away with statistical (Fermi model) level densities and constant 
7 -transition probabilities of E l ,E 2  and M l  transitions. In 7 -deexcitation 
models, which have been already proposed [4-9] latter assumptions are very

1 The yrast line corresponds to the lowest energy at a given angular momentum.



common. The model which incorporates the energy dependent and angular 
momentum dependent level densities to the gamma transition probabilities 
have not been proposed yet.

A procedure which describes the gamma transitions is usually based on 
the level densities calculated from the partition function [1 0 ] or analytical 
summation of levels [11]. There are also many modifications of the saddle 
point method (see e.g. [12]). The final density expression obtained from such 
a procedure is relatively simple and it allows to speed up huge numerical 
codes calculating the nuclear reactions. An analytical formula obtained for 
the density p(E , I) makes these codes very effective. However, simple, single 
particle nuclear models and statistical nuclear level density distributions 
lead to many physical inaccuracies. It is especially true for low energy 
calculations 5 MeV) where the important role is played by the discrete 
spectrum. The standard statistical density curve p(E,I)  does not account 
for these discrete levels.

The same can be said about transition probabilities which regulate the 
cascade calculations. Transition probabilities are treated usually as a free 
parameters of the model. In this way one has a possibility to simulate real 
transitions by fitting. On the other hand, there is no insight into the real 
nature of the gamma deexcitation process of the nucleus in question.

Therefore, in the presented paper we propose a method of calculating 
level densities in the range of small excitation energies (Eexc < 7  — 8  MeV 
above the yrast line) and a method of estimating transition probabilities. 
As a basis serves fairly realistic nuclear model which describes at a time 
the collective properties (transitions along yrast line) in a satisfactory way. 
The statistical 7 -transitions above the yrast line are extracted from the 
properties of excited states.

In the following we apply a Hartree-Fock-Bogoliubov (HFB) procedure 
to the Hamiltonian of the Pairing plus Quadrupole-Quadrupole (P+QQ) 
type [13-15]. This is a foundation of calculating both the level density and 
matrix elements of transition operators.

A description of the method is presented in the following chapter. Nuclei 
with large angular momentum are described in the Bogoliubov picture by 
the method of Ma n g  et al. [15-17]. In the second part of this paper we 
shortly present the HFB procedure and describe the method of solution of 
the problem of projection on a good angular momentum space and the good 
number of particles. The third part of the paper shows the way of calculating 
the density of levels. In the last part of the paper we shall show results for 
calculated level densities and we shall discuss some consequences of gamma 
deexcitation process. Gamma spectra, side feeding pattern and multiplicities



of different gamma modes are compared to the old fashion calculations which 
include the Fermi type of the level densities. The differences between these 
two types of calculations seem to validate the method of level counting 
scheme performed in the present paper.

2. HARTREE-FOCK-BOGOLIUBOV METHOD

In this section we briefly describe the HFB procedure. Let

H  —  'y ^ d "  C n C m  ( l )

k l  k l m n

be the Hamiltonian operator of the nuclear system, where ejtl is a single 
particle kinetic energy matrix element, V  is a two body interaction, and 
c, ct are annihilation and creation operators of nucleons. The Bogoliubov 
transformation is a transformation from the particle basis {c} to the basis 
of quasiparticles {a}:

“ 1  =  E  U* cl + Vkd  ■ (2)
k

The operators {a} have the same commutation properties as original 
particle operators {c}.

The transformation given by Eq. (2) does not preserve the symmetries of 
the Hamiltonian. The particle number as well as the angular momentum are 
no longer conserved in the considered system. The particle number can be 
approximately restored through the introduction of the chemical potential 
A and passage to the new Hamiltonian

H\ = H — \ N  . (3)

The Lagrange parameter A is determined from the condition

(Ń) = N, (4)

where (N) is the expectation value of the particle number operator N,  and 
N  is the number of particles in the system. After the transformation given 
by Eq. (2) the Hamiltonian takes the form

H = H 00 + H u + H 20 + Hint, (5 )



where superscripts (km) correspond to linear combinations of the products 
of quasiparticle operators and indicate the number of creation (k ) and 
annihilation (l) operators, e.g.

H 20 = ^ H 2kfa{a} + h.c.
k l

Here, the matrix H 20 is

H 20 = U^hV* -  V^hTU* +  Ut AU* -  V TA * V \  

and matrices h and A are given by

h — c + r ,

( 6)

(7)

(8 a)

T/m — ^ ' V l q m p P p q  i 
VI

A l m  — ~ V lm pqK pq  ,
pq

P = V*VT , 
k = V*Ut  .

(8 b)

(8 c)

(8 d)

(8e)

In all these formulas U and V  are the transformation matrices whose matrix 
elements appear in Eq. (2), p is a density matrix, k is a pairing tensor 
and h and T are the self consistent single particle energy and the potential 
respectively. The matrix A is a self consistent pairing potential.

The wave function of the nuclear system is determined from the following 
variation of an expectation value of the energy

M m
m )

= 0 . (9)

To solve this variational problem one uses Thoules theorem and the gradient 
method (see e.g. ref. [17]).

A wave function \4>')=\(t>)+\S(f>) is assumed to have the form

l^') =  exP ( H ZklaWl} \<l,) . (10)
k ( i

where Zki(k(l) are independent variables. The solution of the variational 
problem (9) corresponds to Zu — 0. The equation (9) reduces to the 
condition

d m H W )  _  A2 0  _  n 
dZkl m ' )  kl



Both, this condition and a diagonalization of the H n  part of the Hamilto­
nian determine completely Bogoliubov transformation matrices V , U. The 
Hamiltonian takes the form

Hx = H° + ^ 2  Eka la l  + Hint, (12)
k

where Hint contains terms H 22, H 31, H 40, which will be neglected in the 
HFB approach; Ek is a quasiparticle energy.

Eigenstates of H\  are, a quasiparticle vacuum |</>) — this belongs to the 
lowest eigenvalue Eq =  H°, one quasiparticle state

lfc> =  «ll*>, (13)

belonging to eigenvalue Ek, two quasiparticle states <ł£a:[|<̂ ) etc. Generally, 
n-quasiparticle state2 can be written in the form

|M )  =  4 i . . . a l j 0 ) .  (14)

Its energy (the eigenvalue of H\) measured relatively to the ground state 
energy is equal to

E{n} — Ekl +  Eki +  . . .  +  Ekn . (15)

In order to simplify the problem we shall use a phenomenological Hamil­
tonian which accounts for deformation and short range correlations among 
particles. The simplest and effective model is e.g., the P+QQ model sug­
gested by Bohr and Mottelson and widely viewed by Kumar and Baranger 
[13-15]. The Hamiltonian of this model has the form

= <16)
k Z M

where the quadrupole operator reads

Qm =  5 > | r 2 Y2 M|/)4 c, (17)
kl

and the pairing operator

p* =  E 4 4 - <18>
k) 0

2 In the following we consider only even n quasiparticle excitations. The odd n 
excitations belong to the odd nuclear systems.



Here bar over k (k) denotes the time reversal operation on the state 
k. Constants x and G as well as single particle energies ejt depend on 
the configuration space and are adjusted from an experimental data. A 
linearization of the Hamiltonian (16) which corresponds to the Hartree-Fock 
prescription (average field approximation) yields

Hhfb =  f  £  9m(Ql  +  Qv) -  Po(Pf +  P ) , (19)
k n

where
<in = x(4>\QA4>), (20)

and
Po = G(4>\P\4>). (21)

As we said before, rotational and particle number symmetries are broken 
by Bogoliubov transformation. In order to restore these symmetries at least 
partly, one can use the variational procedure (Eq. 9) in case of a new 
Hamiltonian

Hc = H  -  XŃ -  u l x . (22)

The variational problem becomes

8(<l>u\Hc\<l>w) =  0 . (23)

The Lagrange multiplier u  is connected to the angular momentum I of the 
system through the constraint

( 4 > M ^ )  = y / l ( I + l ) .  (24)

Here \(f>J) are internal wave functions. The operator Ix breaks the time 
reversal symmetry as well. Therefore, time reversal conjugate states k of 
the system are not known. The variational procedure leads to the extended 
HFB equations in the rotating frame. These are

f h - u j x A \ [ U k \ _ jr (U k 
V -A * - h  + u;jx ) \ V k )  L k \ V k (25)

Here j x denotes the x-component of the single particle angular momentum 
operator.

The variation (23) performed at a given angular momentum /  leads to 
the lowest energy (yrast state) and allows to extract the sequence of single 
quasiparticle energies E k(k =  1 ,2 ,3 ,...) corresponding to the rotational



state I. Quasiparticles will contribute to the total level densities of the 
nucleus.

The conservation of average number of particles and the angular mo­
mentum corrects the energy spectrum of the system. The complete restora­
tion of the symmetries broken in Bogoliubov transformation can be achie­
ved through the application of the projection operators P 1 and P N to the 
wave function These operators project onto the good angular momen­
tum space and particle number respectively. The projected wave function is 
given by

i>NIM =  y gkp IMKP N \4>) ■ (26)
k

Explicit forms of the projection operators are

p N (27T)"1
Jo

(27)

and
pL k  = /  D tiK(n)R(Sl)dSl. (28)

Here, quantities DrMK are the Wigner matrices and fl(fi) is the operator of 
rotation on the angle Coefficients gk in Eq. (26) should be determined 
by the solution of the generalized eigenvalue problem (variation before 
projection method — VBP or projection after variation — PAY)

T .  h^KigK' — E 1 y  ^k k 'Sk 1 ,
K' K'

(29)

where
hfCK1 =  (<t>\Hp KK'\<f>) i (30)

nKK' =  (01 Pk k 'I )̂ i (31)

or from the equations

y g K,(<t>\(H-EI)PkK,\ct>) =  Q,
K'

(32)

y 9 K 9 K ' ( 6 4 > \ ( H - E I)Pi{K’\<l>) =  0 , (33)
KK'

(variation after projection, VAP). If we decompose |̂ >) into the internal 
K -components then

t NiM =  P N £  P L k T , 9 K ' \ M  =  P N Y ,  Pm k \4>) • (34)
K K' K



The function
\4>) = ^ 2 9 k \4>k ) (35)

is not in general a product wave function but in many cases it can be 
approximated by a function of this type. An example is e.g. the function 
|<f>) which has only slightly different symmetry than the axially symmetric 
wave function. In what follows we assume a symmetry of this type. This 
approximation allows to use the Kamlah’s angular momentum projection 
operator Pj^ [17, 18]:

Pm  — T .  Pm k  • (36)
K

This operator simplifies all the calculations and conserves the features of 
the considered deformed system [17]. The total projected wave function is 
given by

^NIM = P* Y ,  P'm M  = P NPm \4>) ■ (37)
K

We shall use this formula in derivations of gamma transition probabilities. 
The quasiparticle energies which we calculate in the following are obtained 
in the YAP method [17, 15].

3. LEVEL DENSITIES

In a model of noninteracting fermions the level density is equal to the 
number of ways in which the nucleons can be distributed among available 
single-particle (or single-quasiparticle) levels at a fixed total energy of the 
whole system.

There are two ways to determine the densities of energy levels: a) the 
spectroscopical approach applied in the case of low energy levels and b) the 
statistical approach in the case of high energy excited systems. Methods ap­
plied at low energies give usually the yrast states or a low vibrational states. 
At intermediate and high energies one can use temperature dependent mo­
dels [19, 20]. In real cases statistical calculations become too complex and 
can be performed only within a help of huge computers. In simpler cases 
there are used combinatorial methods which are suggested by the defini­
tion of the level density. Calculations of this type have been performed by 
H i l l ma n  and G r o v e r  [22] and by G il a t  [23]. In these approaches the 
nuclear levels are counted exactly one by one. The disadvantage arises from 
the large values which the level density can reach (typically 106  MeV at



the neutron binding energy). Calculations have to be highly sophisticated 
in order to manage successfully with this problem.

If the level density is expected to be high, the partition function method 
becomes effective and it is widely used. In the case of noninteracting systems 
of particles, like protons and neutrons3, the partition function Z  can be 
written as the product of partition functions of subsystems [24]

Z  =  Z z Z n  , (38)

where Z z  and Z n  are partition functions for protons and neutrons respec­
tively. The formula for the partition function 2 , e.g. for neutrons, reads

Z N (a, (3) = f dE'p{E', N') exp(aNN' -  j3E'). (39)
N' J

A total partition function Z  of the system is

2  =  5 ^  f AE'p(E\ N \  Z') exp{aNN' -  a z Z' -  f3E'). (40)
N',Z ' ^

This determines the total density p(U, N, Z) of the system. The total density 
is the convolution of both p(E, N ) and p(E , Z)

P(U, N, Z ) =  fU p(E , N)p(U -  E, Z ) d E . (41)
Jo

It follows from this expression that the densities of protons and neutrons 
separately determine the density of states of the whole (N  +  Z)-system.

In the presented paper we used the formula (41) and a combinatorial 
procedure based on quasiparticle levels obtained from the P+QQ model 
described in section II.

As we have seen, the particle number and the angular momentum in the 
HFB model are not conserved. This influences the calculated level densities. 
In order to correct the total number of levels (usually too large) one needs 
feasible methods of both projection on angular momentum and particle 
number in the case of excited states. Methods which we have described 
before and which are based on projection techniques lead to too slow 
numerical procedures. Therefore these methods can be used only at very 
low energies where the number of levels is small.

3 The assumption on noninteracting protons and neutrons is typical in shell models 
and is valid at specific conditions — the single particle potentials for protons and neutrons 
are different.



In order to understand better the overcounting problem I shall illustrate 
it in an example. To see that the number of levels calculated in procedures of 
adding them up, is usually larger then in the reality let us consider a special 
case of the nucleus in its ground state which is a pure Hartree-Fock state. 
The only excitations which are physically possible in this case are these 
in which the number of particles is equal to the number of holes. Since 
the transformation from particles to quasiparticles mixes both creation and 
annihilation operators with different ratios, the conservation of particles and 
holes is not fulfilled in the quasiparticle approximation. The total number 
of nuclear levels based on many quasi-particle excitations is larger then the 
number of levels in which number of holes and particles are the same.

In order to correct the mistaken densities we follow two simple methods. 
The first method is adapted from B o h r - M o t t e l s o n  handbook [25]. 
Consider the fluctuations in the particle number associated with the simple 
quasiparticle spectrum. Let the occupation function /  be

/ =  (l +  exp / ? # , , ) - 1  . (42)

In the excited physical state the number of holes n(h) equals to the number 
of particles n(p). Using the expectation values one has

<■n{p) -  n(h)) =  0 , (43)

and
([n(p) -  n(h)]2) = g0fi~l , (44)

Here go is the level density at the Fermi energy of the considered system. 
The distribution of the difference A =  n(p) — n(h) is Gaussian since in any 
given state, A is the algebraic sum of many independent contributions from 
the different single particle states. Therefore, the normalized distribution 
function of A is

P(A) =  {2wg0j3 *) 1 / 2 exp(-
A2

ZgoPo
3 i) - (45)

From this we learn that the probability for the state to be physical corre­
sponding to A =  0 is

P(0) =  (24ffô ) ' 1/4. (46)

It follows that the density calculated on the basis of quasiparticle excitations 
have to be corrected on a factor of (24^0^)— 1 /4. In this way one removes the 
fraction of spurious states for which the total number of particles is different



as compared to ground state. We may say that P (A =  0) corrects for states 
whose have the number of particles and holes equal.

The second method of correcting the nuclear spectrum is purely numeri­
cal and is performed in the following way. For each excited n-quasiparticles 
state |{n}), the average value of the neutron (or proton) number is deter­
mined numerically and the state is rejected in the levels counting procedure 
if | (N) — N  | > 1/2. Here N  is the number of particles. As it was shown 
elsewhere [26] this procedure gives results comparable to those obtained 
from the previous method.

The analogous procedure was applied to correct the density with respect 
to angular momentum. According to Hartree-Fock-Bogoliubov model only 
those states are counted for which the x-component of angular momentum 
is approximately conserved (i.e. it is the same as in the ground state). 
We assumed that the difference between both the ground state angular 
momentum (Ix)o and the angular momentum of excited state (/x)eXc is less 
than 1/2. In the ground state

(Ix)0 = yJ 1(1+1). (47)

For an excited state one gets

<4)exc = ({n}\Ix\{n}) =  ^ ( / i 1)* +  y/1(1+1)  =  £< *  |jx|*> + y/1(1+1).
i i

(48)
Here the summation in this formula runs only over excited single particle 
orbitals. According to our assumption

/
Si = |(/*)e*c- (/*)o| =  l£(i|3*IO I < 1 / 2 . (49)

Both corrections on particle number and on angular momentum diminish 
the originally counted density on a factor of 10-15 [26].

4. TRANSITION PROBABILITIES

The probability of the gamma transition used in cascade calculations is 
given by the following formula

T ( 0 A; *-►/) =  Cox(Ei -  E f )2X+iPf . (50)



Here, |i) =  |E{I{) is the initial state with the energy Ei and the angular 
momentum /,, and |/)  =  |Ef l f )  is the final state of the nucleus correspon­
dingly. A constant Cox refers to the transition operator OX of multipolarity 
A and pj  is the final nuclear level density. The parameters Cox are either 
estimated from transition strengths between low lying states or are taken 
as We i s s k o p f  valuations [27]. As a matter of fact Cox have to depend 
on the angular momenta I {  and I f  as well as energies Ei and Ej.  In the 
following we try to calculate these constants from an energy averaged redu­
ced transition probabilities. The latter are estimated from P+QQ nuclear 
model described in section II.

We follow here the paper by Ri ng  et. al. [28] in which the analogous 
procedure was applied in the case of yrast transitions. As we said before the 
ground state or the yrast state \<f>) of the nucleus in a self consistent cranking 
model is a state violating time reversal, particle number and axial symmetry. 
The wave function il>IM with angular momentum /  and its third component 
M  can be obtained by projection. I shall use the following approximations:

i) Calculating the average transition rates we shall restrict the basis to 
2qp (two quasiparticle) states. The number of 2qp excitations is already 
so large that one expects good average values of transition probabilities 
calculated on the basis of this sub ensemble of states.

ii) We use the K a m 1 a h projection technique [17, 18, 28] of zeroth order, 
in calculations of matrix elements of the transition operators (Eq. 37).

iii) Calculating the matrix element of the transition operator we take the 
same Bogoliubov representation for the final and initial states. It means 
e.g., that we use a given Bogoliubov basis for the yrast state with 
angular momentum /  obtained from the self consistent cranking model 
and the same basis for the states that can be coupled by the transition 
operator considered (e.g., states I  — k, where k = —A, —A + 1, . . . ,  A for 
OX operator). This procedure is well justified for small A’s. In our case 
the maximal A is equal 2  (in the case of electromagnetic quadrupole 
transition). The quasiparticles are similar in both considered states.

iv) We use the asymptotic expansions for the 3 — j  symbols in the limit 
K  <  /  [29].

The normalized, angular momentum projected wave function \ipIM) is:

K K



The P i is the projection operator (27) and Ni  is the normalization 
factor given by

(52)
KM

The reduced transition matrix element of OX operator is

{ ^ ' W O X U 1) = N jN j, ( 2 / +1  (53)
KK'Kn

i - K '  i

A similar expression consisting of ({n}\P^,K0(Xfj,)\{n}) on the RHS of 
the Eq. (53), can be derived. An average of both expressions gives the 
approximate value of the reduced matrix element (ip'1 ||C>A||^) which reads

(^'IIOAHV*7) «  ^ F ( / / /AM)V27TT(C)(AM)){n}i[x  +  x _1] • (54)

A factor F(II'Xfj,) originates from the 3 — j  symbol under the assumption 
iv). It was shown [28] that the factor x given by the formula

X =  x ( // ')  =  W/(2/ +  1 )^/N 1,(21' +  l ) ł , (55)

if calculated for off-diagonal matrix elements with / '  =  I  — 2 is close to unity 
for yrast states. We adopt this approximation also for excited 2qp states and 
for all considered angular momenta. The justification of this assumption 
follows from the fact of the similar structure of both low excited and yrast 
state. This leads to the expression

{ ^ 'W O X U 1) «  j ; F ( / / ,A/x)(2ęp|Ó(A/ł)|2W)(2/ +  1). (56)

The next step is the averaging of the reduced transition probability over the 
final and the initial energies. The procedure follows from the definition of 
B(I  / ';  OX). The averaging is performed over all final and initial states 
whose are connected by the operator OX. In the case of the final yrast states 
the averaging should be performed with respect to the initial energy interval 
only. The average value of the reduced transition Byr in this case is



where pi is the density of states at the initial energy and angular momentum 
and A is the energy interval in which B(OX;E,I  —> Eyr, I yr) are calcula­
ted. Here Eyr, Iyr are yrast energy and angular momentum respectively. 
The summation in Eq. (57) runs over all 2qp states whose energies are com­
prised in the interval A. Expanding the transition operator 0 ( \p )  in the 
quasiparticle basis (see Eq. 2, section II) we get

B { 0 A; / ,  E  —t IyTEyr) =

- ^ £ | £ F ( / / » e $ )(A/T)|2 . (58)

Here C7 °̂(A/i) are the expansion coefficients of the operator Ó20:

Ć>2° ( V )  =  \  ^ ^ ( A / i J a l a f  +  O fg(\p )a ia k\ . (59)
L  ki

The averaging in a non-yrast energy region leads to the formula

B (0 A; UEi -> IjEj) = — ^ I JE! ) ■ (60)A. A /p .p / '

The summation runs over all qp-states consisting of the initial state (z) 
with energy in the interval =  [E{ -  A/2, E{ +  A/2], and over qp- 
states consisting of the final state (/) with energy in the interval 7# = 
[Ej -  A/2, Ej + A/2] .

In a 2qp-basis the expression for B  is

B{0 \ \ I iE i  ->■ I jE f )
1

AiAfpiPf E
k l m n

E  F(IiljXp) x (61)

O0(6km5ln -  6lmSkn) + ( o " 6 nk -  0 " 6 nm -  0 " j lk + 0 \\8 T
' ) )

The Oki are the expansion coefficients of Ó in the Bogoliubov basis, e.g.,

ć n (Ae) = E ° M “' (62)
kl

and 0°  is the diagonal matrix element of O calculated for two considered 
excited states. All 6 -symbols in Eq. (61) simplify the formula and limit 
the summations to three indices. The O0 part can be separated out of the 
transition matrix element and it gives the contribution to the collective



transitions which are meaningful in the cascade calculations [7, 26, 30]. The 
collective part has a form

A 2nBcoll =  £ \0°F\2  +  2  £  0°F(Of +  O1, ) , (63)
k>l k>l

where
o]  = £ F ( / / » 0 , y  , (64)

O°f = J 2 ' , f (IJ,^ ) O 0 . (65)

The factor n on the LHS of Eq. 63 has a meaning of the number of 2qp 
states passing instantaneously through both the initial and the final energy 
bins. It may be estimated from a slope of the energy of the 2qp state in the 
following way. Let E  be the energy of the 2qp state. The final energy E'  as 
calculated for the pair of considered quasiparticles is approximately

E'

A / - —(2 9 p |jx|2 gp).

(66)

Here J  is a moment of inertia and in the first approximation it equals to 
the yrast value. If the collective part of the transition operator gives finite 
contribution to Bcou and both E  and E'  are in the initial and final energy 
bins IFi and IFf respectively then the number n (initially set to zero) is 
increased by 1. By repeating this procedure for all states whose energies are 
in the initial energy bin it is possible to estimate n.

The procedure described in this chapter can be performed for each 
transition operator. The result of this is the new transition probability 
(compare Eq. 50)

T{ÓA; i - > / )  =  c\(Ei -  Ef )2X+1B(ÓA; UEX -»• If E f )pf  , (67)

where c\ is now a pure numerical factor depending on the multipolarity A 
of gamma radiation [25]

8 rr (A+l )  1 
CA_ A[(2A +  l ) ! ! ] 2  hc2X+l

( 68)

Both the energy dependence and the spin dependence of the transition 
probability T ( 0 A) are now included in the level density p and in average 
transition probabilities B ( 0 A , I E  —>■ I'E').



5. RESULTS

In this section we would like to present results of our calculations. We 
have considered two independent models of level densities, the Fermi model 
(FM) and the model described in section II. The results of calculations of 
gamma cascades obtained with both of them are viewed.

On the first series of figures (Figures 1-3) there are shown level densi­
ties calculated according to the prescription of section III for the nucleus 
1 5 8 Dy. Figures display the logarithm of level density for spin values 7 =  0, 
4, 8 , 2, 16 and 20 respectively. There are three different curves shown in each

Fig. 1. Level densities of 158Dy for spins I =  0, /  =  4 as calculated without (a) and 
with corrections (b, c) as functions of excitation energy, (a) uncorrected, (b) corrected for 
particle number N  and angular momentum conservation /, (| A jx | < 1/2) and (c) corrected 

for N  and multiplied by |c/ | 2 =  ^2k (Pk k )
Gęstości poziomów 158 Dy dla przypadku stanów I — 0, I =  4 wyliczone bez poprawki 
(a) oraz z poprawkami (b, c) w funkcji energii wzbudzenia. Przypadek (b) zawiera 
poprawkę na liczbę cząstek N  oraz moment pędu /, (| A jx\ <  1/2), a przypadek (c) zawiera 

poprawkę na liczbę cząstek N  i uwzględnia czynnik |c/ | 2 =  T ,̂u-(Pk k )

Fig. 2. The same as in Figure 1 but for 
/  =  8  i /  =  1 2

To samo, co na rycinie 1, lecz dla spi­
nów I =  8  i I =  1 2

Fig. 3. The same as in Figure 1 but 
for /  =  16 and /  =  2 0  

To samo, co na rycinie 1, lecz dla spi­
nów /  =  16 i /  =  2 0



figure. The curve (a) corresponds to the bar density without particle number 
and angular momentum corrections. The curve (b) is obtained as a result 
of a particle number and angular momentum correction according to ‘1 / 2 ’ 
procedure described in section III. The curve (c) is again the particle number 
and angular momentum corrected level density. The angular momentum 
correction was performed by multiplying the particle number corrected 
results by the factor

\ci\2 = J 2 ( PKK)- (69)
K

This describes the probability of finding the state with angular momentum 
I  in an actual state | ) (see Figure 4 and the discussion of the projection 
operators in section II). The characteristic feature of all curves displayed 
is the structure at low energies stretching to approximately 7 MeV. This is 
the reflection of the single quasi particle (single particle) low energy level 
structure of the nucleus. It is properly taken into account here through 
quasiparticle spectra, which are different for different angular momenta. The 
spectra start at energies equals approximately the gap energy in the pairing 
interaction. It is worthwhile mentioning that average slopes of density curves 
are in a good agreement with experimental data.

In Figure 4 we show the exact values of probability distribution of the

Fig. 4. The |c/ | 2 coefficient as a function of /  in case of the ground state of 1 5 8Dy. The 
value |c/=o| 2 ~  0.03 gives the probability of finding the state with /  =  0 in HFB state

|/ = 0  >!
Współczynnik |c/ | 2 w funkcji /  w przypadku stanu podstawowego jądra 1 5 8Dy. Wartość 
|c/=o | 2 ~  0,03 jest prawdopodobieństwem znalezienia momentu pędu /  =  0  w stanie HFB

|/ = 0  >!



angular momentum /  in the ground state HFB wave function. It is given by 
the formula (69). One can see that the maximal values of the probability 
correspond to /  =  4 and 6 , (|c/12  = 0.2) and not to /  =  0 as might be 
expected. The distribution is the result of the rotational symmetry breaking 
by the HFB procedure. Results displayed in Figure 4, influence, as we have 
mentioned before, the level densities. The value of |co|2 «  0.03 will modify 
the calculated (by counting) density value p(E ,I  =  0).

Calculated level densities were used to simulate the gamma cascade 
process of deexcitation of the 158Dy system. Th nucleus was initially excited 
to the energy of about 10 MeV and to angular momenta distributed as shown 
in Figure 5. The distribution is the Gaussian, centered at the momentum 
/  =  28 h. The shaded area shows the region of angular momenta taken in 
cascade calculations.

Fig. 5. The shape of initial spin distribution used in cascade calculations 
Kształt początkowego rozkładu spinów używanego w obliczeniach

We have compared results of calculations to known, very common 
phenomenological model based on statistical level densities. We have 
considered here the Fermi model (FM). The level densities were calcula­
ted from the formula given in [25]. In both FM and HFB model we shall 
consider two separate cases. The first one corresponds to transition rates 
[7] Cei : Cmi  • Ce 2 '• Ce 2 co1i =  150 : 25 : 1  : 2 0 0  and the second one to 
Cei '■ Cmi  '■ Ce 2 ■ Ce 2 coU = 150 : 25 : 1 : 600. On following figures and in 
the rest of this paper we refer to them as to ‘200’ and ‘600’ models e.g., FM- 
600 means Fermi model of the densities with relative collective E2 strength 
equal 600.



The cascade code runs according to the Monte Carlo simulation tech­
nique as described e.g., in [31, 32]. The type of transition, the energy and 
the angular momentum of final state are chosen in accordance with a given 
actual distributions of probabilities. Accepted transitions are then stored for 
later use. The procedure is repeated until the sufficient number of transitions 
is generated. In the following, we analyze results of cascade calculations.

Figure 6  shows a side feeding pattern Psj  in per cents, calculated 
for HFB-200, HFB-600, FM-200 and FM-600 as a function of angular 
momentum in case of 1 5 8 Dy. A side feeding is a per cent of the total number 
of gamma rays which come from ’side’ on the yrast line. There are seen three 
maxima in HFB case. The first one at 10 h for 200 and 12 h for 600. Other 
maxima are positioned at 16 h and 20 h. The structure shown for HFB 
case is generally more complex than in FM calculations. For model 200 (see 
curve 1 ) one can see few bumps. These reflect the structure of HFB level 
densities. Such a structure like this is absent in FM calculations.

Fig. 6 . Side feeding curves for different collective transition strengths x in HFB and 
Fermi models as a function of angular momentum I. Here x is the parameter in the 
relation Ce\ ■ Cm \ '■ Ce2 '■ Ce2coU = 50 : 25 : 1 : x between electromagnetic transitions

strengths constants
Krzywe zasilania bocznego dla różnych kolektywnych natężeń x w modelu HFB i modelu 
Fermiego w funkcji momentu pędu I. Wielkość x jest parametrem w relacji Cei : Cmi ■ 

Ce2 '■ Ce2 co], =  50 : 25 : 1 : x między stałymi natężeń przejść elektromagnetycznych

Let us analyze now the average energies of gamma quanta emitted in 
the deexcitation process. We shall look at two kinds of 7 -rays: i) collective 
(£,2Coii-type) and ii) statistical (other). The energies of both kinds of 7 - 
rays are displayed in Figure 7. Only gamma energies of the ’200’ model 
are shown. It is seen that the HFB 7 -rays have higher energies than FM 
7 -rays. The average energy of statistical 7 -ray in HFB case is larger than 
FM average energy on 0.5 MeV. At the same time the average energy of



Fig. 7. Average energies of 7 -rays in cases of HFB and Fermi model densities 
Średnie energie promieniowania 7  w przypadku modeli gęstości HFB i Fermiego

collective transitions is comparable for both models and changes linearly 
from 0.3 MeV at /  =  6  to 1.1 MeV at /  =  30.

The average number of gamma transitions at a given angular momentum 
is called 7 -multiplicity (M7). Figure 8  shows in its upper part, the total 
average multiplicities in case of HFB (points) and Fermi model (crosses). 
In lower part of the figure there are shown corresponding half widths a of 
both multiplicity distributions. There is no difference in the shape of the 
multiplicity function. One can observe that the HFB multiplicity is smaller 
than the FM with one exception in the region of I  > 22 h. The corresponding 
widths are narrower for HFB than for FM model. This picture is consistent 
with the previously viewed average energies.

Fig. 8 . Multiplicities M-, and corresponding widths of 
these distributions it as a function of angular momen­

tum I in HFB (dots) and FM (crosses) calculations 
Wielokrotności M-, i odpowiadające im szerokości roz­
kładów a w funkcji momentu pędu I w modelu HFB 

(kropki) i modelu FM (krzyżyki)



In Figure 9 there are shown ’side’ multiplicities for both considered 
models. The differences between HFB and FM are better seen here than in 
the case of total multiplicity. This is connected closely with the differences 
in level densities as calculated in both models. The difference between 
both M7  (HFB and FM) decreases against angular momenta. One observes 
more (about 2) statistical 7  rays in the case of Fermi model in comparison 
with HFB model and one collective transition more in case of FM. These 
agree with Figure 7 where we have shown the average energies of gamma 
transitions. The larger is the multiplicity the smaller is the average transition 
energy. This remark has a meaning only in the case of statistical gamma 
rays.

Fig. 9. Side feeding multiplicities of statistical 
and collective 7 -transitions in both HFB (dots) 

and Fermi (crosses) models 
Wielokrotności zasilania z boku przez przejścia 
7  typu statystycznego oraz kolektywne w obu 
modelach HFB (kropki) i Fermiego (krzyżyki)

At the end, we compare two final gamma spectra for our reference 
nucleus 1 5 8 Dy. These are obtained from both HFB and FM densities. In 
Figure 10 we show the total spectrum for FM case. One can see the 
“exponential tail” at higher energies (> 1 MeV) and the small bump 
at energies smaller than 1  MeV. This bump corresponds to collective 
transitions. The similar behaviour is seen in Figure 11 where HFB model 
spectrum has been shown. However, the spectrum at small energies shows 
the larger bump in this case than in Fermi case model and the energy at 
which the bump appears is smaller (low energy collective transitions; see 
Figures 7 and 8 ). Additionally, at high energies, which are close to 8-9 MeV 
one can see another rather small hump. We do not know the interpretation 
of it. It may be simply the effect of pure statistics in cascade calculations.

It will be worthwhile to mention that the HFB gives results which display 
all the features of experimental spectra.

The whole spectrum of 7  radiation from an excited nucleus can be 
decomposed into the pieces consisting of only elementary multipole 7 -rays.



Fig. 1 0 . Gamma spectrum ( 2 0 0 0  

cascades) for Fermi density model 
Widmo gamma otrzymane w mo­

delu Fermiego (2000 kaskad)

Fig. 1 1 . Gamma spectrum ( 2 0 0 0  ca­
scades) for HFB density model 

Widmo gamma (2000 kaskad)) otrzy­
mane w modelu HFB

Such a decomposition is shown in Figure 12. You can see the collective 
part £'2Coii (dashed line) with maximum around E-y ~  0.5 MeV. The total 
spectrum in this area consists of the gamma-s with this multipolarity. 
The maximal energies of collective gamma rays achieve 2.5 MeV. The 
contributions of other 7  components exhaust rather high energies. It is 
remarkable that both E 2 and E l  transitions contribute similar amount to 
the gamma spectrum at intermediate energies (~ 3 MeV). The tail of the 
spectrum consists mainly of the E l  gamma-rays.

Fig. 12. The decomposed total 7  spectrum of the 
excited 158Dy nucleus. The multipole components of 
the statistical £1, M l and £2 as well as the collec­

tive component £ 2 Coii are shown 
Rozkład szczegółowy pełnego widma 7  wzbudzo­
nego jądra 158 Dy. Pokazane są wkłady multipolo- 
wych statystycznych przejść £1, M l i £2, jak też 

kolektywnego przejścia £ 2 coii
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STRESZCZENIE

W modelu P+QQ jądra atomowego otrzymano gęstości poziomów jądrowych stosując 
metodę zliczania kwazicząstkowych wzbudzeń, które otrzymano metodą Hartree-Focka- 
Bogoliubova. Stosując model kaskad otrzymano charakterystyki rozpadu 7  jądra atomo­
wego ze stanu wzbudzonego (zadanego w postaci rozkładu wg spinów i energii wzbudzenia) 
do stanu podstawowego. Uwzględniono przy tym statystyczne przejścia 7  typu El, M l,  
E2 oraz przejścia kolektywne E2coii („równoległe” do linii yrast). Wyniki modelu HFB 
porównano z wynikami otrzymanymi w modelu gęstości Fermiego.



Oprócz gęstości poziomów jądrowych w pracy podano metodę uśredniania zreduko­
wanych prawdopodobieństw przejść El, M l  E2 oraz £2coii typu 7 . Otrzymane wyniki 
porównano z tradycyjnymi.


