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Stabilność fal nieliniowego równania Schródingera

1. INTRODUCTION

If the waves are thought to propagate in a certain medium and contribute 
to any significant physical phenomenon there, then that propagation needs 
to be confirmed by observation and theory — but preferably a combination 
of both. Of particular physical importance is then the question of stability: 
Is a given wave stable under perturbations, or will it evolve into something 
very different from its initial form? While linearizing to study the solution 
of the wave equation gives us information about the stability only for short 
times, as long as the linearization remains approximately valid. It tells us 
nothing about the long-time behaviour. So, the linear analysis is merely 
a first step in studying the stability of nonlinear waves.

There are many problems which are associated with the stability of non­
linear waves (e.g. [9]), and the literature on the subject is vast. We limit 
ourself to the presentation of some results on the stability of envelope waves 
which are described by nonlinear Schrodinger (NS) equations. (A recent 
derivation of the NS equation for magnetohydrodynamic waves in solar flux 
tubes has been presented by Z h e l y a z k o v  and M u r a w s k i  [24]). In par­
ticular, E n n s  et al. [3] has discussed the following generalized NS equation

2iux + utt + u f(\u \2) = 0, (1.1)
where /( |t t |2) is an arbitrary function. Possible higher-order nonlinear op­
tical mechanisms leading to the nonlinearity u /( |u |2) are multiphoton res-



onances and light-induced phase transitions. The above equation possesses 
the solitary-wave solutions

u(t, x) = uo(t — cx) exp [i(kx/2 -I- ct)]. (1.2)

It has been found by E n n s et al. [3] that d,P/ds > 0 guarantees stability 
against sufficiently small perturbations. Here, s =  fc + c2 and the total power 
of a solitary wave is

P  =  f° °  uldt. (1.3)

On the other hand, dP/ds < 0 guarantees unconditional instability. 
Moreover, solitary waves are robust solitons (they are stable even against 
large perturbations) if additionally the following conditions are satisfied: 
/ ( M 2)/|u |4 =  0(1) as |u|2 -»■ oo and / ( |u |2) is a non-negative and non- 
-decreasing function for |u|2 > 0. For example, the soliton of the NS equation 
(with / ( |u |2) =  |u|2) is robust in this sense.

A two-dimensional stability analysis of the nonlinear waves, solitons and 
shock-waves (or black solitons) solutions of the higher-order NS equation,

iut + V2u + a i |u |2nu +  a tu  =  0, (1.4)

has been made by M u r a w s k i  and S t o r e r  [18]. A special case of n =  2 
has been taken into account to show that the shock-wave is stable with 
respect to two-dimensional perturbations but in contrast the soliton is 
unstable. The periodic waves have been found to be generally unstable with 
respect to the perpendicular perturbations. In the analysis 012 ^  0 has been 
used and thus the calculations do not exclude an existence of the robustness 
of the soliton in the case of «2 =  0. See [3].

It has been shown by W ai et al. [22] that for the modified NS equation

iut + ^ uxx +  |u|2u =  - iT u  + i(3 uxxx (1.5)

there is a threshold for /3 above which the brothers (coupled solitons) of the 
NS equation can break up into three constituent solitons. Radiation that 
is excited after the first contraction of the brothers is then seperated from 
the main peak creating two solitons. M e n y u k  [12] has found that below 
a certain initial amplitude threshold two-brother soliton breaks away cre­
ating two solitons which move in opposite directions relative to introduced 
coordinates. It suggests that the brother solitons are unstable with respect 
to disturbances which are introduced by the r. h. s. of equation (1.5).



In another case, the Infeld—Rowlands method [9] has been applied by 
M u r a w s k i  and K o p e r  [17] to study the linear stability of waves, prop­
agation of which is governed by the exponential NS equation ( Mu r a ws k i  
[13]. This equation approaches the NS equation for small amplitude waves. 
The Infeld—Rowlands method has been used by M u r a w s k i  et al. [19] 
to study stability properties of the two types of Zakharov equation waves. 
The Zakharov equation describes the evolution of the envelope of Langmuir 
waves with the nonlinearity introduced by a term involving the density fluc­
tuation. The evolution of the density fluctuation is governed by the wave 
equation with the ponderomotive force exerted by the Langmuir wave.

Finally, the modulational instability of the NS equation can be utilized 
to produce a train of optical solitons which may be required whereby the 
encoding can be made ( H a s e g a wa  [4]. It is shown by A g r a w a l  [1] that 
a new kind of modulational instability can occur when two copropagating 
electric fields interact through cross-phase modulation. Modulational stabil­
ity of the modified NS equation has been studied by P a r k e s  [20].

To the best of our knowledge there are no quantitative analytical results 
on the nonlinear stability of nonlinear waves. A basic approach to the 
stability problem relies on the linearization of perturbations (e.g. [9]). This 
paper addresses the problem of the nonlinear stability. It is confirmed 
numerically, that waves which satisfy the NS equation can exist in a real 
physical system as they are stable with respect to perturbations which are 
initially launched in the system.

The paper is organized as follows. The definition of the stability of non­
linear waves is presented in the next section of the paper. Stationary wave 
solutions of the NS equation are shown in the third section. Numerical so­
lutions and results are given in the fourth and fifth parts of the paper. 
The transition of initial conditions into a train of solitons is shown in the 
Appendix.

2. DEFINITION OF STABILITY

There are few definitions of the stability of nonlinear waves. See e.g.,
[9] for a recent review of the literature. Here, by stability we mean the 
following. Assume we start with a solution u(£, r) of the equation of motion 
iuT =  X(u), where A is a differential operator, for example X(u) = 
icuę — /?|u|2u — a u ^ . £ and r  are specified more precisely in the next section. 
Here, it is sufficient to relate £ and r  with a space coordinate and time 
respectively. At r  =  0 we add a small perturbation to the stationary envelope 
wave u0(£),



«(0  0) =  M O  + M O ] exp(wf)> (2-1)
ćind let this initial state evolve in time in accordance with the equation 
iuT = X(u). Now we ask, do u ( £ , t ) and M O  stay ’’close” to one an­
other in some appropriate sence. If u(0  r) grows apart in time or evolves to 
a different entity, the perturbation Su(0  is unstable. A good example of the 
instability is provided by the Zakharov—Kuznetsov equation whose the per­
pendicularly disturbed flat (planar) solitary waves break up into cylindrical 
structures. See [15, 16] for the corresponding simulation of such processes. 
We specify the meaning of the stability by the following definition [11, 7]:

DEFINITION

An equilibrium solution M O  °f the dynamical system iur =  X(u) is 
said to be stable in a Liapunov sense, if for every neighbourhood U of «o 
there is a neighbourhood V  of uq such that trajectories u(£, r) with u(£, 0) 
initially in V  never leave U, assuming well defined dynamics and a specified 
topology. In terms of a given norm || • ||, nonlinear stability means that for 
every e > 0 there is 6 > 0 such that po = ||u(£,0) — MOI I  ^   ̂ implies
Pt = ||u(£,t) -  MOI I  < € for a11 T-

There is no precise specification of the neighbourhoods U and V  (or c 
and 8). In fact both e and 8 are arbitrary but bounded quantities as the 
Liapunov stability concerns nonlinear perturbations which can be of arbi­
trary magnitude. For small amplitude perturbations, the results obtained 
by the Liapunov method should be similar to the results obtained by linear 
methods, for example by the Infeld—Rowlands method [9]. A solution can 
be stable with respect to one perturbation but unstable to the other.

We use the definition with a small modification. Namely, the Sobolev 
norm ||u(£,r) — MOI I  specified by

PO s  l l / l f  =  j T  ( | / | 2 +  | ^ | )  d£, (2.2)

will be used for the calculation of a distance between the solution u(£, r) 
and the ’closest’ stationary solution M O - By that way, for r  =  0 we use 
expression (2.2) whereas for arbitrary time r, we use

pT = i n / S)T. ||u (0 r )  - M £  —s)exp{i[a(£ —s) +  6(t - t*)]}||, (2.3)

where || • || denotes the Sobolev norm and m /SiT« denotes the infimum with 
respect to s and r*. The ‘closest1 (to u (( ,r)) solution is thus found by



a translation in time r* and space s. See as well [2] and [10] for a more 
detailed discussion.

3. STATIONARY SOLUTIONS

In this part of the paper we discuss various solutions of the NS equation

iut +P\u\2u + a u xx =§. (3.1)

In coordinates of the moving frame £, r  (which follows the wave with its 
group velocity c)

£ =  x — ct, t = t, (3.2)

it can be rewritten as follows:

i(uT — cuą) +  au^ę +  /3|u|2u =  0. (3.3)

We look now for the stationary solutions of the form

u(£, r)  =  u0(O exp[i(c£/2a +  br)], (3.4)

where 6 is an arbitrary constant. This solution represents a slowly varying 
envelope uq(£) and the fast oscillations which Eire represented by the 
exponential term. Substitution of (3.4) into equation (3.3) leads to

au0ff +  (Puo +P)U o =  0, (3.5)

where we introduced 9
-  C L 

p = ^ ~ b-
(3.6)

Upon integration of this equation we get

u0|  =  - J r uo -  ~ uo + l = n « o ) ,s La. a
(3.7)

where l is an integration constant.
Equation (3.7) describes the stationary solutions of the NS equation 

(3.1). Defining

‘rmn.max THZTIj TYlrCLX (3.8)

we can distinguish the following families of solutions.
(i) The soli ton family contains both for lmjn < l < lmax and l > lmax 

periodic waves (Fig. 1). We cadi them R  amd S  waves, respectively. I =  lmax



corresponds to the soliton. This family exists under the condition a/3 > 0 
and p/3 < 0. The soliton solution (for a  =  1 and the original coordinates 
x, t) is given by the equation

uo(x,t) = Asech ^  A(x — B t — s)] exp[ti?(x — ct)/2 (3.9)

where A  and B  are arbitrary constants, c < ^ ,  and s is a shift parameter. 
The R  and S  periodic waves are given by the corresponding equations

2 2 / 2  2\ 2 Uq = a 2 — (02 — ai)sn (3.10)

«o = <»i j l  -  j  > (3-11)
respectively. In the above formulae oi and 02 are the moduli of roots of the 
equation Y(uo) =  0 such that ai < <12; Y  =  — 2a (uo — °i)(uo — a!)
Y  =  - ^ ( uq -  aj)(uo +  a |)  f°r equation (3.10) and (3.11), respectively. 
sn{z\m) is a Jacobian elliptic sine function of the arguments z and m. 
mi =  1 — al/a.2 , m2 =  a\/{a\ + (Ą).

(ii) The periodic wave family contains only periodic waves given by 
the formula (3.11). This family exists under the condition of aj3 > 0 and 
p(3 > 0. One such wave is called T. See Figure 2 for the corresponding phase 
diagrams.

(iii) The shock wave family contains for lmin < l < lmax periodic waves. 
We call them U and they are given by the expression

uq =  ± aisn
“ & T *1

(3.12)

with m =  a\/(Ą. For l =  lm( 
solution which is expressed by

there is a shock wave (or black soliton)

u0 P——tank
r*

± (3.13)

This family exists under the condition a/3 < 0 and p(3 < 0. See Figure 3 
for the phase curve.



Fig. 1. Phase diagrams for the NS equa­
tion with a  =  1, p  =  2, a =  —2: curve a, 
the periodic wave 5; curve b, the bright 

soliton; curve c, the periodic wave R  
.Rye. 1. Wykresy fazowe dla nieliniowego 
równania Schródingera z a  =  1, 0  =  2, 
a =  —2: krzywa a odpowiada fali okre­
sowej 5; krzywa b odpowiada jasnemu 
solitonowi; krzywa c odpowiada fali okre­

sowej R

u0
Fig. 2. Phase diagrams for the NS equa­
tion with a  =  1, /3 =  2, a =  2 correspon­

ding to the periodic wave T  
Rye. 2. Wykresy fazowe dla nieliniowego 
równania Schródingera a  =  1, /? =  2, 
a =  2. Wykresy te odpowiadają fali okre­

sowej T

It has been shown by H a s e g a w a  [5] that the NS equation possesses 
also the dark soliton solution which is given by (written here for a  = — ̂  
and /? =  1)

u(x,t) = \ j j4s[1 — A*sech2(\/A la ax)] exp[i<p(x, <)], (3.14a)

<t>{x,t) =  yjAS{1 -  A l)x  + tan

x tanh(vC47A0a;)] -  ^ i ( 3  -  Al)t, |Aa| < 1. (3.146)

For |j4a| < 1 we obtain the so-called gray solitons whereas for |Aa| =  1 
the black soliton (3.13) appears. See as well [6] and [21],

It has been found by I n f e l d  and R o w l a n d s  [8] that the bright soliton 
(3.9) is linearly stable with respect to small amplitude long-wavelength 
perturbations. Similarly, the S  and U periodic waves are stable with respect 
to the same kind of perturbations. The R  wave is found to be unstable. 
From the corresponding discussion for the nonlinear exponential Schródinger 
waves [1.7] we suppose that the T  wave is stable. Nothing is known so far 
about the stability of the dark soliton solutions (3.14).



4. NUMERICAL SOLUTIONS

The numerical codes utilize the leap-frog method in an integration with 
respect to time. The nonlinear terms are integrated in a configuration space. 
The second derivative with respect to the space coordinate x  is calculated by 
transforming u(x, t) back and forth between real and Fourier space using the 
fast Fourier transformations. Similar method has been used by M u r a w s k i  
[15] for solving three-dimensional Zakharov—Kuznetsov equation.

The NS equation is discretized as follows:

u]+1 = u ] -1 +  2iAt [a F ^ i-m ^ F u ] )  +  0\u]\2u]] (4.1)

with u" =  u (jA x ,n A t), j ,n  =  0,1,.... F  and F ~ l are the Fourier and 
inverse Fourier operators, respectively. For a similar discretization of the 
exponential NS equation see [13, 14].

Equation (4.1) is numerically solved with the initial condition

u(£, 0) =  M O  + Ad sin (fcd£)] exp[ic£/2a], (4.2)

where A d and kd are the amplitude and wave number of the disturbances. For 
this purpose the code SH.FOR has been written. Another code PER.FOR 
finds Jacobian elliptic functions for solutions (3.10)—(3.12) representing 
periodic waves.

Standard numerical tests have been performed by doubling a number 
of Fourier modes, reducing time step and increasing a simulation region 
until no significant changes appear. Additionally, the numerical results have 
been verified by a calculation of the energy

r  h 2^  (4.3)J —OO
as a conserved quantity. It has been checked that this quantity was approx­
imately constant with a numerical error which was, less than 2%.

5. NUMERICAL RESULTS

One of codes, LIAR FOR, has been written to study stability of sta­
tionary waves in the Liapunov sense. Because this code is computer time 
consuming we have run the code for the R  wave which, according to the lin­
ear analysis ( I nf e l d  and R o wl a n d s ,  [8]), is unstable. Obtained results 
may be found in Figure 4. Starting with a disturbance which gave us Sobolev 
norm (2.2) equal to about 0.04 the norm pt jumped in next time steps to



about 5 to oscillate finally between these two values, but with a tendency 
of growing. As the norm grows in time the R  wave is unstable. Because 
of very expensive code this problem is left for future computer studies and 
the problem has been reduced to the initial-value one for the NS equation.

Fig. 3. Phase diagrams for the NS equa­
tion with a  =  1, /? =  —2, a =  2: curve a, 
the shock wave (or black soliton); curve b, 

the periodic wave U
Rye. 3. Wykresy fazowe dla nieliniowego 
równania Schródingera a  — 1, P =  —2, 
a =  2: krzywa a odpowiada fali szokowej 
(tzw. czarnemu solitonowi); krzywa b 

odpowiada fali okresowej U

1lu£
o «.

Fig. 4. The Sobolev norm as a function 
of the time t for the R  wave under the 
initial perturbations with Ad =  0.005 and 

kd = 10
Rye. 4. Norma Sobolewa jako funkcja 
czasu t. Rysunek odpowiada fali R  
i zaburzeniu początkowemu o amplitudzie 

A  =  0,005 i wektorze falowym k =  10

According to our expectation the bright soliton (3.9) with an amplitude 
A  =  1 has been found to be stable with respect to disturbances given by 
(4.2). We have run the following cases: a) A j  =  0.05, kd = 0.05, b) Ad — 0.05, 
kd =  1, c) Ad = 0.2, kd =  0.05, d) Ad =  0.2, fcj =  1. The soliton behaved 
very robust to these perturbations.

To test the stability of the periodic waves we have chosen c =  0 because 
of Galilean invariance of the NS equation. Additionally, we fixed the wave 
vector kd =  10.

1) R  wave

We have chosen a representative wave for l = (lmax +  ̂ min)/2. This wave 
is stable to numerical noise until time t =  100. Weak instabilities have been 
noticed for Ad =  0.005. The hump at x = 0 has grown considerably at 
t =  100 with a comparison to the neighbouring humps (Fig. 5).



2) S wave

We have chosen a representative wave with l = Imax +  Umax + lminl/2- 
This wave has been found to be stable both to numerical noise and the 
disturbances with Ad = 0.005. For Ad =  0.05, the disturbances are clearly 
visible at t =  0 (Fig. 6), but until time t = 100 they do not cause any 
dramatic changes of the wave form which at t =  60 became even smoother.

Fig. 5. Panoramic view of the periodic 
wave R  under the initial perturbations 
with Ad =  0.005 and kd =  10. Note that 
at t  =  100 the shape of the wave is con­
siderably deformed. This is an evidence 

of the instability
Rye. 5. Panoramiczny widok na falę R, 
którą zaburzono falą sinusoidalną o am­
plitudzie A  =  0,005 i wektorze falowym 
k =  10. Warto zauważyć, że w chwili czasu 
t  =  100 fala ulega znacznej deformacji, 
co jest dowodem pojawienia się niestabil­

ności

Fig. 6. Panoramie view of the periodic 
wave 5  under the initial perturbations 
with Ad =  0.05 and kd =  10. This wave is 

stable
Rye. 6. Panoramiczny widok na falę R, 
którą zaburzono falą sinusoidalną o am­
plitudzie A =  0,05 i wektorze falowym 

k =  10. Fala ta jest stabilna

3) T wave

We have chosen a wave which corresponds to l =  0.01. The wave has 
been found to be stable both to numerical noise and to the disturbances 
with Ad =  0.005. Note that the amplitude of perturbations Ad =  0.05 
consists almost 10% of an amplitude of the wave, which much deformed at 
t =  0 looks quite smooth at t = 100 (Fig. 7).

4) U wave

We have chosen a representative wave with l =  (lmax + Imin)/2. This 
wave is stable to the perturbations with A j = 0.005 and Ad = 0.05 (Fig. 8).



Figure 9 and 10 present typical results of the coputation for the stability 
of the gray solitons which are described by (3.14). We have chosen A a =  1, 
A a =  0.8. It has been found that these gray solitons are stable to numerical 
noise. The code has been run until time t = 25 and both the shape and an 
amplitude of the soli ton oscillated slightly around their undisturbed values. 
Moreover, this soliton is stable both with respect to long wave (Fig. 9) 
and short wave (Fig. 10) perturbations. We have fixed the amplitude of the 
disturbances Ad = 0.04, which consists 10% of the soliton amplitude.

Summing up, both the gray and bright solitons are quite robust to the 
disturbances we have used. For the periodic waves, the R  wave is unstable to 
.the perturbations. The results for the bright soliton and the periodic waves 
agree with the linear theory presented by In f e ld  and R o w la n d s  [8]. 
Additionally, the obtained results provide a new insight into the stability 
of the gray solitons.

. 7 ---- T_m.io.o-o

Fig. 7. As for Fig. 6 but here for the T  
periodic wave

Rye. 7. Tak, jak dla Rye. 6, ale dla fali 
okresowej typu T

Fig. 8. As for Fig. 6 but here for the U 
periodic wave

Rye. 8. Tak, jak dla Rye. 6, ale dla fali 
okresowej typu U

6. THE APPENDIX

In this Appendix, we solve numerically the NS equation for the following 
classes of perturbations

u(x ,t  =  0) =  0.1 sech2x, (AA)

u(x ,t  =  0) =  0.1 — 0.0bsech2x. (A. 2)



Fig. 9. Panoramie view of the soliton so­
lution with A, =  1 and A , =  0.8 un­
der the initial perturbations with Ad =  
0.04 (10% of the soliton amplitude) and 
kd =  1. The soliton survived these per-

Fig. 10. As for Fig. 9 but here kd =  10 
Rye. 10. Tak, jak dla Rye. 9, ale dla 

k = 10

turbations
Rye. 9. Panoramiczny widok na soliton 
o parametrach A  =  1 i A. =  0,8. Soli­
ton ten zaburzono falą sinusoidalną o am­
plitudzie A =  0,04 (10% amplitudy soli- 
tonu) i wektorze falowym k = 1. Soliton 

ten przetrwał to zaburzenie

Figures 11(b) and 12(b) are plotted for the initial conditions given by 
(A.l). Figures 11(a) and 12(a) correspond to perturbation (A.2). Figure 11 
is made for a = —0.01 and J3 =  27.55. Figure 12 is obtained for a = 0.04 
and j3 =  52.01. Such values of a  and /3 correspond to MHD waves which 
propagate in the solar chromosphere [24].

We discuss first the case of a negative a. It is known that the NS 
equation with a/3 < 0 possesses the dark soliton solution. (See Eq. (3.14)). 
Figure 11(a) presents a temporal evolution of the initial perturbance (A.2) 
which splits soon into two almost identical pulses, propagating in opposite 
directions. They are well seen at t = 40. At this moment every large pulse 
pushes off a small pulse. The large and small pulses are well separated 
at t =  80. The initial perturbance evolves into the trail of the dark 
solitons.

Whereas the initial condition (A.l) splits up into the dark solitons, the 
perturbance (A.2) diffuses in time, reducing its amplitude and broadening 
its shape (Fig. 11(b)). At t = 40 the perturbation is about twice wider 
than initially. As the case of a/3 < 0 does not allow bright solitons, 
the perturbation transforms into the periodic wave with its dimensionless 
wavelength A ~  40. This periodic wave emerges at t = 80.



Fig. 11. Panoramic view of modulation envelope for the NS equation with a  =  —0.01 and 
/3 =  —27. The initial conditions are: (a) u(x, t =  0) =  0.1 — 0.05sec/i2x; (b) u(x, t =  0) =  

0.1sech2x. Note the trail of the dark solitons at t =  80 in (a)
Rye. 11. Panoramiczny widok na obwiednię fali będącej rozwiązaniem nieliniowego rów­
nania Schródingera z a  =  —0,01 i P =  —27. Warunki początkowe to: (a) u(x, t=0) =  
0,1 — 0,05sech2x\ (b) u (x ,t =  0) =  0, laech2x. Zauważ ciąg ciemnych solitonów w chwili

czasu t =  80 w (a)

Finally, we discuss the case of positive a. Figure 12(a) presents typical 
results of computation for the initial condition (A.2). The case of a/3 > 0 
does not possess the dark solitons but the periodic waves (3.10) and (3.11) 
instead. The initial condition leads to a trail of periodic-like oscillations 
which propagate off the point t =  0.

An interesting case occurs for the initial perturbance (A.l). Now, at 
t = 5 we have a dressed bright soliton (Figure 12(b)). The dressing is by 
two small humps which are located at the central pulse. This dressed soliton 
has a higher amplitude than the initial one. But it is narrower as fields 
under each curve are the same. At t ~  15 the dressed soliton reduces its 
amplitude and it is similar in its shape to the initial perturbance. Then, 
it grows again. At t ~  20 it is reminiscent of the perturbation at t =  5. 
As this process repeats in time we call it recurrence phenomenon. The 
recurrence phenomenon has been observed for sinusoidal perturbations in 
the case of the NS equation [5] and in the case of the exponential NS 
equation [14].



0.25 q

0.05 ■
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Fig. 12. Profiles of modulation envelope for the NS equation with a  =  —0.004 and 
0  =  —52. The initial conditions are: (a) u(x, t=0) =  0.1 — 0.05sech2x\ (b) u (x ,t =  0) =

0.1 sech2x. Note dressed bright solitons at t =  5 and t =  20 
Rye. 12. Obwiednia fali będącej rozwiązaniem nieliniowego równania Schródingera z a  =  
—0,004 i 0  =  —52. Warunki początkowe to: (a) u(x,t =  0) =  0,1 — 0,05sec/i2z; 
(b) u(z, t =  0) =  0, \aech2x. Zauważ ubrane jasne solitony w chwilach czasu t =  5 i t  =  20
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S T R E S Z C Z E N I E

Nieliniowa stabilność fal będących rozwiązaniem nieliniowego równania Schródingera 
analizowana jest przy pomocy teorii Liapunowa i przybliżenia numerycznego. Przybliżenie 
numeryczne oparte jest na metodzie szybkich transformat Fouriera (użytych do obliczania 
pochodnych przestrzennych) i metodzie skoku żaby użytej do reprezentacji pochodnej 
czasowej. W artykule wykazano, że jasne i ciemne solitony są stabilne ze względu na 
szeroki zakres zaburzeń. Stabilność fal okresowych analizowana jest także w tym celu, by 
pokazać przykład fali niestabilnej. Wyniki te są w zgodzie z przewidywaniami liniowych 
teorii stabilności fal. Symulacje numeryczne pokazują transformacje impulsów w sekwencje 
solitonów jasnych i ciemnych.


