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Chapter 1

Introduction

1.1 Posing

The purpose of this thesis is to contribute to the development of the mathematical
theory of evolving large population. In view of its numerous applications – in life and
social sciences in particular – this theory has become popular within the last decades.
Due to the intrinsic character of the processes that take place therein, as well as
due to the large size, the evolution of such populations is naturally considered as
stochastic. This feature predetermines the ways and the means of the mathematical
modeling of such objects. In the present thesis, we work in the Markov approach in
which the population states are probability measures defined on appropriate phase
spaces, the evolution of which is obtained by solving (in one or another way) the
corresponding Kolmogorov-Fokker-Planck equations [6]. The first key aspect of the
thesis is that the age of the population members (time of their presence in the
population) is explicitly taken into account. The second aspect is that the studied
populations are infinite, which opens the possibility to clearly distinguish between
the local and the global aspects of the theory, see [25]. The latter peculiarity of the
theory leads, however, to essential technical complications as compared to the case
of finite populations.

In view of the complexity of the evolution of large populations, its description is
conducted in different spatio-temporal scales, cf. [2, 5]. At the macroscopic scale, the
population is characterized by aggregated parameters, like density, mobility, etc. For
such parameters, one derives – rather heuristically deduces – corresponding evolution
equations intended to describe the population dynamics. The particular form of
such equations corresponds to the model being considered. Below in this section, we
outline some of them with the focus on the models containing the age parameter.
The microscopic description is characterized by the use of the so-called individual
based models in which each single population member is assigned its individual
traits. In our case, such traits include also the member age. The most comprehensive
description here amounts to constructing stochastic Markov processes. In certain
sense, we work in the space between these two approaches.
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Most of the material of this thesis was published in my articles [18, 19, 20]. In
view of this, certain parts of the present text are direct quotations of the correspond-
ing parts of these articles, supplied sometimes with suitable comments. For the sake
of reader’s convenience, some important formulas may be repeated. The majority of
the proofs follow directly after the corresponding statements. The present thesis has
the following structure. In the remaining part of this section we provide introduc-
tory material and then outline the aims of the thesis and its main results. The next
chapter is dedicated to providing necessary technicalities including the Markovian
terminology as well as our way of describing member’s ages as marks. In Chapter 3
based on the results of [18], we describe the evolution of a model introduced herein
in terms of correlation functions. This might be considered as an intermediate ap-
proach connecting the macro- and the microscopic theories. In Chapters 4 and 5
based on [19, 20], we provide the microscopic description of the evolution of another
model of this kind introduced by us. This model is somewhat simpler than that
studied in Chapter 3. In this case, we directly construct the Markov evolution of
states. In Chapter 4, we consider the case where the population habitat is X = Rd,
which allows us to introduce a special class of the states – in fact, it is the same
class as in Chapter 3, consisting of states possessing correlation functions – and then
to show that the evolution leaves this class invariant. This can be considered as an
additional information concerning the properties of the Markov evolution of this
model. In Chapter 5, we study the case where X is just a locally compact Polish
space. Here we prove the existence of a Markov process corresponding to this model.
This is performed in the framework of the martingale approach [11, 13] combined
with the theory of the Fokker-Planck equation [6] in the spirit of [26].

1.2 Age-structured population models

The use of population models traces back to 1798 when one of the most known
model of this kind was proposed by Thomas Robert Malthus. The author con-
sidered a homogeneous population living isolated in an unchanging habitat with
unlimited resources, in which the speeds of both procreation and mortality are pro-
portional to the population size. This model predicts either an unlimited growth or
an inevitable asymptotic extinction of the population. Due to these far from realistic
assumptions and predictions it received rather restricted applications to real-world
objects. Afterwards, a number of improvements and refinements were invented and
implemented. Among such improvements we remark those which take into account
the age structure of the populations being studied. Let us mention some motivations
for this. In populations of living beings, individuals with different ages may have
different survival capacities, mortality and reproduction rates. Many models of the
infectious disease initiation and transmission include structuring the host population
by the disease state dependent on the time since the disease initiation. Along with
biological, biomedical and ecological applications, the age aspects are being taken
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into account also in many sociological and financial models, see [1, 4, 7, 21, 25, 29].
In particular, this kind of modeling is used to handling network security problems.
W. Murray was the first who suggested to link modeling the ecology of the computer
viruses to its counterpart dealing with the biological ones [29]. J. Kephart and S.
White proposed to employ the SIS-kind models for studying the spread of computer
viruses [21].

As mentioned above, the age structured populations can be studied at both
microscopic or macroscopic scales. Below we outline some typical models of this
kind representing each of these types.

1.2.1 Macroscopic phenomenology

The Lotka–McKendrick’s model

The Lotka–McKendrick’s model is a direct analogue of the Malthus model. The
population dwells in an invariant habitat and its members differ in age, see [15].
The fertility β(a) and mortality µ(a) rates are intrinsic parameters. In the simplest
case, they do not depend on time. The evolution of the age-dependent population
density p(a, t) is described by the following equation

∂
∂t
p(a, t) + ∂

∂a
p(a, t) = −µ(a)p(a, t)
p(0, t) =

∫ a+
0

β(ς)p(ς, t)dς
p(a, 0) = p0(a)

(1.1)

where ∂
∂a
p(a, t) is to capture aging – a uniform drift with unit speed along the age

axes [0, a+] ⊂ R+. The basic and detailed analysis of this model can be found in
[15]. This model laid the foundations for the forthcoming works in this field based
in part on the theory of Volterra integral equations, for more details see [14].

Iannelli in [15] considered also some modifications of the Lotka–McKendrick’s
model, obtained by adding a time dependence of the vital rates β(a, t) and µ(a, t).
He studied the asymptotic behavior of these models, including strong and weak
ergodicity, see Definition 3.1, page 37 and Definition 3.4 page 39 ibid. In Theorem
5.4.4 below, we will also consider ergodicity problem for the Markov process in one
of our models.

The SIR model with aging

In this version of the SIR model (Susceptible, Infectious, Recovered) of infection
spread an isolated population dwells in an invariant habitat, structured by age.
Similarly as in (1.1) p(a, t) is an age-density function at time t with age a ∈ [0, a+),
with possible a+ = +∞. The population is divided into three groups: suscepti-
ble, infected and removed, which are described by their respective age-dependent
densities s(a, t), i(a, t), r(a, t) at time t, i.e.,

p(a, t) = s(a, t) + i(a, t) + r(a, t).
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The evolution equation now reads

∂
∂t
s(a, t) + ∂

∂a
s(a, t) = −(µ(a) + λ(a, t))s(a, t),

∂
∂t
i(a, t) + ∂

∂a
i(a, t) = λ(a, t)s(a, t) − (µ(a) + σ(a) + δ(a))i(a, t),

∂
∂t
r(a, t) + ∂

∂a
r(a, t) = −µ(a)r(a, t) + σ(a)i(a, t).

A detailed description of this model is provided in section 9.5 of [8], assuming that
coefficients describe HIV infection and named it by analogy the SIA model from
susceptible individuals, infective individuals, and AIDS cases. Then it was addi-
tionally assumed that there is a minimum age of interaction between the members
of the population. In Section 9.5.3 of [8], this model was studied by C0-semigroup
methods. We will also use to these methods in the Theorem 5.3.8 below.

The COVID modeling

The very recent examples of the age-structured modeling are devoted to the world-
wide spread of the COVID-19. Unfortunately, we have the opportunity to see this in
the real life. During the COVID-19 pandemic, researchers were using and formulat-
ing mathematical models as a technique in gaining insight into the mode of spread
of the virus, e.g. [1, 33]. The authors of [1] investigated the situation where vac-
cines and drugs could not be applied. Furthermore, they considered three different
response strategies: total lock-down, partial lock-down, aiming at achieving herd
immunity. They enriched the model SIR with economic components capturing the
outbreak of the pandemic. This led them to the SIR model with wealth dynamics.
The population was divided into two groups under and over the age of 65, assuming
that members of the elderly group are more susceptible to infection. This model
is very accurate and requires familiarization with many parameters, if the reader
would like to delve into this topic, we recommend reading the entire article [1].

1.2.2 Microscopic individual-based theory: finite systems

The Jagers-Klebaner model

The authors of [17] proposed a modification of the known Bellman-Harris branching
process model [3]. Therein, the particles are born and die at random. In the event
of death of an individual, there arises a random number of independent offsprings.
The birth parameters might depend on the population size and age structure. The
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generator G of the process is given by the formula:

GF ((f,A)) = F ′((f,A))(f ′,A) +
z∑
j=1

bA(aj){F (f(0) + (f,A)) − F ((f,A))}

+
z∑
i=1

hA(aj){EA[F (Y (aj)f(0) + (f,A) − f(aj))] (1.2)

− F ((f,A))},

where F ((f, µ)) is a test function on the space of measures µ, f is a function defined
on R, A = (a1, a2, . . . , az) is the finite collection of individuals ages, hA(a) is the
hazard rate, bA(a) is the intensity of birth, Y (a) the number of offspring distributed
depending on the age structure of the whole collection A and on the age of the
particle which died, EA the expectation number of individuals depending on the
initial collection. The states of the model are finite positive Borel measures on
R+ equipped with the weak topology. In [17], the authors used some martingale’s
techniques to establish the asymptotic properties of this model.

The Méléard-Tran model

In [28], Méléard and Tran introduced an age-structured individual-based model,
similar to (1.2). They considered a finite population in continuous time t where the
individuals reproduce and die with rates depending on a quantitative trait x ∈ R and
on their age a ∈ R+. The trait x is a special feature that characterizes individuals,
it can mean body size, rate of food intake, etc. The model is described by the
generator L having the form

LFf (µ) = ⟨µ, ∂af(·)⟩F ′
f (µ) +

∫
X×R+

[(
d(x, a)

+ µU(x, a)
)(
Ff
(
µ− δ(x,a)

)
− Ff (µ)

)
+ b(x, a)(1 − p)

(
Ff (µ+ δ(x,0)) − Ff (µ)

)
+ b(x, a)p

∫
Rd

(
Ff (µ+ δ(x+h,0)) − Ff (µ)

)
k(x, h)dh

]
µ(dx, da)

where X is a closed subset of Rd, µ is a finite measure on X, f is a continuous
bounded real-valued function with bounded continuous derivatives with respect to
a, d(x, a) is the natural death rate, F is a cylindrical function. A large and finite
population is considered and the population size is represented by the parameter
n. Furthermore the birth and death rates are taken of order n. In this model, the
trait can change depending on the occurrence of mutations with probability p. The
individual compete with each other, which is captured in the rate U(x, a).
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1.2.3 Microscopic individual-based theory: infinite systems

The necessity of using individual-based models of infinite systems for modeling large
real-world objects of this kind was realized in the first half of the XX-th century. It
was then materialized in the concept of the ‘infinite-volume limit’ used in the statis-
tical mechanics of physical particle system. In the present context, it was recognized
and discussed in, e.g., [22, 25]. Briefly, the basic idea of this approach consist in
getting the possibility to clearly distinguish between local and global aspects of the
theory. As a finite system occupies a compact subset of the habitat (assuming the
latter be locally compact), its description is always local rather than global. In deal-
ing with infinite systems, one employs probability measures on an appropriate phase
space to model system’s states. Such models of states are quite abstract objects,
not appropriate for a direct investigation. In view of this, it is convenient to restrict
the theory to a class of states that possess correlation functions [24, 27], and then to
describe the evolution of such states as the evolution of these correlation functions.
The corresponding approach was realized in [5, 22, 25], see also the works quoted
in these publications. Its additional advantage is that it is suitable for connecting
micro-and macroscopic descriptions, as well as to find out intermediate versions of
such theories. The only disadvantage is that the habitat should have some additional
properties, e.g., it should be Rd.

1.3 The aims and overview

In this work, we introduce and study two individual-based models, described by their
Kolmogorov operators, similarly as in (1.2), of an infinite population the members
of which are characterized by their age - time since appearance in the population. In
Chapters 3 and 4, as the habitat we take Rd and use probability measures possessing
correlation functions, see Definition 3.1.1. In this case, we describe these states with
the help of such functions. In Chapter 3, based on [18], we introduce and study
the model (3.1), where new members are born by the existing population members.
This model turns to be quite hard to study. In view of this, we restrict ourselves to
solving the evolution equation for the first two correlation functions in subsect. 3.3.1
and 3.3.2, which are usually studied in various macroscopic theories. However, in
our approach the evolution equations are directly deduced from an individual-based
model. These results are formulated in Proposition 3.2.1.

In Chapter 4, we introduce another model, see (4.1), in which particles arrive
to and depart from X independently of each other. Their traits are (x, α), x ∈ X
and α ≥ 0 being time since appearance. In this chapter, we take X = Rd and
use the same class of states as in Chapter 3. Due to the fact that the model is
now simpler, we managed to prove in Theorem 4.2.2 that the corresponding Fokker-
Planck equation has a global in time solution t 7→ µt which describes the evolution
of states of this model. Additionally I found a stationary state for this evolution.
This chapter is based on [19].
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In Chapter 5, based on [20], I consider the same model as in (4.1) with the habitat
X being just a locally compact Polish space. In this case, one cannot use methods
based on correlation functions. Therefore, the very construction of the theory needs
to be modified, including introducing special metrics on the corresponding configu-
ration spaces. The latter proved to be quite technical. The main result is contained
in Theorem 5.4.4, where the existence of a unique Markov process describing the
evolution of this model was proved by showing that the corresponding martingale
problem is well-posed. Additionally, assuming that the departure rate is separated
away from zero I proved that this evolution is temporarily ergodic.

To summarize: the main results of this thesis are

1. Proposition 3.2.1 and the solutions obtained in subsects. 3.3.1 and 3.3.2.

2. Theorem 4.2.2 and its proof.

3. Theorem 5.4.4 and its proof.

.
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Chapter 2

Preliminaries

2.1 The Markov evolution

2.1.1 Generalities

Throughout this work we use the following notations: N = {1, 2, . . . }, N0 = N∪{0};
Rd, d ∈ N, is a standard Euclidean space. By a Polish space we mean a separable
topological space the topology of which is consistent with a complete metric. Mostly,
such a space is locally compact, which means that each of its points has a compact
neighborhood. For a suitable ∆ ⊂ E, by 1∆ we denote the indicator of ∆, i.e., the
functions such that

1∆(x) :=

{
1 if x ∈ ∆ ,

0 if x /∈ ∆ .
(2.1)

For a Polish space E, by B(E) we denote the corresponding Borel σ-field; Cb(E)
(resp. Bb(E)) stands for the set of all bounded and continuous (resp. bounded
and measurable) functions f : E → R. By C+

b (E) and B+
b (E) we denote the set

of positive elements of Cb(E) and Bb(E), respectively. Finally, Ccs(E) ⊂ Cb(E)
consists of all continuous compactly supported functions.

Definition 2.1.1. A family of functions, F , is said to separate the points of a Polish
space E if for each distinct x, y ∈ E, one finds f ∈ F such that f(x) ̸= f(y).

By σF we denote the smallest sub-field of B(E) such that each f ∈ F is σF -
measurable; by P(E) we mean the set of all probability Borel measures on (E,B(E)).
For x ∈ E, the Dirac measure δx with center at this x is defined by its values

δx(∆) = 1∆(x), ∆ ∈ B(E), (2.2)

see (2.1). For a given measure µ and a suitable function f , we write µ(f) =
∫
fdµ.

Then δx(f) = f(x). For a sequence {µn}n∈N ⊂ P(E), by writing µn ⇒ µ ∈ P(E)
we mean its weak convergence, i.e., µn(f) → µ(f) for all f ∈ Cb(E).
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Definition 2.1.2. A family of functions F is said to be separating if µ1(f) = µ2(f)
holding for all f ∈ F implies µ1 = µ2 for any µ1, µ2 ∈ P(E).

If F separates the points of E and its linear span is an algebra with respect to
pointwise operations, then it is separating, see Ethier and Kurtz (1986), Theorem
4.5 on page 113, [13].

Proposition 2.1.3 (Ethier and Kurtz). Let V and F be a complete and separable
metric spaces and a family of functions F : V → R, respectively. Assume that:

(a) each F ∈ F is bounded and continuous;

(b) F1, F2 ∈ F , their pointwise product is in F ;

(c) for each distinct v1, v2 ∈ V , there exists F ∈ F such that F (v1) ̸= F (v2);

(d) F contains F ≡ 1.

Then F is separating.

Definition 2.1.4. A family of functions F is said to be convergence determining if
µn(f) → µ(f) holding for all f ∈ F implies µn ⇒ µ as n→ +∞.

2.1.2 The Kolmogorov-Fokker-Planck formalism

Let E be a Polish space. Broadly speaking, a dynamical system on E is defined by a
family of maps {Tt}t≥0, Tt : E → E, such that Tt ◦Ts = Tt+s holding for all t, s ≥ 0,
and T0 = I. Here ◦ and I denote composition and the identity map, respectively.
The points x ∈ E are then treated as states of the system; i.e., xt := Tx0 is its
state at time t. In the stochastic (Markov) version, states are probability measures
µ ∈ P(E), and thus µt = Ttµ0. Then the ‘point’ states x ∈ E appear here as
δx ∈ P(E), see (2.2). That is, the evolution of the system is said to be deterministic
if the family {Tt}t≥0 preserves the set of point states, which means that Ttδx = δxt
for all t ≥ 0 and x ∈ E.

In the Kolmogorov-Fokker-Planck formalism, see [6, 22, 23], the construction of
the evolution µ 7→ µt is performed by solving the Fokker-Planck equation

µt(F ) = µ0(F ) +

∫ t

0

µs(LF )ds, µ0 ∈ P(Γ̂), (2.3)

where L is the so called Kolmogorov operator specific for the model being consid-
ered. It acts on the test functions, also called observables, usually taken from a
suitable subset of Cb(E). In fact, the choice of the domain of L predetermines the
quality of the description of the stochastic evolution of a given model. Sometimes,
one approaches to constructing the evolution in question indirectly by solving the
Kolmogorov equation

d

dt
Ft = LFt, Ft|t=0 = F0, (2.4)
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which might be considered and ‘dual’ to (2.3). Then solutions of (2.3) are obtained
from the solutions of (2.4) by setting µt(F ) = µ(Ft), where µ and F are taken as
the initial conditions of (2.3) and (2.4), respectively. Finally, a Markov process,
X , with state space E is obtained by constructing a probability measure, P , on a
space of paths with values in E such that the corresponding probability of the event
X (t) ∈ ∆, ∆ ∈ B(E), is given by µt(∆), where µt is a solution of (2.3). This most
comprehensive description will be obtained in Chapter 5 below by solving the so
called martingale problem for L.

2.2 Measures on configuration spaces

2.2.1 The configuration spaces

In the description of the stochastic evolution of infinite populations they are viewed
as random ‘clouds’ of point ‘particles’ placed in a suitable habitat. In our case,
the latter is a locally compact Polish space X. In Chapters 3 and 4, we take
X = Rd, whereas in Chapter 5 it is just a general locally compact Polish space. Each
mentioned cloud is supposed to be locally finite, which means that its intersection
with a compact Λ ⊂ X is supposed finite. The mathematical model of such a cloud
is a configuration – a counting Radon measure on X. The set of all such measures Γ
is then defined by the property that γ(Λ) ∈ N0 for each compact Λ ⊂ X. This can
also be given the following geometric interpretation. Let δ be a complete metric of
X consistent with its topology. Then for each r > 0, one finds r′ ∈ (0, r) such that
the ball Bδ

r′(x) = {y ∈ X : δ(x, y) < r′} has compact closure. Therefore, for a given
γ ∈ Γ and x ∈ X, there exists r > 0 such that γ(Bδ

r(x)) <∞. Then we define

p(γ) = {x ∈ X : inf
r>0

γ(Bδ
r(x)) := nγ(x) ∈ N}.

Each γ is fully characterized by the pair (p(γ), nγ), in which p(γ) is the ground
configuration for γ. It is convenient to extend nγ to the whole X by setting nγ(x) = 0
whenever x /∈ p(γ). The mentioned geometric interpretation of γ is the collection
of the points x ∈ p(γ) such that at this x there is located nγ(x) indistinguishable
‘particles’ - population members. We refer the reader to [9, 10, 16, 27, 34] for more
detail on this issue.

Our aim now is to define a suitable topology on Γ. It is the weak-hash (vague)
topology. By definition, it is the weakest topology that makes continuous all the
maps

Γ ∋ γ 7→
∫
X

f(x)γ(dx) =
∑
x∈p(γ)

nγ(x)f(x) =:
∑
x∈γ

f(x), f ∈ Ccs(X), (2.5)

where the latter equality is the definition of
∑

x∈γ, see [27] for more detail. It is
know, see [34], that Γ equipped with this topology is a Polish space. Next, we define

Γ̆ = {γ ∈ Γ : nγ(x) = 1 for all x ∈ p(γ)}. (2.6)
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That is, γ is in Γ̆ if γ = p(γ) as sets. Such configurations are called simple. The set
Γ̆ is a Gδ-subset of Γ, and hence is a Polish space in the subspace topology, see [34].

Along with infinite configurations, Γ contains also finite ones. Let Γ0 stand for
the set of all such configurations. It can be viewed as a subset of the set of all finite
Borel measures on X, closed in the weak topology. Note that the subspace topology
induced on Γ0 be the weak-hash topology introduced in (2.5) coincides with the
latter. At the same time, each γ ∈ Γ0 can be interpreted as the element of Xm/Σm,
where m = |γ| is its cardinality and Σm is the corresponding symmetric group. We
repeatedly exploit this interpretation below.

In the sequel, we will need the following extension of the last equality in (2.5).
For γ ∈ Γ and x ∈ p(γ), by γ \ x we understand the configuration γ′ such that
nγ′(y) = nγ(y) for all y ̸= x and: (a) p(γ′) = p(γ) and nγ′(x) = nγ − 1 if nγ(x) > 1;
(b) p(γ′) = p(γ) \ x is nγ(x) = 1. Similarly we define γ′ = γ ∪ y by setting: (a)
p(γ′) = p(γ) ∪ {y}, nγ′(y) = 1 if y /∈ p(γ); (b) p(γ′) = p(γ) and nγ′(y) = nγ(y) + 1
if y ∈ p(γ). Thereafter, we have∑

x∈γ

∑
y∈γ\x

f(x, y) =

∫
X

∫
X

f(x, y)γ(dx)γ(dy) −
∫
X

f(x, x)γ(dx), (2.7)

that can also be generalized to all m ∈ N∑
x1∈γ

∑
x2∈γ\x1

· · ·
∑

xm∈γ\{x1,...,xm−1}

f(x1, . . . xm) (2.8)

=
∑
G∈Km

(−1)lG
∫
XnG

fG(y1, . . . , ynG
)γ(dy1) · · · γ(dynG

)

=
∑
G∈Km

(−1)lG
∑
y1∈γ

· · ·
∑
ynG

∈γ

fG(y1, . . . , ynG
),

where Km is the collection of all graphs with vertices {1, 2, . . . ,m}, lG and nG are
the number of edges and the connected components of G, respectively, whereas
fG(y1, . . . , ynG

) is obtained from f(x1, . . . , xm) by setting the arguments xl1 , . . . xlsj
of the latter equal yj where l1, . . . lsj are the vertices of the j-th connected component
of G. Note that the summations in the left-hand sides of (2.7) and (2.8) have the
direct meaning if γ ∈ Γ̆, see (2.6), where γ can be considered as just a locally finite
subset of X.

Now for γ ∈ Γ and m ∈ N, by means of (2.8) we define the following counting
measure on Xm equipped with the usual product topology. For a compact subset
∆ ⊂ Xm, we set

Q(m)
γ (∆) =

∑
x1∈γ

∑
x2∈γ\x1

· · ·
∑

xm∈γ\{x1,...,xm−1}

1∆(x1, . . . , xm). (2.9)
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That is Q
(m)
γ (∆) is the number of ordered strings (x1, . . . , xm) contained in ∆. It

is know, see [27], that the map γ 7→ Q
(m)
γ (∆) is measurable for each compact ∆.

However, it may be unbounded.

2.2.2 Measures on Γ

Let B(Γ) be the Borel σ-field of subsets of Γ relative to the weak-hash topology
defined in (2.5). Recall that P(Γ) denotes the set of all probability measures on Γ.

Remark 2.2.1. As a Gδ-subset, Γ̆ is in B(Γ). Hence, each µ ∈ P(Γ) with the property
µ(Γ̆) = 1 can be redefined as a probability measure on the Polish space Γ̆.

As mentioned above the maps γ 7→ Q
(m)
γ (∆) need not be bounded hence µ-

integrable for a given µ ∈ P(Γ). Following [27] we will say that µ has correlations
of order m if

ω(m)
µ (∆) :=

∫
Γ

Q(m)
γ (∆)µ(dγ) <∞, (2.10)

holding for all compact ∆ ⊂ Xm. Then the Radon measure ω
(m)
µ on Xm is called the

m-th order correlation measure corresponding to µ. It is clear that the existence of a

given ω
(m)
µ implies the existence of all ω

(m′)
µ , m′ < m. We say that µ has correlation

functions of all orders if it has all corresponding ω
(m)
µ .

Let us now consider the case of X = Rd. For m ∈ N, let λ(m) be the Lebesgue
measure on Xm, i.e.,

λ(m)(dx1, . . . , dxm) = dx1 · · · dxm.

Assume that a given µ ∈ P(Γ) has ω
(m)
µ for this m, which is λ(m)-absolutely contin-

uous and the corresponding Radon-Nikodym derivative k
(m)
µ is λ(m)-almost every-

where bounded. That is, k
(m)
µ is a symmetric element of L∞(Xm) := L∞(Xm, λ(m)).

Then we call k
(m)
µ the m-th order correlation function of µ. By the very definition,

it follows that
k(m)
µ (x1, . . . , xm) ≥ 0.

The first two correlation functions have a special meaning characterizing the cor-
responding state µ. For a given compact Λ ⊂ X, let us consider Q

(1)
µ (Λ), which

counts the points of γ contained in Λ, see (2.9) and (2.10). Then ω
(1)
µ (Λ) is just the

µ-expected value of the number of points contained in Λ. At the same time,

ω(1)
µ (Λ) =

∫
X

1Λ(x) =

∫
Λ

k(1)µ (x)dx,

which means that k
(1)
µ is just the particle density in state µ. In a similar way, by

(2.7) one shows that

cµ(x, y) := k(2)µ (x, y) − k(1)µ (x)k(1)µ (y) (2.11)
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is the truncated spatial correlation function in state µ. These two functions k
(1)
µ and

cµ are usually employed in describing population dynamics at macro-level by kinetic
equations. Similarly as in Lemma 2.10 of [26], one proves the following statement,
in which Γ̆ stands for the set of simple configurations defined in (2.6).

Proposition 2.2.2. Let X = Rd and µ ∈ P(Γ) have k
(2)
µ . Then µ(Γ̆) = 1, i.e., the

configurations in state µ are almost surely simple.

The importance of this statement can be seen in the light of Remark 2.2.1. Let
us outline the arguments yielding its proof. For ϵ ∈ (0, 1), one defines

H(γ) =
∑
x∈γ

∑
y∈γ\x

h(x, y), h(x, y) =
1

|x− y|ϵd
.

It is clear that H(γ) = +∞ for each γ ∈ Γ \ Γ̆. At the same time, by (2.9), (2.10)
we have

µ(H) =

∫
Γ

Q(2)
γ (h)µ(dγ) =

∫
X2

k(2)µ (x, y)h(x, y)dxdy <∞.

The latter holds true as k
(2)
µ ∈ L∞(X2) and h is absolutely integrable. It implies

µ(Γ \ Γ̆) = 0. By similar arguments one can also extend Proposition 2.2.2 to the
case where X is just a Polish space. That is, µ(Γ̆) = 1 if µ possesses the second

order correlation measure verifying ω
(2)
µ (D) = 0 where D = {(x, y) ∈ X2 : x = y}.

Finally, let us mention a probability measure on Γ which plays a special role in
this work. Let ϱ be a positive Radon measure on X. The latter is just a general
locally compact Polish space. The Poison measure πϱ with intensity measure ϱ is
defined by its correlation measures

ω(m)
πϱ = ϱ⊗m, (2.12)

which in particular means that for ∆ = Λ1 × Λm, all Λi ⊂ X compact, one has

ω(m)
πϱ (∆) = ϱ(Λ1) · · · ϱ(Λm).

That is, in state πϱ the points choose their positions in X independently of each

other. If X = Rd and ϱ(dx) = ρ(x)dx, ρ ∈ L∞(X), then all k
(m)
πϱ exist. By (2.11)

and (2.12), it follows that
cπϱ(x, y) = 0,

i.e., the spatial correlations are absent in this state.
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2.2.3 Configuration spaces with marks

As mentioned above, our principal aim is to take into account also particles ages
– the time of their presence in the population. To this end, we pass to the traits
x̂ = (x, α), x ∈ X and α ∈ R+ := [0,+∞). It is then naturally to consider
configurations γ̂ as collections of such compound traits in which α appears as a
mark. More on the general theory of marked configuration spaces can be found in
[10]. According to this, a marked configuration γ̂ is a counting Radon measure on
X̂ := X × R+ such that, for each compact Λ ⊂ X, the set λ = Λ × R+ verifies
γ̂(λ) ∈ N0. That is, every compact Λ contains only a finite number of the elements
of γ̂ of different ages.

In Chapter 5, we deal with the general case where X is just a locally compact
Polish space, without assuming a priori properties of the states. This means that
the corresponding marked configurations may be multiple, and thus each x ∈ X is
characterized by a finite (possibly empty) configuration of ages a = {α1, . . . , αn}. In
Chapters 3 and 4, we deal with populations dwelling in X = Rd and with the states
possessing all correlation functions. According to Proposition 2.2.2, such states are
supported on simple configurations, which means that only those will be taken into
account, see also Remark 2.2.1. In this case each age nonempty configuration a is
a singleton. In view of this, we will denote there the age variable by a. In view of
the mentioned differences in the properties of the marked configurations spaces, we
make a more detailed presentation of them an the beginnings of the corresponding
Chapters.
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Chapter 3

The birth-and-death dynamics

In this chapter based on [18], we introduce a model and study the stochastic dynam-
ics of an infinite population of point particles dwelling in X = Rd, which amounts to
the following. The particle having trait x̂ = (x, a) at time t = 0: (a) can die at time
t with probability 1− e−m(x̂)t, where the death rate m is a suitable function; (b) can
give birth to a new particle located in a compact Λ with probability 1 − e−νx̂(Λ)t,
where ν is a positive measure kernel on (B(X), X̂). As mentioned above, we restrict
our consideration to states possessing all correlation functions and hence satisfying
the conditions of Proposition 2.2.2. In view of this and for the further simplicity, in
this chapter we denote by Γ the space of all simple configurations defined in (2.6).
Then the space of marked configurations Γ̂ consists of the pairs γ̂ = (γ, a), where
a : γ → R+ is the age map that assigns ax to each x ∈ γ. Its topology will be made
precise below.

The Kolmogorov operator corresponding to the model studied herein has the
following form

(LF )(γ̂) =
∑
x∈γ

∂

∂ax
F (γ̂) +

∑
x∈γ

m(x̂) [F (γ̂ \ x̂) − F (γ̂)] (3.1)

+

∫
X

[F (γ̂ ∪ (x, 0)) − F (γ̂)]
∑
y∈γ

νŷ(dx).

Here the first term on the right-hand side corresponds to aging, whereas the remain-
ing ones describe the death and the birth of new particles as mentioned above. The
model corresponding to (3.1) can also be used to describe the infection spread in an
infinite population. In this interpretation, the population of healthy individuals is
present as a vacuum, whereas γ̂ corresponds to the population of infected individu-
als. The recovery depends only on the time since infection and is described by the
function m(x̂). The spread of infection from the infected population is captured by
the kernel ν.

For this model, assuming that the evolution preserves the set of states possessing
all correlation functions from the Kolmogorov equation (2.4) we derive the evolution
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equations for the correlation functions and solve them for k(1) and k(2), which yields
the result usually obtained from phenomenological kinetic-like equations. However,
in our case we obtained it directly from the individual-based model described in
(3.1).

3.1 The technicalities

As mentioned above, in this chapter the configuration space Γ̂ defined as the set of
pairs (γ, a) where γ is a simple configuration on X = Rd and a : γ → R+. The value
of a at a given x is denoted by ax. The space X̂ = X × R+ is equipped with the
usual product topology and the Lebesgue measure dx̂ = dxda.

The configuration space Γ̂ is equipped with the following topology. Let F be the
set of all bounded and continuous maps f : X ×R+ → R such that each f vanishes
for x ∈ Λc := X \ Λ for an f -specific compact Λ ⊂ X. Then Γ̂ is equipped with the
weakest topology that makes continuous all the maps

Γ̂ ∋ γ̂ 7→
∑
x∈γ

f(x, ax), f ∈ F .

With this topology Γ̂ is a Polish state.

Definition 3.1.1. By P∗ we denote the subset of P(Γ̂) consisting of those µ that have

all correlation measures ω
(m)
µ , each of which is absolutely continuous with respect to

the corresponding Lebesgue measure λ(m)(dx̂1 · · · dx̂m) = dx̂1 · · · dx̂m such that their

Radon-Nikodym derivatives k
(m)
µ have the properties: for all m ∈ N the following

holds

(i) k
(m)
µ is a symmetric element of L∞(X̂m) = L∞(X̂m, λ(m));

(ii) k
(m)
µ ((x1, a1) . . . , (xm, am)) → 0 as maxi ai → +∞;

(iii) for almost all x1, . . . , xm ∈ X and a1, . . . am ∈ R+, the map

(0,+∞) ∋ t 7→ k(m)
µ ((x1, a1) . . . , (xm, am + t)),

is continuously differentiable;

(iv) the following holds∫
Rm
+

k(m)
µ ((x1, a1) . . . , (xm, am))da1 · · · dam ∈ L∞(Xm);

(v) there exists a µ-dependent ε > 0 such that, for each θ ∈ L1(X̂) := L1(X̂, dx̂),
∥θ∥ = 1, the series

1 +
∞∑
m=1

εm

m!

∫
X̂m

k(m)
µ (x̂1, . . . , x̂m)θ(x̂1) · · · θ(x̂m)dx̂1 · · · dx̂m

is absolutely convergent.
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Now we introduce the following function

F θ(γ̂) =
∏
y∈γ

(1 + θ(ŷ)), γ̂ ∈ Γ̂. (3.2)

Definition 3.1.2. By Θ0 we will denote the set of continuous functions θ : X ×
R+ → (−1, 0] having the following properties: (a) each θ(x, a) vanishes for x ∈
Λc for some θ-specific compact Λ ⊂ X; (b) for each x, the map a 7→ θ(x, a) is
continuously differentiable.

For θ ∈ Θ0, is measurable and F θ satisfies

0 < F θ(γ̂) ≤ 1.

Hence, it is µ-integrable for all µ ∈ P(Γ̂). By employing Proposition 2.1.3, it can be
proved that the set of functions {F θ : θ ∈ Θ0} is separating. According to item (v)
of Definition 3.1.1, for µ ∈ P∗ this function can be µ-integrable also for θ ∈ L1(X̂)
for sufficiently small ∥θ∥. Indeed, by (2.8) and (2.10) it follows that

µ(F θ) = 1 +

∫
Γ̂

 ∞∑
m=1

1

m!

∑
{x̂1,...x̂m}⊂γ̂

θ(x̂1) · · · θ(x̂m)

µ(dγ̂) (3.3)

= 1 +

∫
Γ̂

(∑
η⋐γ

∏
x∈η

θ(x̂)

)
µ(dγ̂)

= 1 +
∞∑
m=1

1

m!

∫
X̂m

k(m)
µ (x̂1, . . . x̂m)θ(x̂1) · · · θ(x̂m)dx̂1 · · · dx̂m

=:

∫
Γ̂0

kµ(η̂)

(∏
x∈η

θ(x̂)

)
λ(dη̂).

Here η ⋐ γ means that η̂ is a finite and nonempty subset of γ̂, Γ̂0 is the subset of
Γ̂ consisting of finite configurations, kµ(η̂) = k(m)(x̂1, . . . , x̂m) for η̂ = {x̂1, . . . , x̂m},

and λ is the Lebesgue-Poisson measure on Γ̂0 defined by the formula∫
Γ̂0

G(η̂)λ(η̂) = G(∅) +
∞∑
m=1

1

m!

∫
X̂m

G(m)(x̂)1, . . . , x̂m)dx̂1 · · · x̂m,

where G and G(m) are defined analogously as k and k(m) above. In the sequel, we
repeatedly use the following statement known as Minlos’ lemma [30].

Lemma 3.1.3. Let n ∈ N, n ≥ 2, then for all measurable functions G : Γ̂0 → R, h :
Γ̂0 → R it is true that:∫

Γ̂0

∑
x∈γ

h(x̂)G(γ̂ \ x̂)λ(dγ̂) =

∫
Γ̂0

∫
X̂

h(x̂)G(γ̂)dx̂λ(dγ̂). (3.4)
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We also use the following evident formula∑
x∈γ

A(x̂)
∑
η⋐γ\x

B(η̂) =
∑
η⋐γ

∑
x∈η

A(x̂)B(η̂ \ x̂), (3.5)

holding for suitable functions h and G.

3.2 The model

To be able to guarantee that the evolution preserves the states possessing corre-
lation functions with the properties as in Definition 3.1.1 we impose the following
conditions on the kernel ν that appears in (3.1). Recall that by a measure kernel we
mean a map B(X)× X̂ ∋ (Λ, ŷ) 7→ νŷ(Λ), which is a finite positive Borel measure νŷ
for each ŷ ∈ X̂ and a measurable function ŷ 7→ νŷ(Λ) for each Λ ∈ B(X). Namely,
we assume that, for each ŷ, the measure νŷ is such that

νŷ(dx) = b(ŷ|x)dx, (3.6)

where the map (ŷ, x) 7→ b(ŷ|x) ∈ R+ is measurable and satisfies

∀a ∈ R+ b(y, a|x) ≤ β(x− y),

∫
X

β(x)dx =: β <∞, (3.7)

∀x ∈ X

∫
X̂

b(ŷ|x)dŷ ≤ b̄ <∞. (3.8)

The condition in (3.7) is to control the procreation of the new members uniformly as
to the age of the parental particles. The second condition controls the procreation
from all age groups to given compact subset of Λ ⊂ X, i.e.,∫

Λ

(∫
X̂

b(ŷ|x)dŷ

)
dx ≤ b̄|Λ|,

where |Λ| is the Euclidean volume of Λ.
Concerning the function (x, a) 7→ m(x, a) we assume that x 7→ m(x, a) is mea-

surable for each fixed a and a 7→ m(x, a) continuous for each x. For η̂ ∈ Γ̂0, we then
set

M(η̂) =
∑
x∈η

m(x̂).

Our first aim is to pass from the Fokker-Planck equation (2.3) to the evolution
equation for the correlation functions. Here one may follow the way elaborated in
[26]. For k : Γ̂0 → R, we then define

(L∆k)(η̂) = −
∑
x∈η

∂

∂ax
k(η̂) −M(η̂)k(η̂).
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In order to use this operator on a regular basis, one would have to introduce an
appropriate Sobolev-like Banach space of such functions keeping in mind that they
satisfy the conditions mentioned in Definition 3.1.1. In this chapter, however, we
restrict ourselves to deriving only equations for k(1) and k(2), which are usually
‘deduced’ by employing heuristic arguments. Keeping this in mind, we prove the
following statement.

Proposition 3.2.1. Assume that µ ∈ P∗ is such that its correlation function kµ
satisfies the renewal condition, cf. [15],

kµ(η̂ \ x̂ ∪ (x, 0)) =

∫
X̂

b(ŷ|x)kµ(η̂ \ x̂ ∪ ŷ)dŷ + kµ(η̂ \ x̂)
∑
y∈η\x

b(ŷ|x). (3.9)

Assume further that both integrals

Iµ(θ) := µ(LF θ) (3.10)

Jµ(θ) :=

∫
Γ̂0

(L∆kµ)(η̂)

(∏
x∈η

θ(x̂)

)
λ(dη̂),

absolutely converge for all θ ∈ Θ. Then Iµ(θ) = Jµ(θ).

Proof. Define

(L̃∆kµ)(η̂) = (L∆kµ)(η̂) +
∑
x∈η

δ(ax) (3.11)

×

−kµ(η̂) +

∫
X̂

b(ŷ|x)kµ(η̂ \ x̂ ∪ ŷ)dŷ + kµ(η̂ \ x̂)
∑
y∈η\x

b(ŷ|x)

 ,
where δ(ax) is Dirac’s δ-function, which means that the right-hand side of (3.11) is
a distribution. Note however, that L̃∆k = L∆k if k satisfies (3.9). The Kolmogorov
operator (3.1) with ν as in (3.6) acts on F θ (3.2) as follows

(LF )θ(γ̂) =
∑
x∈γ

∂θ(x̂)

∂ax

∏
y∈γ\x

(1 + θ(ŷ)) +
∑
x∈γ

m(x̂)(1 − (1 + θ(x̂)))
∏
y∈γ\x

(1 + θ(ŷ))

+

∫
X̂

∑
x∈γ

b(x̂|ŷ)δ(ay)(1 + θ(ŷ) − 1)
∏
z∈γ

(1 + θ(ẑ))dŷ.
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Now we split LF θ into three parts. The first one is∫
Γ̂

L1F
θ(γ̂)µ(dγ̂) =

∫
Γ̂

∑
x∈γ

∂θ(x̂)

∂ax

∏
y∈γ\x

(1 + θ(ŷ))µ(dγ̂)

=

∫
Γ̂

∑
x∈γ

∂θ(x̂)

∂ax

∑
η⊂γ\x

∏
y∈η

θ(ŷ)µ(dγ̂)

=

∫
Γ̂

∑
η⊂γ

∑
x∈η

∂θ(x̂)

∂ax

∏
y∈η\x

θ(ŷ)µ(dγ̂)

=

∫
Γ̂0

kµ(η̂)
∑
x∈γ

∂θ(x̂)

∂ax

∏
y∈η\x

θ(ŷ)λ(dη̂)

=

∫
Γ̂0

(∫
X̂

kµ(η̂ ∪ x̂)
∂θ(x̂)

∂ax
dx̂
)∏
y∈η

θ(ŷ)λ(dη̂)

= −
∫
Γ̂0

∫
X̂

kµ(η̂ ∪ x̂)δ(ax) +
∂

∂ax
kµ(η̂ ∪ x̂)θ(x̂)dx̂

∏
y∈η

θ(ŷ)λ(dη̂)

= −
∫
Γ̂0

(∑
x∈η

δ(ax)kµ(η̂) +
∂

∂ax
kµ(η̂)θ(x̂)dx̂

)∏
y∈η

θ(ŷ)λ(dη̂).

This is obtained using (3.5) with A(x) = ∂θ(x̂)
∂ax

, B(η̂) =
∏

y∈η θ(ŷ) and Lemma 3.1.3.
The second part is∫

Γ̂

L2F
θ(γ̂)µ(dγ̂) =

∫
Γ̂

∑
x∈γ

(−θ(x̂))m(x̂)
∏
y∈γ\x

(1 + θ(ŷ))µ(dγ̂)

= −
∫
Γ̂

∑
x∈γ

θ(x̂)m(x̂)
∑
η⊂γ\x

∏
y∈η

θ(ŷ)µ(dγ̂)

= −
∫
Γ̂

∑
η⊂γ

∑
x∈η

m(x̂)
∏
y∈η

θ(ŷ)µ(dγ̂)

= −
∫
Γ̂0

∑
x∈η

m(x̂)kµ(η̂)
∏
y∈η

θ(ŷ)λ(dη̂).
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Finally, the third part∫
Γ̂

L3F
θ(γ̂)µ(dγ̂) =

∫
Γ̂

∫
X̂

∑
x∈γ

b(x̂|ŷ)δ(ay)θ(ŷ)
∏
z∈γ

(1 + θ(ẑ))dŷµ(dγ̂)

=

∫
Γ̂

∫
X̂

∑
x∈γ

b(x̂|ŷ)δ(ay)θ(ŷ)(1 + θ(x̂))
∏
z∈γ\x

(1 + θ(ẑ))dŷµ(dγ̂)

=

∫
Γ̂

∫
X̂

∑
x∈γ

b(x̂|ŷ)δ(ay)θ(ŷ)(1 + θ(x̂))
∑
η⊂γ\x

∏
z∈η

θ(ẑ)dŷµ(dγ̂)

=

∫
Γ̂

∫
X̂

∑
η⊂γ

∑
x∈η

b(x̂|ŷ)δ(ay)(1 + θ(x̂))
∏

z∈η\x∪y

θ(ẑ)dŷµ(dγ̂)

=

∫
Γ̂0

∫
X̂

kµ(η̂)
∑
x∈η

b(x̂|ŷ)δ(ay)
∏

z∈η\x∪y

θ(ẑ)dŷλ(dη̂)

+

∫
Γ̂0

∫
X̂

kµ(η̂)
∑
x∈η

b(x̂|ŷ)δ(ay)
∏
z∈η∪y

θ(ẑ)dŷλ(dη̂)

=

∫
Γ̂0

∫
X̂

∑
y∈η

kµ(η̂ ∪ x̂ \ ŷ)b(x̂|ŷ)δ(ay)
∏
z∈η

θ(ẑ)dx̂λ(dη̂)

+

∫
Γ̂0

∫
X̂

∑
y∈η

kµ(η̂ \ ŷ)b(x̂|ŷ)δ(ay)
∏
z∈η

θ(ẑ)dŷλ(dη̂).

Putting everything together and taking into account (3.9) we get∫
Γ̂

(L1 + L2 + L3)F
θ(γ̂)µ(dγ̂) =

∫
Γ̂0

L̃∆kµ(η̂)

(∏
x∈η

θ(x̂)

)
λ(dη̂)

=

∫
Γ̂0

L∆kµ(η̂)

(∏
x∈η

θ(x̂)

)
λ(dη̂),

which yields the proof, see (3.10).

3.3 The result

As in [26], by Proposition 3.2.1 one may obtain solutions of the Fokker-Planck
equation (2.3) by solving the Cauchy problem

∂

∂t
kt(η̂) = (L∆kt)(η̂), kt|t=0 = kµ0 , (3.12)
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where kµ0 is the correlation function of the initial condition of (2.3). As mentioned
above, a regular theory of this equation should be based on the use of appropriate
Banach spaces. After developing such a theory, one should also prove that kt is
indeed the correlation function for a certain state, which is usually a hard technical
problem, see [25]. Here we obtain from (3.12) the equations for k

(1)
t and k

(2)
t , which

can be viewed as the usual PDE of transport type.
For τ ≥ 0, set

ψτ (η̂) = kt−τ (η̂τ ), (3.13)

where
η̂τ = {(x, ax − τ) : (x, ax) ∈ η̂}, τ ≤ min{ax, t}.

To get a classical solution of (3.12) we have to assume that kt is continuously differ-
entiable with respect to each ax and therefore it is continuously differentiable with
respect to t. By taking the derivative in (3.13) by (3.12) we get

d

dτ
ψτ (η̂) = M(η̂τ )ψτ (η̂)

which can be solved

ψτ (η̂) = ψ0(η̂) exp

(∫ τ

0

M(η̂ϑ)dϑ

)
.

By (3.13) this yields, where aη̂ = min
x∈η

ax:

kt(η̂) =

 k0(η̂t) exp
(
−
∫ t
0
M(η̂ϑ)dϑ

)
, t ⩽ aη̂

kt−aη̂(η̂aη̂) exp
(
−
∫ aη̂
0
M(η̂ϑ)dϑ

)
, t > aη̂,

(3.14)

which is a functional equation. Below we study this equation in the two particular
cases mentioned above.

3.3.1 The evolution of densities

By setting η̂ = {x̂} in (3.14), we get the following formula describing the evolution
of the first correlation function

k
(1)
t (x, a) =

 k
(1)
0 (x, a− t) exp

(
−
∫ t
0
m(x, a− θ)dθ

)
, t ⩽ a

k
(1)
t−a(x, 0) exp

(
−
∫ a
0
m(x, a− θ)dθ

)
, t > a,

(3.15)

subject to the following renewal condition obtained from (3.9)

k
(1)
t (x, 0) =

∫
X̂

b(ŷ|x)k
(1)
t (ŷ)dŷ.
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By (3.15) we have

k
(1)
t (x, 0) =

∫
Rd

(∫ ∞

0

b(y, ay|x)k
(1)
t (y, ay)day

)
dy

=

∫
Rd

∫ t

0

b(y, ay|x)k
(1)
t−ay(y, 0)e−

∫ ay
0 m(y,ay−θ)dθdaydy (3.16)

+

∫
Rd

∫ +∞

t

b(y, ay|x)k
(1)
0 (y, ay − t)e−

∫ t
0 m(y,ay−θ)dθdaydy.

By (3.7), the second term in (3.16) is bounded uniformly with respect to t and x by

β · ess sup
y∈Rd

∣∣∣ ∫ ∞

0

k
(1)
0 (y, a)da

∣∣∣,
see also item (iv) of Definition 3.1.1. Set

k
(1)
t (x, 0) := ut(x).

Now (3.16) can be written in the following form:

u = Au+ v, (3.17)

where

(Au)t(x) =

∫
Rd

∫ t

0

b(y, ay|x)ut−ay(y)e−
∫ ay
0 m(y,ay−θ)dθdaydy,

vt(x) =

∫
Rd

∫ +∞

t

b(y, ay|x)k
(1)
0 (y, ay − t)e−

∫ t
0 m(y,ay−θ)dθdaydy.

Both u and v are positive elements of the Banach space Uα of functionsR+×Rd 7→ R,
which are C1 (R+) for almost all fixed x and L∞(Rd) for all a, equipped with the
norm

∥u∥α = sup
t≥0

e−αt∥ut∥L∞(Rd), α > 0. (3.18)

By (3.7), the operator norm of A satisfies

∥A∥α ≤ β ess sup
y∈Rd

∫ ∞

0

e−αa−
∫ a
0 m(y,θ)dθda =: βq(α).

If the mortality rate m(y, a) is separated away from zero, i.e., satisfies m(y, α) ≥ m∗,
then

q(α) ≤ 1/(α +m∗). (3.19)

For βq(α) < 1, we can solve (3.17) in the form

u = (I − A)−1v,
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where v is determined by the initial condition of (3.12). By item (i) of Definition
3.1.1 and (3.8), it follows that

∥v∥α ≤ ∥v∥0 ≤ b̄∥k(1)0 ∥L∞(X̂). (3.20)

Now (3.16) in the space Uα takes the form:

k
(1)
t (x, 0) = ut(x) = (Bv)t (x) :=

∞∑
n=0

(Anv)t (x). (3.21)

Finally, the evolution of the particle density is described by the formula

kt
(1)(x, a) =


k0

(1)(x, a− t)e−
∫ t
0 m(x,a−θ)dθ, t ⩽ a

∞∑
n=0

(Anv)t−a (x)e−
∫ a
0 m(x,a−θ)dθ, t > a.

(3.22)

The solution (3.22) may increase in time. By (3.18), (3.20) and (3.21), for t > a it
satisfies

kt(x, a) ≤ ∥v∥α
1 − βq(α)

eαt ≤ b̄

1 − βq(α)
eαt∥k(1)0 ∥L∞(X̂)e

αt.

For m∗ > β, by (3.19) we have βq(0) < 1, which means that k
(1)
t (x, a) remains

bounded in this case.

3.3.2 The evolution of the second correlation function

In this case, we take η̂ = {(x, ax), (y, ay)} with ax ≤ ay. By (3.14) we then get

k
(2)
t (y, ay, x, ax) =

 k
(2)
0 (η̂t)e

−
∫ t
0 (m(y,ay−θ)+m(x,ax−θ))dθ, t ⩽ ax

k
(2)
t−ax(y, ay − ax, x, 0)e−

∫ ax
0 (m(y,ay−θ)+m(x,ax−θ)dθ, t > ax.

(3.23)

To find k
(2)
t−ax(y, ay − ax, x, 0), we use (3.9) which yields

k
(2)
t (y, a, x, 0) =

∫
Rd

∫ +∞

0

b(z, az|x)k
(2)
t (y, a; z, az)dazdz (3.24)

+ k
(1)
t (y, a)b(y, a|x).
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For t ≤ a, by (3.22) for k
(1)
t (y, a) and (3.23) for k

(2)
t (y, a; z, az) we bring (3.24) to

the following

k
(2)
t (y, a, x, 0) = b(y, a|x)k

(1)
0 (y, a− t)e−

∫ t
0 m(y,a−θ)dθ (3.25)

+

∫
Rd

∫ t

0

b(z, az|x)k
(2)
t−az(y, a− az; z, 0)

× exp
(
−
∫ az

0

[m(z, az) +m(y, ay − θ)]dθ
)
dazdz

+

∫
Rd

∫ +∞

t

b(z, az|x)k
(2)
0 (y, a− t; z, az − t)

× exp
(
−
∫ t

0

[m(y, a− θ) +m(z, az − θ)] dθ
)
dazdz.

On the other hand, for t > a, we rewrite (3.24) as follows:

k
(2)
t (y, a, x, 0) = b(y, a|x) (Bv)t−a (y)e−

∫ a
0 m(y,a−θ)dθ (3.26)

+

∫
Rd

∫ a

0

b(z, az|x)k
(2)
t−az(y, a− az; z, 0)

× exp

(
−
∫ az

0

[m(z, az − θ)) +m(y, a− θ)]dθ

)
dazdz

+

∫
Rd

∫ t

a

b(z, az|x)k
(2)
t−a(y, 0; z, az − a)

× exp

(
−
∫ a

0

[m(y, a− θ) +m(z, az − θ)]dθ

)
dazdz

+

∫
Rd

∫ +∞

t

b(z, az|x)k
(2)
t−a(y, 0; z, az − a)

× exp

(
−
∫ a

0

[m(y, a− θ) +m(z, az − θ)]dθ

)
dazdz.

Now we would like to solve (3.25) and (3.26) as a single equations in the space of
continuously differentiable functions R+ ∋ t 7→ wt ∈ C1(R+)⊗L∞((Rd)2)⊗L1(R+).
Let:

wt(y, a, x) := kt
(2)(y, a, x, 0),

then we have:

wt(y, a, x) = (A2w)t(y, a, x) + ft(y, a, x). (3.27)
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For t ≤ a define:

(A2w)t(y, a, x) =

∫
Rd

∫ t

0

b(z, az|x)wt−az(z, y, a− az)

× exp

(
−
∫ a

0

(m(y, a− θ)) +m(z, az − θ))dθ

)
dazdz,

ft(y, a, x) =

∫
Rd

∫ +∞

t

b(z, az|x)k
(2)
0 (y, a− t, z, az − t) (3.28)

× exp

(
−
∫ t

0

m(y, a− ϑ) +m(z, az − ϑ)dϑ

)
dady

+ kt
(1)(y, a)b(x, y, a),

and for t > a:

(A2w)t(y, a, x) =

∫
Rd

∫ a

0

b(z, az|x)wt−az(z, y, a− az)

× exp
(
−
∫ az

0

(m(y, a− θ)) +m(z, az − θ))dθ
)
dazdz

+

∫
Rd

∫ t

a

b(z, az|x)wt−a(y, z, az − a)

× exp
(
−
∫ a

0

(m(y, a− θ)) +m(z, az − θ))dθ
)
dazdz

+

∫
Rd

∫ ∞

t

b(z, az|x)wt−a(y, z, az − a)

× exp
(
−
∫ a

0

(m(y, a− θ)) +m(z, az − θ))dθ
)
dazdz,

ft(y, a, x) = kt
(1)(y, a)b(y, a, x). (3.29)

Let Wα be a space with the norm:

∥w∥α = sup
t≥0

e−αt ess sup
(x,y)∈(Rd)2

∫ ∞

0

|wt(y, a, x)|da.

It is clear that:∫ ∞

0

(A2w)t(y, a, x)da =

∫ t

0

(A2w)t(y, a, x)da+

∫ ∞

t

(A2w)t(y, a, x)da.
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Therefore∫ ∞

0

(A2w)t(y, a, x)da =

∫ t

0

∫
Rd

∫ a

0

b(z, az|x)wt−az(z, y, a− az)

× exp

(
−
∫ az

0

m(y, a− θ)) −m(z, az − θ))dθ

)
dazdzda

+

∫ t

0

∫
Rd

∫ t

a

b(z, az|x)wt−a(y, z, az − a)

× exp

(
−
∫ a

0

m(y, a− θ)) −m(z, az − θ))dθ

)
dazdzda

+

∫ t

0

∫
Rd

∫ ∞

t

b(z, az|x)wt−a(y, z, az − a)

× exp

(
−
∫ a

0

m(y, a− θ)) −m(z, az − θ))dθ

)
dazdzda

+

∫ ∞

t

∫
Rd

∫ t

0

b(z, az|x)wt−az(z, y, a− az)

× exp

(
−
∫ a

0

m(y, a− θ)) −m(z, az − θ))dθ

)
dazdzda.

To estimate the previous integral we use (3.8) and the fact that e−a < 1, where
a > 0. Let α = β

q
, for some fixed q < 1 therefore:

∥A2w∥α ≤ q∥w∥α.

We can write the solution for (3.27) as:

kt(x, 0, y, a) = wt(x, y, a) =
∞∑
n=0

(A2
nf)t(x, y, a).

The solution for k(2)(x, ax, y, ay) takes the form:

k(2)(x, ax, y, ay) =



k
(2)
0 (x, ax − t; y, ay − t)

× exp
(
−
∫ t
0
(m(x, ax − θ) +m(y, ay − θ))dθ

)
, for t ≤ ax;( ∞∑

n=0

(A2
nf)t−ax(y, ay − ax, x) + k

(1)
t−ax(y, a)b(y, ay|x)

)
× exp

(
−
∫ ax
0

(m(x, ax − θ) +m(y, ay − θ))dθ
)
, for ax < t.
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For ax < t ≤ ay with the appropriate formula for ft (3.28):

(A2f)t(y, a, x) =

∫
Rd

∫ t

0

b(z, az|x)ft−az(z, y, a− az)

× exp

(
−
∫ a

0

[m(y, a− θ)) +m(z, az − θ)]dθ

)
dazdz.

For ax ≤ ay < t, ft like in (3.29):

(A2f)t(y, a, x) =

∫
Rd

∫ a

0

b(z, az|x)ft−az(z, y, a− az)

× exp

(
−
∫ az

0

[m(y, a− θ)) +m(z, az − θ)]dθ

)
dazdz

+

∫
Rd

∫ t

a

b(z, az|x)ft−a(y, z, az − a)

× exp

(
−
∫ a

0

[m(y, a− θ)) +m(z, az − θ))dθ]

)
dazdz

+

∫
Rd

∫ ∞

t

b(z, az|x)ft−a(y, z, az − a)

× exp

(
−
∫ a

0

[m(y, a− θ)) +m(z, az − θ)]dθ

)
dazdz.
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Chapter 4

The independent appearance
model: evolution in a spacial class
of states

In this and the next chapters we introduce and study the following modification of
the model defined in (3.1). The corresponding Kolmogorov operator is taken in the
form

(LF )(γ̂) =
∑
x∈γ

∂

∂ax
F (γ̂) +

∑
x∈γ

m(x̂) [F (γ̂ \ x̂) − F (γ̂)] (4.1)

+

∫
X

[F (γ̂ ∪ (y, 0)) − F (γ̂)]χ(dy),

where the first two terms have the same meaning as the corresponding terms of L
given in (3.1), whereas the third one described an independent appearance of new
particles in the habitat governed by the measure χ. In this chapter, we take X = Rd

and
χ(dy) = b(y)dy, (4.2)

with an appropriate positive density b and the Lebesgue measure dy. In the next
chapter, we consider the case of a general locally compact Polish space X and hence
a general arriving measure χ. Our present choice of X and χ (4.2) will allow us to
solve the Fokker-Planck equation (2.3) and thus to construct the evolution of states
µ0 7→ µt which preserves a special class of them. We begin describing this class by
introducing ‘tempered configurations’.

4.1 Tempered configurations and measures

In this section, we select a subset of Γ̂∗ ⊂ Γ̂ such that the measures in question have
the property µ(Γ̂∗) = 1, and thus forget of the remaining configurations.
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4.1.1 Tempered configurations

Let ψ : X → R+ be:

(a) continuous, bounded and strictly positive;

(b) integrable, i.e., satisfy
∫
X
ψ(x)dx <∞.

One can take ψ(x) = e−|x| as an example of such a function. Then we set

Ψ(γ̂) =
∑
x̂∈γ̂

ψ(x), γ̂ ∈ Γ̂, (4.3)

which can take infinite values for some γ̂. Thereby, the set of tempered configurations
is defined as

Γ̂∗ = {γ̂ ∈ Γ̂ : Ψ(γ̂) <∞},
where Γ̂ is the set of all (possibly multiple) configurations. Similarly as in [26],
subsect. 2.3, we equip this set with the following metric

υ∗(γ̂, γ̂
′) = sup

g

∣∣∣∑
x̂∈γ̂

g(x̂)ψ(x) −
∑
x̂∈γ̂′

g(x̂)ψ(x)
∣∣∣, (4.4)

where the supremum is taken over the subset of the set of bounded Lipschitz-
continuous functions CBL(X̂) consisting of those g : X̂ → R for which

sup
x̂∈X̂

|g(x̂)| + sup
x̂ ̸=ŷ∈X̂

|g(x, α) − g(y, α′)|
|x− y| + |α− α′|

≤ 1.

It is possible to prove, [26], Proposition 2.7, that the metric space (X̂, υ∗) is complete
and separable. Let B(Γ̂∗) be the corresponding Borel σ-field of such subsets of Γ̂∗.
By Kuratowski’s theorem (Theorem 3.9 in [31]), one then proves that Γ̂∗ ∈ B(Γ̂)
and B(Γ̂∗) coincides with the Borel σ−field related to the topology on Γ̂∗ induced
by the vague topology of Γ̂. This allows one to redefine each µ ∈ P (Γ̂) with the
property µ(Γ̂∗) = 1 as a measure on (Γ̂∗, B(Γ̂∗)), see [26], Corollary 2.8 for further
details.

Let P∗ ⊂ P(Γ̂) be as in Definition 3.1.1. By Proposition 2.2.2, we know that
each µ ∈ P∗ is supported on the set of simple configurations, which allows us to
assume – in this chapter also – that Γ̂ and Γ̂∗ consist of single configurations only.
It turns out that the set of measures has another useful property.

Proposition 4.1.1. For each µ ∈ P∗, it follows that µ(Γ̂∗) = 1.

Proof. Similarly as in Proposition 2.2.2, the proof consist in showing that µ(Ψ) <∞,
which readily follows by (2.9) and (2.10)

µ(Ψ) =

∫
X̂

k(1)µ (x̂)ψ(x)dx̂ ≤
∫
X

ψ(x)dx

(
sup
x∈X

∫
R+

k(1)µ (x, α)dα

)
<∞, (4.5)

see item (iv) of Definition 3.1.1.
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As mentioned above, each µ ∈ P∗ can be redefined as a probability measure on
(Γ̂∗,B(Γ̂∗)) with single configurations, which we assume from now on. Recall that
the functions F θ are defined in (3.2).

Definition 4.1.2. For a given measurable q : X̂ → (0, 1) and µ ∈ P(Γ̂), the measure
µq defined by the relation µq(F θ) = µ(F θq) is called an independent q−thinning of
µ. Here θg(x̂) = θ(x̂)q(x̂) and θ ∈ Θ0, see Definition 3.1.2.

For µ ∈ P∗, its q-thinning amounts to multiplying kµ(η̂) by
∏

x∈η q(x̂). An im-
portant subclass of P∗ constitute Poisson measures πϱ with intensity measures such
that

ϱ(dx̂) = ρ(x̂)dx̂, (4.6)

with ρ satisfying the conditions of Definition 3.1.1 in the part related to k
(1)
µ . For

such measures, one has, cf. (2.12),

kπϱ(η̂) =
∏
x∈η

ρ(x̂). (4.7)

Then by (3.3) it follows that

πϱ(F
θ) = exp

(∫
X̂

ρ(x̂)θ(x̂)dx̂
)
. (4.8)

Note that each µ ∈ P(Γ̂) can have a correlation function understood as a distribu-
tion. To see this, let us first define

δ(ξ; η̂) =

{∑
σ∈Σn

∏n
j=1 δ(x̂j − ŷσ(j)), if |η̂| = |ξ̂| = n;

0 otherwise.

In the first line, ξ̂ = {x̂1, . . . , x̂n}, η̂ = {ŷ1, . . . , ŷn}, Σn is the symmetric group,
and δ(x̂− ŷ) is the usual Dirac δ−function on Rd×R+. The correlation function kγ̂
of the δ−measure δγ̂ ∈ P(Γ̂) is then

kγ̂(ξ̂) =
∑
η⊂p(ξ̂)

δ(ξ̂; η̂). (4.9)

By (4.9) we then have

δγ̂(F
θ) =

∫
Γ̂0

kγ̂(ξ̂)
∏
x̂∈ξ̂

θ(x̂)λ(dξ̂) =
∏
x̂∈γ̂

(1 + θ(x̂)).

By means of kγ̂ one can define the correlation function for any µ by the formula

kµ(ξ̂) =

∫
Γ̂

kγ̂(ξ̂)µ(dγ̂). (4.10)
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4.1.2 Convolution of measures

For µ1, µ2 ∈ P(Γ̂), their convolution is defined as

(µ1 ⋆ µ2)(F ) =

∫
Γ̂

∫
Γ̂

F (γ̂1 ∪ γ̂2)µ1(dγ̂1)µ2(dγ̂2). (4.11)

As mentioned above, the class F θ, see (3.2), we θ ∈ Θ is separating hence measure-
defining. Thus, it is enough to define µ1 ⋆ µ2 for such F θ. By (3.2) it readily follows
that

(µ1 ⋆ µ2)(F
θ) = µ1(F

θ)µ2(F
θ). (4.12)

Then for µ1, µ2 ∈ P∗, one readily gets that

(µ1 ⋆ µ2)(F
θ) =

∫
Γ̂0

( ∑
ξ⊂p(η̂)

kµ1(η̂ \ ξ̂)kµ2(ξ̂)
)∏
x∈η

θ(x̂)λ(dη̂). (4.13)

Proposition 4.1.3. It follows that µ1 ⋆ µ2 ∈ P∗, whenever µ1, µ2 ∈ P∗.

Proof. We begin by slightly formalizing Definition 3.1.1. According to its item (iv),
it follows that each

κ(n)
µ (x1, . . . , xn) :=

∫
(R+)n

k(n)µ ((x1, a1), . . . , (xn, an))da1 · · · dan, n ∈ N,

is essentially bounded. Let κ(n)
µ be this bound. Then item (v) of Definition 3.1.1 is

equivalent to the following

κ(n)
µ ≤ n!ε−n, n ∈ N,

holding for some ε > 0. At the same time, by (4.13) it follows that

kµ1⋆µ2(η̂) =
∑
ξ⊂p(η̂)

kµ1(η̂ \ ξ̂)kµ2(ξ̂),

which then yields

κ(n)
µ1⋆µ2

≤
n∑

m=0

(
n

m

)
κ(m)
µ1

κn−m
µ2

≤ (n+ 1)!ε−n ≤ n! ≤ n!
(ε

2

)−n
,

where ε = min{εµ1 ; εµ2}. This yields the validity of item (v) of the mentioned
definition.

4.2 The result

In this section, we formulate and prove a statement describing the evolution of our
model introduced in (4.1), (4.2). It is determined by the model parameters m and b
which are supposed nonnegative, measurable and bounded. Additionally, we assume
that the map R+ ∋ α 7→ m(x, α) is continuous for each fixed x.
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4.2.1 The statement

Along with the class of functions Θ0 introduced in Definition 3.1.2, we will use the
following class.

Definition 4.2.1. By Θ we mean the collection of all θ : X̂ → R that have the
following form

θ(x, α) = ϑ(x)e−τψ(x)ϕ(α) + e−τψ(x)ϕ(α) − 1, (4.14)

where ϑ : X → (−1, 0] is a continuous functions with compact support, ψ is as in
(4.3), τ ≥ 0 and ϕ(α) = α

1+α
.

Then we define F = {F θ : θ ∈ Θ} with F θ having the form

F θ(γ̂) = exp
(∑
x̂∈γ̂

log(1 + ϑ(x)) − τ
∑
x̂∈γ̂

ψ(x)φ(α)
)
.

Our aim is to solve the corresponding Fokker-Planck equation (2.3) for F θ with
θ ∈ Θ. Note that 0 < F θ(γ̂) ≤ 1 for each γ̂ ∈ Γ̂∗ and µ(F θ) ≤ 1 for all µ ∈ P∗. It is
possible to show, cf. [12], Theorem 18, that each F θ is υ∗-continuous (see (4.4)). The
pointwise product of F θ and F θ′ is F θ′′ with θ′′ corresponding to ϑ′′(x) = ϑ(x)∗ϑ′(x)
defined in (5.23) below and τ ′′ = τ + τ ′. Assume that γ̂1 ̸= γ̂2, both are in Γ̂∗. Then
one finds x̂ which belongs to exactly one of these configurations, say γ̂1. If there
is no ŷ ∈ γ̂2 with p(ŷ) = p(x̂), one takes τ = 0 and ϑ such that ϑ(p(x̂)) ̸= 0 and
ϑ(p(ŷ)) = 0 for all ŷ ∈ γ̂2. Otherwise, one takes τ > 0 and ϑ(p(x̂)) = ϑ(p(ŷ)) ̸= 0
and ϑ(p(ẑ)) = 0 for all ẑ ∈ γ̂1 ∪ γ̂2 such that ϑ(p(ẑ)) ̸= ϑ(p(x̂)). In both cases, the
corresponding F θ separates γ̂1 and γ̂2, see property (c) of Proposition 2.1.3. Clearly,
F θ ≡ 1 for τ = 0 and ϑ ≡ 0. Then by Proposition 2.1.3 F = {F θ : θ ∈ Θ} is
separating.

Let us prove now that LF θ is µ−integrable for each µ ∈ P∗. By (4.1) we have

(LF θ)(γ̂) =
∑
x̂∈γ̂

( ∂

∂α
θ(x, α) −m(x, α)θ(x, α)

)
F θ(γ̂ \ x̂) (4.15)

+ F θ(γ̂)

∫
X

b(x)θ(x, 0)dx =: H1(γ̂) +H2(γ̂).

Since b is bounded, H2 is also bounded. Since ϑ is continuous and compactly sup-
ported, it is ψ-bounded. Hence, by (4.14) one concludes that, for all x̂ ∈ X̂, the
following holds

|θ(x̂)| ≤ dθψ(x),
∣∣∣ ∂
∂α

θ(x̂)
∣∣∣ ≤ τψ(x), (4.16)

where dθ depends only on the choice of ϑ and τ . By (4.16) we then have

|H1(γ̂)| ≤ DθΨ(γ̂), (4.17)
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holding with an appropriate Dθ. By (4.5) this yields the property in question. Now
for θ ∈ Θ and m as in (4.1), we set

θt(x, a) = θ(x, a+ t) exp
(
−
∫ α+t

α

m(x, α)dα
)
, t ≥ 0, (4.18)

and then define a map P∗ ∋ µ→ µt ∈ P∗, t ≥ 0 by the following relation

µt(F θ) = µ(F θt), θ ∈ Θ. (4.19)

Since the family {F θ : θ ∈ Θ} is separating, each µt is uniquely determined by
(4.18), (4.19). Note that the correlation function of µt can be expressed through
that of µ as follows

kµt(η̂) = Jt(η̂)kµ(η̂t) exp
(
−
∑
x̂∈η̂

∫ α+t

α

m(x, α)dα
)
, (4.20)

where η̂t = {(x, α− t) : x ∈ p(η̂},

Jt(ξ̂) =
∏
x∈p(ξ̂)

Jt(x, α), Jt(x, α) := 1 − 1[0,t)(α),

By Definition 3.1.1, the map µ 7→ µt preserves P∗ and is a combination of a thinning
and an age shift. Now we are at a position to formulate our result.

Theorem 4.2.2. For each µ0 ∈ P∗, the Fokker-Planck equation (2.3) has a solution
of the following form

µt = µt0 ⋆ πϱt , (4.21)

where µt0 is obtained from µ0 according to (4.19) and πϱt is the Poisson measure,
see (4.6), (4.7) and (4.8), with the intensity measure

ϱt(dx, dα) = b̂(x, α)1[0,t)(α)dxdα := b(x) exp
(
−
∫ α

0

m(x, ς)dς
)
1[0,t)(α)dxdα,

(4.22)
where 1[0,t)(α) is defined in (2.1). If m(x̂) ≥ m∗ for some m∗ > 0, the evolution

given in (4.21) has a stationary state πϱ with ϱ(dx, dα) = b̂(x, α)dxdα, see (4.22).

4.2.2 Comments

Let us make some comments to this statement. According to (4.12), (4.8) and (4.21)
it follows that

µt(F
θ) = exp

(∫
X

∫
[0,t)

b̂(x, α)θ(x, α)dxdα
)
µ0(F

θt). (4.23)
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Hence, the solution satisfies the initial condition µt|t=0 = µ0, see (4.18). If µ0(∅) = 1,
i.e., the initial state is an empty habitat, by (4.23) it follows that µt = πϱt with ϱt
given in (4.22). Let us show that this µt satisfies (2.3). For πϱ, by the following easy
to prove formula, cf. (3.4),∫

Γ̂0

∑
ξ⊂η

G(ξ, η \ ξ)λ(dξ) =

∫
Γ̂0

∫
Γ̂0

G(ξ, η)λ(dξ̂)λ(dη̂),

we have that

πϱ(H1) =

∫
Γ̂0

(∏
x∈η

ϱ̂(x̂)
)∑
x∈η

[ ∂
∂α

−m(x, α)
]
θ(x̂)

∏
y∈η\x

θ(ŷ)λ(dη̂) (4.24)

=

∫
Γ̂0

(∏
x∈η

ρ(x̂)
)∫

X̂

ρ(x̂)
[ ∂
∂α

−m(x, α)
]
θ(x̂)

∏
y∈η

θ(ŷ)λ(dη̂)

= −
(∫

X

ρ(x, 0)θ(x, 0)dx
)
πρ(F

θ)

−
(∫

X̂

θ(x̂)
[ ∂
∂α

+m(x, α)
]
ρ(x̂)dx

)
πϱ(F

θ).

And also

πϱ(H2) =
(∫

X

b(x)θ(x, 0)dx
)
πϱ(F

θ). (4.25)

In the sense of distributions, we have that

∂

∂α
1[0,t)(α) = − ∂

∂t
1[0,t)(α).

Then for ρt(x, α) = b̂(x, α)1[0,t)(α), see (4.22), one obtains[ ∂
∂α

+m(x, α)
]
ρt(x, α) = − ∂

∂t
ρt(x, α). (4.26)

By (4.24), (4.25) and the latter equality it follows that

πϱt(LF
θ) = exp

(∫
X̂

ρt(x̂)θ(x̂)dx̂
) ∂
∂t

∫
X̂

ρt(x̂)θ(x̂)dx̂ (4.27)

=
∂

∂t
exp

(∫
X̂

ρt(x̂)θ(x̂)dx̂
)
,

by which one readily concludes that µt = πϱt satisfies (2.3).
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4.2.3 The proof

The proof of Theorem 4.2.2 is divided into the following steps

(i) proving that for each θ ∈ Θ, the map t 7→ µt(F
θ) has a continuous derivative

at each t > 0 (by Lebesgue’s dominated convergence theorem);

(ii) proving that this derivative satisfies (4.28), see below;

(iii) showing that πϱ is a stationary state;

(iv) proving the weak convergence of probability measures on Γ̂∗

(v) showing that the family (µt)t≥0 is tight (by Prohorov’s theorem).

The proof of the first part will be done by showing that:

(a) for each θ ∈ Θ, the map t 7→ µt(F
θ) has a continuous derivative at each t > 0;

(b) this derivative satisfies, cf. (4.27),

d

dt
µt(F

θ) = µt(LF
θ). (4.28)

By (4.11), (4.12), (4.21), (4.22) and (4.23) we have

µt(F
θ) = µ0(F

θt)πϱt(F
θ) =: µ0(F

θt)Qθ(t). (4.29)

In view of (4.27), the continuous differentiability in question will thus follow by the
same property of t 7→ µ0(F

θt). By (4.18) we have

∂

∂t
F θt(γ̂) =

∑
x∈p(γ̂)

( ∂

∂α
θt(x̂)

)
F θt(γ̂ \ x̂) −

∑
x∈p(γ̂)

m(x, α)θt(x̂)F θt(γ̂ \ x̂)

=:
∑
x∈p(γ̂)

σt(x̂)F θt(γ̂ x̂) =: St(γ̂). (4.30)

Similarly as in (4.17) we then conclude that
∣∣∣ ∂∂tF θt(γ̂)

∣∣∣ ≤ D′
θΨ(γ̂), with a certain

D′
θ > 0. By Lebesgue’s dominated convergence theorem this yields

d

dt
µ0(F

θt) = µ0

( ∂
∂t
F θt
)

= µ0(St) (4.31)

=

∫
Γ̂0

kµ0(η̂)
∑
x∈p(η̂)

(
σt(x̂)

∏
y∈p(η̂\x̂)

θt(ŷ)
)
λ(dη̂),
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as well as the continuity of the map t 7→ µ0(
∂
∂t
F θt). Here kµ0 is the correlation

function of µ0 understood in the sense of (4.10). Now let us turn to proving (4.28).
By (4.29) and (4.31) we have

LHS(4.28) = µ0(St)Qθ(t) + µt(F
θ)

∫
X

b(x)θ(x, t) exp
(
−
∫ t

0

m(x, ς)dς
)
dx. (4.32)

At the same time, by (4.15) it follows that

H1(γ̂1 ∪ γ̂2) = H1(γ̂1)F
θ(γ̂2) +H1(γ̂2)F

θ(γ̂1),

which by (4.11) and (4.21) yields

RHS(3.17) = µt0(H1)πϱt(F
θ) + µt0(F

θ)πϱt(H1) + µt(F
θ)

∫
X

b(x)ϑ(x)dx, (4.33)

Note that

πϱt(F
θ) = exp

(∫
X̂

ρt(x̂)θ(x̂)dx̂
)

= Qθ(t), (4.34)

see (4.8), (4.22) and (4.29). By (4.15) we have that

H1(γ̂) =
∑
x∈γ

hθ(x̂)F θ(γ̂ \ x̂),

hθ(x, α) :=
∂

∂α
θ(x, α) −m(x, α)θ(x, α).

By (4.20) one then gets

µt0(H1) =

∫
Γ̂0

kµt0(η̂)
(∑
x∈η

hθ(x̂)
∏
y∈η\x

θ(ŷ)
)
λ(dη̂) (4.35)

=

∫
Γ̂0

(∫
X̂

kµt0(η̂ ∪ x̂)hθ(x̂)dx̂
)∏
y∈η

θ(ŷ)λ(dη̂)

=

∫
Γ̂0

(∫
X

∫ +∞

t

kµ0(η̂
t ∪ (x, α− t))

× exp
(
−
∫ α

α−t
m(x, ς)dς

)
hθ(x, α)dxdα

)
× Jt(η̂)

∏
y∈η

θ(y, αy) exp
(
−
∫ αy

αy−t
m(y, ς)dς

)
hθ(y, α)dxdα

)
=

∫
Γ̂0

Kt(η̂)
∏
y∈η

θt(ŷ)λ(dη̂).
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Here η̂t and Jt are as in (4.20) and θt is defined in (4.18), whereas

Kt(η̂) :=

∫
X

∫ +∞

t

kµ0(η̂
t ∪ (x, α− t))hθ(x, α) exp

(
−
∫ α

α−t
m(x, ς)dς

)
dxdα

=

∫
X

∫ +∞

t

kµ0(η̂
t ∪ (x, α))hθ(x, α + t) exp

(
−
∫ α+t

α

m(x, ς)dς
)
dxdα

By (4.18) and (4.30) we have

hθ(x, α + t) exp
(
−
∫ α+t

α

m(x, ς)dς
)

= σt(x, α).

We use this in the latter expression and then in (4.35); thus, we arrive at the
following

µt0(H1) =

∫
Γ̂0

kµ0(η̂)
(∏
x∈η

σt(x̂)
∏
y∈η\x

θt(ŷ)
)
λ(dη̂) = µ0(St), (4.36)

see (4.31). Now similarly as in (4.24) we obtain

πϱt(H1) =
(∫

X̂

hθ(x̂)ϱt(dx̂)
)
πϱt(F

θ) (4.37)

=
(∫

X̂

∫ t

0

b(x) exp
(
−
∫ α

0

m(x, ς)dς
)

×
[ ∂
∂α

−m(x, α)
]
θ(x, α)dxdα

)
πϱt(F

θ)

=
(∫

X̂

b(x)
[

exp
(
−
∫ t

0

m(x, ς)dς
)
θ(x, t) − θ(x, 0)

]
dx
)
πϱt(F

θ).

Finally, we use (4.36) and (4.37) in (4.33), take into account (4.34) and (4.32), and
conclude that (4.28) holds true.

To prove that πϱ is a stationary solution of (2.3) we again use (4.15) and (4.24).
For

b̂(x, α) = b(x) exp
(
−
∫ α

0

m(x, ϑ)dϑ
)
,

we have, cf. (4.26), [ ∂
∂α

+m(x, α)
]
b̂(x, α) = 0,

which by (4.24) yields πϱ(LF
θ) = 0, and hence the property in question.
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Chapter 5

The independent appearance
model: a Markov process

In this chapter we study the model defined in (4.1) with X being just a locally
compact Polish space. In this case, we do not have the property as in Proposition
2.2.2. That is why, we will deal with spaces of multiple configurations and then
understand the corresponding sums as in (2.8). Here we also will not use tempered
configurations and thus special classes of measures. The presentation of the material
is close to our paper [20] and the notations used here are mostly independent of the
previous part of the thesis.

Since the configurations here are multiple, we take this into account and instead
of (4.1) we write the following formula for the corresponding Kolmogorov operator

(LF )(γ̂) =
∑

(x,α)∈γ̂

∂

∂α
F (γ̂) +

∑
(x,α)∈γ̂

m(x, α) [F (γ̂ \ (x, α)) − F (γ̂)] (5.1)

+

∫
X

[F (γ̂ ∪ (x, 0)) − F (γ̂)]χ(dx).

The model parameters are subject to the following assumptions:

(i) The departure rate X × R+ ∋ (x, α) → m(x, α) ∈ R+ is continuous and
bounded, i.e., such that m(x, α) ≤ m∗ for some m∗ > 0 and all (x, α). More-
over, there exits κ : [0, 1] → R+ such that κ(ϵ) → 0 as ϵ→ 0 and the following
holds

∀x∈X |m(x, α) −m(x, α′)| ≤ κ(|α− α′|), |α− α′| ∈ (0, 1). (5.2)

(ii) The arriving measure χ is just a positive Radon measure.

The result of the present chapter can be outlined as follows. We introduce a Banach
space C of bounded continuous functions F : Γ̂ → R, in which we define L as a
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closed and densely defined linear operator that satisfies the conditions of the Hille-
Yosida theorem, and hence is the generator of a C0−semigroup {S(t)}t≥0. Then
the solution of (2.4) is obtained in the form Ft = S(t)F0. For a class of functions
FΘ, Ft corresponding to F0 ∈ FΘ is obtained in an explicit way. This allows us
to explicitly construct the corresponding Markov transition function pγ̂t and obtain
finite-dimensional laws of a Markov process X with values in Γ̂, which describes
the stochastic evolution of our model. Possible objects of this kind are specified as
stochastic processes that solve the martingale problem for L. Then we show that this
problem is well-posed, i.e., uniqueness holds. The main ingredient of the proof here is
showing that the corresponding Fokker-Planck equation for L has a unique solution,
which we do by employing the resolvent of L. Assuming that m(x, α) ≥ m0 > 0, we
also show that the process X has a unique stationary state, explicitly constructed
in the paper, such that the laws of X (t) weakly converge to this state as t→ +∞.

5.1 The space of marks and the metric

The space X̂ is equipped with the product topology assuming that the topology of
R+ be defined by the metric which we introduce now.
For α ≥ 0, we set

ω(α) = min
{
α;

1

α

}
,

and then

r(α, 0) = ω(α), (5.3)

r(α, α0) = min {|α− α0|;ω(α) + ω(α0)|},

where |β| is the usual absolute value of β ∈ R.

Proposition 5.1.1. The above introduced r is a metric such that (R+, r) be a com-
pact metric space.

Proof. To prove the first part we just have to check the validity of the triangle
inequality

r(α1, α2) ≤ r(α1, α3) + r(α2, α3). (5.4)

This technical exercise is made in Appendix. To prove the compactness, we have to
show that:

(a) r is complete;

(b) the space (R+, r) is totally bounded.

Let {αn}n∈N ⊂ R+ be an r-Cauchy sequence.
Here one may have the following possibilities:

(i) there exists α <∞ such that αn ≤ ᾱ, such that n ∈ N;
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(ii) the considered sequence contains a subsequence that diverges in the usual
sense.

In case (i), {αn}n∈N contains a subsequence, say {αnk}n∈N, such that |αnk−α∗| → 0
as k → +∞ for some α∗ ≤ ᾱ. At the same time, for ε < 2

ᾱ
, r(αn, αm) < ε implies

|αn − αm| < ε, see (5.3), which means that r(αn, α∗) → 0 as n→ +∞.
In case (ii), the divergent subsequence converges in r to zero, which implies that
the whole sequence converges to zero in r. Hence, the latter metric is complete. To
prove (b), we set B̃ε(α) = {α′ ∈ R+ : r(α, α′) < ε}. Fix ε ∈ (0, 1) and take the least
k ∈ N such that k + 1 > 1

ε2
. Then R+ =

⋃k
j=0 B̃ε(jε), which yields the property in

question.

Let us now compare r with the absolute-value metrics of R+. By C(R+, Tr) we
will mean the set of all bounded r-continuous functions, whereas Cb(R+, T|·|) is going
to stand for the set of all bounded | · |-continuous functions.

Proposition 5.1.2. Tr is coarser than T|·|, and hence the embedding (R+, T|·|) ↪→
(R+, Tr) is continuous, whereas both latter topological spaces are Borel isomorphic.
Moreover,

C(R+, Tr) = {u ∈ Cb(R+, T|·|) : lim
α→+∞

u(α) = u(0)}. (5.5)

Proof. The validity of the first statement and (5.5) readily follows by the fact that
each | · |-convergent sequence is also r-convergent, and each r-convergent sequence
either converges in | · | to the same limit α ̸= 0, or has two | · |-accumulation points:
0 and ∞. Since the mentioned embedding is continuous and injective, it is also
Borel-measurable. By Kuratowski’s theorem, see Parthasarathy (1967), page 21,
[31], its inverse is also measurable and thus is the isomorphism in question. This,
in particular, means that the corresponding Borel σ-fields coincide.

Definition 5.1.3. For a suitable u ∈ C(R+, Tr), we introduce the map α → u′(α),
meaning the usual derivative for α > 0 and the right-hand side one if α = 0.
A given u is said to be continuously differentiable on R+ if u′ ∈ C(R+, Tr).

Let us consider the following functions

un(α) =
α2

1 + nα3
, α ∈ R+, n ∈ N. (5.6)

It is clear that:

(a) each un is continuously differentiable, see Definition 5.1.3;
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(b) un is decreasing for α >
3

√
2

n
. Moreover, un(α) ≤

3
√

4

3
3
√
n2

and

u′n(α) =
2α− nα4

(1 + nα3)2
, |u′n(α)| ≤ c

3
√
n
, (5.7)

the latter holding for some c > 0 and all α ≥ 0.

Now let {σk}k∈N =: Σ ⊂ [0,+∞) be countable and such that:

(i) σ1 = 0;

(ii) ∀k∈N σk < σk+1; σn → σ̄ <∞ as n→ +∞.

Next, for k, n ∈ N, we set

wn,k(α) = e−σkun(α). (5.8)

Then wk,n is continuously differentiable and the following holds

|w′
n,k(α)| =

ᾱc
3
√
n
wn,k(α), (5.9)

where C is the same as in (5.7).
Next, let a be a finite collection of points αl ∈ R+. That is, a = {αl}1≤l≤m, αl ≤ αl+1

for all l. For α ∈ a, by na(α) ∈ N we will denote the multiplicity of α in a, i.e., the
number of elements of a coinciding with this α. We extend it to all α ≥ 0 by setting
na(α) = 0 whenever α is not in a. Two such a and a′ are equal if they consist of
exactly the same elements, with the same multiplicities.

Proposition 5.1.4. Let a and a′ be as just described. Then they are equal if∑
α∈a

wk,n(α) =
∑
α∈a′

wn,k(α), (5.10)

holding for all k, n ∈ N.

Proof. For a as above and ζ ∈ C, consider

fn,a(ζ) =
∑
α∈a

e−ζun(α), n ∈ N.

Each such f is an exponential type entire function. By (5.8) and (5.10) we have
that (fn,a − fn,a′)|Σ = 0, holding for all n ∈ N. Since Σ has a limiting point, this
implies fn,a(ζ) = fn,a′(ζ) for all ζ ∈ R and n ∈ N. Obviously, lim

ζ→+∞
fn,a(ζ) = na(0),

where na(0) ≥ 0 is the multiplicity of α = 0 in a. Then the just mentioned equality
yields na(0) = na′(0) and also∑

α∈a\{0}

e−ζun(α) =
∑

α∈a′\{0}

e−ζun(α). (5.11)
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Let α∗ and α′
∗ be the least positive elements of a and a′, respectively. Take n > 2

α 3 ,
α := min{α∗;α

′
∗}. Then, for such n and all α > α , one has un(α ) > un(α). Now

we multiply both sides of (5.11) by eζun(α ) and pass to the limit ζ → −∞. This yields
that α∗ = α′

∗ and na(α∗) = na′(α
′
∗). Thereafter, we subtract the coinciding terms

from both sides of (5.11) and proceed to comparing the remaining least elements of
a and a′. This eventually yields the equality to be proved.

Let A be the set of all a = {αl}1≤l≤m, m ∈ N0, 0 ≤ α1 ≤ α2 ≤ . . . αm.
Define

ρ(a, a′) =
∑
k,n∈N

2−k−nρk,n(a, a′)

1 + ρk,n(a, a′)
, (5.12)

ρk,n(a, a′) :=
∣∣∣∑
α∈a

wk,n(α) −
∑
α∈a′

wk,n(α)
∣∣∣.

By Proposition 5.1.4 it follows that ρ is a metric on A. Each a ∈ A can be
considered as a finite counting measure defined on the compact space (R+, r), for
which a(∆) =

∑
α∈a 1∆(a) = |a ∪ ∆|, holding for all Borel subsets ∆. The weak

topology of A is defined as the coarsest topology that makes continuous all the maps
a →

∑
α∈aw(a), w ∈ C(R+, Tr). In the weak topology, A is a closed subset of the

space of all finite positive measures on C(R+, Tr).
Proposition 5.1.5. (A, ρ) is a complete metric space. The corresponding metric
topology coincides with the weak topology that turns A into a locally compact Polish
space.

Proof. As each wk,n is in C(R+, Tr), the weak convergence of a sequence {am}m∈N ⊂
A to a certain a ∈ A yields ρ(a, am) → 0,m → +∞. Assume now that {am}m∈N is
a ρ-Cauchy sequence. By taking σ = 0 we then get from the latter that, for some
m∗ ∈ N, the cardinalities of all am,m > m∗, coincide. By Prohorov’s theorem this
yields that {am}m∈N contains a subsequence that weakly converges to some a. Hence,
the whole sequence converges in ρ to this a. Then the metric is complete and the
corresponding metric topology is exactly the weak topology of A. The separability
and local compactness follow by the fact that C(R+, Tr) is compact.

Let Γ be the set of all locally finite simple configurations on X. That is, each
γ ∈ Γ is a subset of X such that each compact Λ ⊂ X contains a finite number of
the elements of γ. Let now γ̆ be the pair (γ, n), γ ∈ Γ and n : γ → N. The value
of n at a given x ∈ γ can be considered as the multiplicity of x ∈ γ̆. That is, γ̆
is a configuration with multiple locations, for which γ is the ground configuration.
Sometimes, we will write nγ̆(x) to explicitly indicate that we mean the multiplicity

of x in the mentioned γ̆. By Γ̆ we denote the set of all such multiple configurations.
For γ̆ = (γ, n), we write γ = p(γ̆). The weak-hash, vague, topology of Γ̆ is defined
as the coarsest topology that makes continuous all the maps

γ̆ →
∑
x∈p(γ̆)

n(x)g(x), g ∈ Ccs(X).
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It is well-known, see [34], Lemma 1.2, that with this topology Γ̆ is a Polish space,
whereas Γ̂ is a Gδ subset of Γ̆, by which it is also Polish. Following Lenard [27] we
will also consider γ̆ as configurations of point particles, in which distinct particles
may have the same location. Such particles can be enumerated, which allows one to
write ∑

x∈p(γ̆)

n(x)g(x) =
∑
x∈γ̆

g(x), (5.13)

where in the second sum we mean a certain enumeration of this sort. In the same
sense, we will write∑

x∈γ̆

∑
x∈γ̆\x1

. . .
∑

x∈γ̆\{x1,x2,...,xm−1}

g(x1, . . . , xm), m ∈ N,

where in expressions like γ̆ \ x we treat x the singleton {x}, whereas γ̆ \ x is the
measure such that nγ̆\x(x) = nγ̆(x) − 1 and nγ̆\x(y) = nγ̆(y) for y ̸= x.

It is known, see, e.g., Zessin (1983), page 397, that there exists a collection
{vs}s∈N =: V ⊂⊂ C+

cs(X) of suitable functions such that the metric

d(γ̆, γ̆) =
∑
b∈N

2−sds(γ̆, γ̆
′)

1 + ds(γ̆, γ̆′)
, ds(γ̆, γ̆

′) :=
∣∣∣∑
x∈γ̆

vs(x) −
∑
x∈γ̆′

vs(x)
∣∣∣. (5.14)

is complete and consistent with the weak-hash topology of Γ̆. In the sequel, we will
always mean this topology of Γ̆. Obviously, we can and will assume that V contains
also the following functions.

Let δ be a complete metric of X and X ′ a countable dense subset of X. Each
x′ ∈ X ′ has a countable base of compact neighborhoods, which we denote by D(x′).
Each ∆ ∈ D(x′) contains balls

Bq(x
′) = {x ∈ X : δ(x, x′) < q}

with compact closures, where q is a rational number satisfying q ≤ q′ for a δ-specific
q′ ∈ Q. For x′ ∈ X ′, δ ∈ D(x′), q ≤ q′ and ς ∈ (0, 1) ∩ Q, let v ∈ C+

cs(X) be such
that:

(a) v(x) ≡ ς for x ∈ Bq(x
′);

(b) v(x) = 0 for x ∈ X \ ∆.

The countable set of all such functions is supposed to be a part of V , and hence
they are taken into account in (5.14). Since each vs has compact support, for each
compact λ ⊂ X and any two configurations, ds(γ̆ ∩ Λ, γ̆′ ∩ Λ) > 0 only for finitely
many s. Here γ̆ ∩ Λ := (p(γ̆) ∩ Λ, n).

For γ ∈ Γ, let a : γ → A be a map, for which we denote

|a(x)| =
∑
α∈a(x)

na(x)(α). (5.15)
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Then the pair γ̂ = (γ, a) is a marked configuration whose ground configuration is
γ and the mark map is a. By writing x̂ = (x, α) ∈ γ̂ we will mean that x ∈ γ and
α ∈ a(x). The configuration of marks a(x) = {α1, . . . α|a(x)|} yields the ages of the
particles located at x ∈ γ, whereas |a(x)| is the total number of such particles. In
some cases, we write aγ̂ to indicate that a is defined on a given γ̂. Let Γ̂ denote

the set of all marked configurations γ̂. Let also p̆ : Γ̂ → Γ̆ be the map such that
p̆(γ, a) = (γ, |a|), where |a|(x) = |a(x)| see (5.15). Then p ◦ p̆ maps γ̂ = (γ, a) into
its ground configuration γ. For brevity, by writing p(γ̂) we will mean (p◦ p̆)(γ̂). Our
aim now is to equip Γ̂ with a complete metric. Define

κ(γ̂, γ̂′) =
∑

s,k,n∈N

2−(s+k+n)κs,k,n(γ̂, γ̂′)

1 + κs,k,n(γ̂, γ̂′)
, (5.16)

κs,k,n(γ̂, γ̂′) :=
∣∣∣ ∑
x∈p(γ̂)

vs(x)
∑

α∈aγ̂(x)

wk,n(α) −
∑

x∈p(γ̂′)

vs(x)
∑

α∈aγ̂′(x)

wk,n(α)
∣∣∣.

Note that the latter can also be written as, cf. (5.13),

κs,k,n(γ̂, γ̂′) =
∣∣∣∑
x∈γ̂

gs,k,n(x̂) −
∑
x∈γ̂′

gs,k,n(x̂)
∣∣∣. (5.17)

gs,k,n(x, α) := vs(x)wk,n(α).

For a compact Λ ⊂ X, we write γ̂ ∩ Λ = (p(γ̂) ∩ Λ, a), where a is the restriction
of a from p(γ̂) to p(γ̂) ∩ Λ.

Proposition 5.1.6. For each ε > 0, one may find a compact Λε ⊂ X such that, for
any two configurations, the following holds

|κ(γ̂, γ̂′) − κ(γ̂ ∩ Λε, γ̂
′ ∩ Λε)| < ε. (5.18)

Proof. Fix ε > 0 and then pick s∗ ∈ N such that 2s∗ > 1
ε
. Now let Λε be covered by

the supports of vs with s ≤ s∗. For such s and all k, n ∈ N, we have κs,k,n(γ̂, γ̂′) =
κs,k,n(γ̂ ∩ Λε, γ̂

′ ∩ Λε), see (5.16). This clearly yields (5.18).

Since σ = 0 is in Σ, by (5.8) and (5.14) we have that

d(p̆(γ̂), p̆(γ̂′)) ≤ κ(γ̂, γ̂′) (5.19)

Proposition 5.1.7. The metric space (Γ̂, κ) is complete.

Proof. We begin by pointing out the following evident fact

κ̃s(γ̂, γ̂
′) :=

∑
k,n∈N

2−(s+k+n)κs,k,n(γ̂, γ̂′)

1 + κs,k,n(γ̂, γ̂′)
≤ κ(γ̂, γ̂′), (5.20)
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holding for all s ∈ N and γ̂, γ̂′. Let now {γ̂m = (γm, am)}m∈N ⊂ Γ̂ be a κ-Cauchy
sequence. By (5.19) the sequence {p̆(γ̂m)}m∈N ⊂ Γ̆ converges to some γ̆. Take now
x ∈ p(γ̆) and then pick a compact ∆ ⊂ X such that ∆ ∩ p(γ̆) = {x}. For this ∆,
we then set

nm(x) =
∑

y∈p(γ̆m)∩∆

nγ̆∩Λ(y), m ∈ N.

From the convergence of {p̆(γ̂m)}m∈N to γ̆, it follows that nm(x) → n(x); hence,
there exists m∗ ∈ N such that nm(x) = n(x) for all m > m∗. Now we pick x′ ∈ X ′

and q ∈ Q such that x ∈ B q
2
(x′) and the closure of Bq(x

′) lies in ∆. Let now vs ∈ V
be such that vs(y) = ς ∈ (0, 1) ∩ Q, y ∈ B q

2
(x′), and vs(y) = 0 for y ∈ X \ Bq(x

′).
For these m∗ and s, {γ̂m}m≥m∗+1 is also a κ̃s-Cauchy sequence, see (5.20), for which
we have

κs,k,n(γ̂m, γ̂m+l) = ς
∣∣∣ ∑
y∈p(γ̂m)∩∆

∑
α∈aγ̂m(y)

wσk,n(α) −
∑

y∈p(γ̂m+l)∩∆

∑
α∈aγ̂m+l(y)

wσk,n(α)
∣∣∣,

holding for all k, n ∈ N, m > m∗ and l ∈ N.
Let us enumerate x̂ = (x, α) ∈ γ̂m ∩ ∆ in such a way that αp,m ≤ αp+1,m for all
p. This yields γ̂m ∩ ∆ = {(x1,m, α1,m), . . . , (xn,m, αn,m)} with n = nm(x) = n(x).
Similarly, we have

γ̂m+l ∩ ∆ = {(x1,m+l, α1,m+l), . . . , (xn,m+l, αn,m+l)}

with the same n. Then {α1,m, ...αn,m} =: am ∈ A, and also {α1,m+l, ...αn,m+l} =:
am+l ∈ A, and the latter equality can be rewritten as follows

κs,k,n(γ̂m, γ̂m+l) = ς
∣∣∣ n∑
p=1

wσk,n(αp,m) −
n∑
p=1

wσk,n(αp,m+l)
∣∣∣ = ςρk,n(am, am+l),

see (5.12). By (5.20) and (5.12) we then get

ρ(am, am+l) ≤
2s

ς
κ̃s(γ̂m, γ̂m+l).

By Proposition 5.1.5 this yields the convergence of {am}m>m∗ to some a(x) ∈ A,
which holds for each x ∈ γ̆. This defines the map a : p(γ̆) → A, and hence
the configuration γ̂ = (p(γ̆), a). Our aim now is to prove that κ(γ̂m, γ̂) → 0 as
m→ +∞.

Fix ε > 0 and then pick a compact Λε ⊂ X such that (5.18) holds with ε
3

in
the right-hand side. Let Λo

ε be its interior. Then pick compact mutually disjoint
∆x ⊂ Λo, x ∈ p(γ̆) ∩ Λo such that p(γ̆) ∩ ∆x = {x}. As Λε is compact, p(γ̆) ∩ Λo is
finite. Let {xj}j≤J be an enumeration of it. For brevity, we will write ∆j in place
of ∆xj , j = 1, . . . , J . Similarly as above, by the convergence of {p̆(γ̂m)}m∈N to γ̆,
one finds m∗ such that p(γ̆)∩∆j is a singleton and |p̆(γ̂m)∩∆j| =: nm(xj) = n(xj),
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holding for all m > m∗ and j ≤ J . Now we repeat the construction just made in
each of ∆j. That is, we enumerate

γ̂m ∩ ∆j = {(xj1,m, α
j
1,m), . . . , (xjn(xj),m, α

j
n(xj),m

)},

and then set ajm = {αj1,m, . . . , α
j
n(xj),m

}. Then we set γ̂∗,m = (γ∗,m, a∗,m), where

γ∗,m = p(γ̆) ∩ Λo
ε = {x1, . . . , xJ} and a∗,m(xj) = ajm. In other words, the ground

configuration of γ̂∗,m is the part of the limiting configurations p(γ̂) contained in Λo
ε,

whereas the marks are taken from the corresponding part of γ̂m. By the triangle
inequality we then have

κ(γ̂, γ̂m) ≤ κ(γ̂ ∩ Λo
ε, γ̂∗,m) + κ(γ̂m ∩ Λo

ε, γ̂∗,m) +
ε

3
. (5.21)

By (5.16), for each s, k, n ∈ N, we have

κs,k,n((γ̂ ∩ Λo
ε, γ̂∗,m) =

∣∣∣ J∑
j=1

vs(xj)
[ ∑
α∈ajm

wσk,n(α) −
∑

α∈a(xj)

wσk,n(α)
]∣∣∣

≤ J max
j≤J

ρk,n(ajm, a(xj)).

Likewise,

κs,k,n((γ̂ ∩ Λo
ε, γ̂∗,m) =

∣∣∣ J∑
j=1

( n(xj)∑
p=1

vs(x
j
p,m)

) ∑
α∈ajm

wσk,n(α)

−
J∑
j=1

vs(xj)
∑
α∈ajm

wσk,n(α)
∣∣∣

≤ d(γ̆m ∩ Λo
ε, γ̆ ∩ Λo

ε).

Both latter estimates yield

κ(γ̂ ∩ Λo
ε, γ̂∗,m) ≤ J max

j≤J
ρ(ajm, a(xj))

κ(γ̂m ∩ Λo
ε, γ̂∗,m) ≤ d(γ̆m, γ̆).

By the aforementioned convergence γ̆m → γ̆ and ajm → a(xj), one can find mε > m∗
such that the first two commands in (5.21) are smaller than ε for m > mε, which
completes the proof.
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5.2 Measures and functions on configuration spaces

For vs and wk,n as in (5.16) we set

θs,k,n(x, α) = exp(−vs(x)wk,n(α)) − 1 = exp(−gs,k,n(x, α)) − 1,

see (5.17). Then θs,k,n(x, α) ∈ Ccs(X̂) and θs,k,n(x, α) ∈ (−1, 0]. Let Θ be the subset

of Ccs(X̂) consisting of

θ(x̂) = e−g(x̂) − 1, g(x, α) =
∑
j

v′sj(x)wkj ,nj
(α), (5.22)

where the latter sum runs over a finite subset of N3. That is, each such g is a finite
sum of gs,k,n defined in (5.17). Note that Θ is countable and closed under the map
(θ, θ′) → (θ ∗ θ′), where

(θ ∗ θ′)(x̂) = θ(x̂) + θ′(x̂) + θ(x̂)θ′(x̂) = −1 + (1 + θ(x))(1 + θ′(x)). (5.23)

Moreover, by (5.6), (5.8) and (5.22) it follows that

g(x, α) ≤ g(x, 0), (5.24)

holding for all α ≥ 0 and x ∈ X. Now for θ ∈ Θ, we set

F θ(γ̂) =
∏
x̂∈γ̂

(1 + θ(x̂)) = exp
∑
x̂∈γ̂

(
− g(x̂)

)
, γ̂ ∈ Γ̂ (5.25)

Then F θ(γ̂) ∈ (0, 1] for all γ̂ ∈ Γ̂, and hence F θ ∈ Cb(Γ̂). The set of all such
functions will be denoted by F θ. For µ ∈ P(Γ̂), we then have

µ(F θ) =

∫
Γ̂

F θ(γ̂)µ(dγ̂) ≤ 1.

The Poisson measure πρ with intensity measure ρ satisfies

πρ(F
θ) = exp (ρ(θ)) = exp

(∫
X̂

θ(x̂)ρ(dx̂)
)
. (5.26)

For µ1, µ2 ∈ P(Γ̂) , their convolution is defined by the expression

(µ1 ⋆ µ2)(F ) =

∫
Γ̂2

F (γ̂1 ∪ γ̂2)µ1(dγ̂1)µ2(dγ̂2), (5.27)

that ought to hold for all F ∈ Bb(Γ̂). For F θ as in (5.25), it takes the form

(µ1 ⋆ µ2)(F
θ) = µ1(F

θ)µ2(F
θ). (5.28)
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Recall that a set F ⊂ Cb(Γ̂) is called convergence determining if µn(F ) → µ(F ),
n→ +∞, implies µn ⇒ µ, holding for each {µn}n∈N ⊂ P(Γ̂). It is known, see Ethier
and Kurtz (1986), [13], Theorem 4.5, page 113, that such F enjoys this property
if it is closed under pointwise multiplication and is strongly separating. The latter
means that, for each γ̂ ∈ Γ̂ and ϵ > 0, there exists a finite family {Fj} ⊂ F such
that

inf
γ̂′∈Ĉϵ

max
j

|Fj(γ̂) − Fj(γ̂
′)| > 0, Ĉϵ := Γ̂ \ B̂ϵ(γ̂). (5.29)

Here
B̂ϵ(γ̂) = {γ̂′ : κ(γ̂, γ̂′) < ϵ},

see (5.16). Note that taking ϵ ≥ 1 does not make sense as κ(γ̂, γ̂′) < 1 for all
configurations.

Proposition 5.2.1. The set F θ is strongly separating and thus convergence deter-
mining.

Proof. By the very definition of Θ, cf. (5.23), F θ is closed under pointwise multipli-
cation. To prove (5.29), we note that, see (5.25) and (5.17),

|F θs,k,n(γ̂) − F θs,k,n(γ̂′)| ≥ min {F θs,k,n(γ̂);F θs,k,n(γ̂′))}κs,k,n(γ̂; γ̂′) (5.30)

holding for all γ̂, γ̂′ ∈ Γ̂. Now we fix γ̂ and ϵ ∈ (0, 1) and then take m such that
2−m < ϵ

2
. For this m and any γ̂ ∈ Ĉϵ, by (5.16) we readily conclude that

max
(s,k,n):s+k+n≤m

κs,k,n(γ̂, γ̂′) > 0,

which by (5.30) yields the proof.

The important properties of the family F θ are summarized in the following state-
ment.

Proposition 5.2.2. The following is true:

(i) B(Γ̂) = σ{F θ};

(ii) Bb(Γ̂) is the bp-closure of the linear span of F θ;

(iii) F θ is separating;

(iv) F θ is convergence determining.

The proof of (i) and (ii) is standard, see Dawson (1993), Lemma 3.2.5 and
Theorem 3.2.6, page 43, [11]. The proof of (iv) was done above, whereas (iii) is a
direct consequence of (iv), cf. Ethier and Kurtz (1986), [13].

Proposition 5.2.3. The Kolmogorov operator introduced in (5.1) has the property
L : F θ → Cb(Γ̂).
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Proof. We consider each of the summands in (5.1) – denoted by Li, i = 1, 2, 3 sepa-
rately. Thus,

(L3F
θ)(γ̂) = F θ(γ̂)

∫
X

θ(x, 0)χ(dx), (5.31)

i.e., it is just the multiplication operator by a θ-dependent constant. Next,

(L2F
θ)(γ̂) = −

∑
x̂∈γ̂

m(x̂)θ(x̂)F θ(γ̂ \ x̂) = F θ(γ̂)Ψ2(γ̂), (5.32)

where
Ψ2(γ̂) =

∑
x̂∈γ̂

ψ2(x̂) =
∑
x̂∈γ̂

m(x̂)(eg(x̂) − 1). (5.33)

Let us consider the following function

ϕτ (x̂) = g(x̂) − τm(x̂)(eg(x̂) − 1), τ ≥ 0.

Since each gs,k,n(x̂) < 1, see (5.17), it follows that g(x̂) ≤ Jθ where Jθ is just the
number of summands in the sum in (5.22). At the same time, m(x̂) ≤ m∗ < ∞.
Taking this into account, we set

τ∗ =
1

m∗eJθ
. (5.34)

Then
ϕτ∗(x̂) > 0, x̂ ∈ X̂.

Now by the simple inequality βe−τβ ≤ 1
eτ
, τ, β > 0, we have, see (5.32) and (5.33),

(L2F
θ)(γ̂) ≤ τ−1

∗ exp
(
− 1 −

∑
x̂∈γ̂

ϕτ∗(x̂)
)
≤ m∗e

Jθ−1, (5.35)

which yields the boundedness in question. The continuity of L2F
θ follows by the

continuity of Ψ2, which in turn follows by the fact that ψ2 ∈ Ccs(X̂). Finally,

(L1F
θ)(γ̂) =

(
−
∑
x̂∈γ̂

g′(x̂)
)
F θ(γ̂) =: Ψ1(γ̂)F θ(γ̂).

By (5.22) we have

g′(x, α) =
∑
j

vsj(x)w′
kj ,nj

(α),

which yields the continuity of Ψ1. At the same time, by (5.9) we have

|g′(x, α)| ≤
∑
j

vsj(x)|w′
kj ,nj

(α)| ≤ σ̄cg(x, α), (5.36)

which yields
|g′(x, α)| ≤ σ̄cJθ, (5.37)



51

and also

|(L1F
θ)(γ̂)| ≤ σ̄c

e

This completes the proof.

We summarize the estimates obtained above in the following

sup
γ̂∈Γ̂

|(LF θ)(γ̂)| ≤ χ(|θ(·, 0)|) +m∗e
Jθ−1 +

σ̄c

e
. (5.38)

Note that

χ(|θ(x, α)|) :=

∫
X

|θ(x, α)|χ(dx) =

∫
X

(1−e−g(x,α))χ(dx) ≤
∫
X

g(x, 0)χ(dx), (5.39)

see (5.24).

5.3 The Kolmogorov equation

5.3.1 Notions and useful estimates

For θ ∈ Θ, see (5.22), we set

θt(x, α) = θ(x, α + t) exp
(
M(x, α) −M(x, α + t)

)
, (5.40)

M(x, α) =

∫ α

0

m(x, β)dβ.

Let x̂ ∈ X̂, then x̂ → θt(x̂) is continuous and compactly supported for all t ≥ 0.
Moreover, both maps t→ θt(x̂) and α → θt(x, α) are continuously differentiable and
the following holds

∂

∂t
θt(x, α) =

∂

∂α
θt(x, α) −m(x, α)θt(x, α) (5.41)

Note that
(θt)s(x̂) = θt+s(x̂). (5.42)

Next, we define, cf. (5.22),

gt(x̂) = − log (1 + θt(x̂)). (5.43)

By (5.40) it follows that

|θt(x, α)| ≤ |θ(x, α + t)| = 1 − e−g(x,α+t) ≤ 1 − e−Jθ ,

where Jθ is the same as in (5.34). By (5.43) this yields

gt(x̂) ≤ Jθ, t ≥ 0, x̂ ∈ X̂. (5.44)
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By (5.40) we also have

|θ′t(x, α)| ≤ 2m∗ + θ′(x, α + t)| ≤ 2m∗ + Jθ,

where m∗ is as in (5.34) and the estimate

|θ′(x, α)| ≤ |g′(x, α)| ≤ Jθ

was used, see (5.22) and (5.37).
Now we define

F θ
t (γ̂) = exp

[ ∫ t

0

(∫
X

θ(x, α)e−M(x,α)χ(dx)
)
dα
]
F θt(γ̂, (5.45)

with θt as in (5.40). Clearly, F θ
t ∈ Cb(Γ̂) for all t > 0 and θ ∈ Θ, and

0 < F θ
t (γ̂) ≤ 1, γ̂ ∈ Γ̂. (5.46)

Furthermore, for all t, s ≥ 0, the following holds, see (5.42),

F θ
t+s = exp

(∫ s

0

∫
X

θu(x, 0)χ(dx)du
)
F θs
t . (5.47)

Let us prove that F θ
t ∈ Cb(Γ̂) for all θ ∈ Θ and t ≥ 0. As in the proof of Proposition

5.2.3 we divide L into three parts. Similarly as in (5.31) we have

(L3F
θ
t )(γ̂) ≤ χ(|θ(·, t)|) ≤ χ(g(·, 0)),

see (5.39) and (5.46). Since gt(x̂) satisfies (5.44) for all t ≥ 0, it follows that

|(L2F
θ
t )(γ̂)| ≤ m∗e

Jθ−1,

holding for all t > 0, see (5.35). The estimate of |(L1F
θ
t )(γ̂)| is obtained as follows.

Denote

qt(x, α) = exp
(
−
∫ α+t

α

m(x, β)dβ
)
.

Then by (5.40) we have

Φ(gt(x, α)) = qt(x, α)Φ(g(x, α + t)), Φ(b) := 1 − e−b, b ≥ 0, (5.48)

by which we get that gt(x, α) ≤ g(x, α + t). Let us prove that

gt(x, α)e−gt(x,α) ≥ qt(x, α)g(x, α + t)e−g(x,α+t). (5.49)

By (5.48) this is equivalent to the fact that the function b → b
eb−1

is decreasing,
which is obviously the case. Now we take the α-derivative from both sides of (5.48)
and obtain

g′t(x, α) = qt(x, α)g′(x, α + t) exp
(
gt(x, α) − g(x, α + t)

)
+ m(x, α + t)(exp (gt(x, α)) − 1) −m(x, α)(exp (gt(x, α)) − 1),
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that can be estimated as follows

|g′t(x, α)| = σ̄cqt(x, α)g′(x, α + t) exp
(
gt(x, α) − g(x, α + t)

)
(5.50)

+ 2m∗(exp (gt(x, α)) − 1) ≤ gt(x, α)eJθ(σ̄c+ 2m∗),

where we used (5.36), (5.44) and (5.49). Now we proceed as in obtaining (5.38),
which eventually yields

|(LF θ
t )(γ̂)| ≤ χ(g(·, 0)) +m∗e

Jθ−1 + (σ̄c+ 2m∗)e
Jθ =: lθ. (5.51)

The key property of the latter estimate is that it is uniform in t. However, it does
depend on θ. Along with the estimates derived above, we will use also the following.
For θ ∈ Θ, the corresponding g has the form as in (5.22). By (5.7) and (5.8) we
have that

exp
(
− σ̄ 3

√
4

3

)
wk,n(0) ≤ wk,n(α) ≤ wk,n(0),

which means that, cf. (5.24),

c̄g(x, 0) ≤ g(x, α) ≤ g(x, 0), c̄ := exp
(
− σ̄ 3

√
4

3

)
. (5.52)

For Φ as in (5.48), we have

b ≥ Φ(b) ≥ b− b2

2
, b ≥ 0,

which we use together with 5.52) to obtain the following

gt(x̂) ≥ qt(x̂)Φ(c̄g(x, 0)) ≥ exp (−m∗t)Φ
( c̄g(x, 0)

Jθ

)
(5.53)

≥ exp (−m∗t)
c̄g(x, 0)

Jθ

(
1 − c̄g(x, 0)

2Jθ

)
≥ exp (−m∗t)c̄θg(x, 0),

where, c̄θ := c̄
2Jθ
, and we have used the fact that g(x, 0) ≤ Jθ, see (5.44).

5.3.2 The operator

We fix γ̂ ∈ Γ̂ and calculate the t-derivative of (5.41). This yields

∂

∂t
(LF )(γ̂) =

(∫
X

θ(x, t)e−M(x,t)χ(dx)
)
F θ
t (γ̂) +

∑
x̂∈γ̂

∂θ(x̂)

∂t
F θ
t (γ̂ \ x̂) (5.54)

=
(∫

X

θt(x, 0)χ(dx)
)
F θ
t (γ̂) +

∑
x̂∈γ̂

∂

∂α
F θ
t (γ̂)

+
∑
x∈γ

m(x̂)
[
F θ
t (γ̂ \ x̂) − F θ

t (γ̂)
]

= (LF θ
t )(γ̂).
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This means that we have found a solution of the Kolmogorov equation for (5.1) in
the following sense. It is a map t→ Ft ∈ Cb(Γ̂) , which is pointwise in γ̂ continuously
t-differentiable and such that the equality in (2.4) holds. Our aim now is to solve
(2.4) in a suitable Banach space. Recall that the paths t→ θt have the flow property
(5.42), see also (5.47). Below, by saying of a property of θs, s ≥ 0, holding for all θ,
we attribute this property to all θs given in (5.40) with θ taken from Θ.

Proposition 5.3.1. For each θ ∈ Θ and s ≥ 0, it follows that F θs
t → F θs as t→ 0

in the norm of Cb(Γ̂).

Proof. For each γ̂, s ≥ 0 and θ ∈ Θ, by (5.54) it follows that

F θs
t (γ̂) − F θs(γ̂) = exp

(
−
∫ s

0

∫
X

θu(x, 0)χ(dx)du
)

[F θ
t+s(γ̂) − F θ

s (γ̂)] (5.55)

= exp
(
−
∫ s

0

∫
X

θu(x, 0)χ(dx)du
)

+

∫ s+t

s

(LF θ
u )(γ̂)du,

which by (5.51) yields

sup
γ̂∈Γ̂

|F θs
t (γ̂) − F θs(γ̂)| ≤ tlθ exp

(
−
∫ s

0

∫
X

θu(x, 0)χ(dx)du
)
. (5.56)

This completes the proof.

The next statement is a refinement of the one just proved.

Proposition 5.3.2. For each θ ∈ Θ, s ≥ 0 it follows that LF θs
t → LF θs as t → 0

in the norm of Cb(Γ̂).

Proof. First of all we note that the equality in the first line of (5.55) allows one to
obtain the property in question by showing that LF θ

t+s → LF θ
s in the same sense.

As in the proof of Proposition 5.2.3, we split L into three parts and consider each
of them separately.

Fix θ ∈ Θ and then denote

η̇(u) =

∫
X

θu(x, 0)χ(dx), η(t) =

∫ t

0

η̇(u)du. (5.57)

Then

|(L3F
θ
t+s)(γ̂) − (L3F

θ
s )(γ̂)| ≤ |η̇(t+ s)eη(t+s) − η̇(s)eη(s)|

+ |η̇(s)|eη(s)|F θ
t+s(γ̂) − F θ

s (γ̂)|

=: I1(t) + I2(t),

see (5.46). Then I1(t) → 0 as t → 0 since η̇(t)eη(t) is a continuous function of t. At
the same time, I2(t) can be estimated as in (5.56). This yields the proof for L3.
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Now we proceed to L2, for which it follows that

(L2F
θs
t )(γ̂) − (L2F

θs)(γ̂) = Jt(γ̂) +Kt(γ̂), (5.58)

Jt(γ̂) =
∑
x̂∈γ̂

−m(x̂)θt+s(x̂)

1 + θt+s(x̂)
[F θs
t (γ̂) − F θs(γ̂)]

Kt(γ̂) = F θs(γ̂)
∑
x̂∈γ̂

m(x̂)(θs(x̂) − θt+s(x̂))

(1 + θt+s(x̂))(1 + θs(x̂))
.

By (5.45) and (5.57) we have

F θs
t (γ̂) − F θs(γ̂) = (eη(t+s)−η(s) − 1)F θ

t+s(γ̂) (5.59)

+ F θt+s(γ̂) − F θs(γ̂) =: Υ1(t, γ̂) + Υ2(t, γ̂).

By (5.39) and (5.40), (5.57) it follows that

|eη(t+s)−η(s) − 1| ≤ tχ(g(·, 0)),

which then yields

Υ1(t, Γ̂γ̂) ≤ tχ(g(·, 0)) exp
(
−
∑
x̂∈γ̂

gt+s(x̂)
)
. (5.60)

To estimate Υ2 we write

ht(x̂) = min {gt+s(x̂); gs(x̂)}.

Then by (5.50) and (5.53) we get

|Υ2(t, γ̂)| ≤ exp
(
−
∑
x̂∈γ̂

ht(x̂)
)∑
x̂∈γ̂

|gt+s(x̂) − gs(x̂)| (5.61)

≤ exp (Jθ)(σ̄c+ 2m∗) exp
(
−
∑
x̂∈γ̂

ht(x̂)
)∑
x̂∈γ̂

∫ t+s

s

gu(x, α)du

≤ exp (Jθ)(σ̄c+ 2m∗) exp
(
− e−m∗tc̄θ

∑
x̂∈γ̂

g(x, 0)
)∑
x̂∈γ̂

tg(x, 0)

=: tCθe
−c̄θ(t)Ψ0(γ̂)Ψ0(γ̂),

c̄θ(t) := e−m∗tc̄θ,

Ψ0(γ̂) :=
∑
x̂∈γ̂

g(x, 0).
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At the same time,

0 ≤
∑
x̂∈γ̂

−m(x̂)θt+s(x̂)

1 + θt+s(x̂)
≤ m∗e

Jθ
∑
x̂∈γ̂

gt+s(x̂) =: m∗e
JθΨ1(t, γ̂).

Thereafter, we have

|Jt(γ̂)| ≤ tm∗e
Jθχ(g(·, 0))Ψ1(t, γ̂)e−Ψ1(t,γ̂)

+ tCθm∗e
JθΨ1(t, γ̂)Ψ0(γ̂)e−c̄θ(t)Ψ0(γ̂)

:= Π1(t, γ̂) + Π2(t, γ̂),

where Cθ, c̄θ(t) and Ψ0 are as in (5.61). Then

Π1(t, γ̂) ≤ tm∗e
Jθ−1χ(g(·, 0)) → 0, t→ +∞.

Let tθ > 0 be the (unique) solution of

e−m∗tc̄θ = 2
3
√
t.

Then for tθ, we have

Π2(t, γ̂) ≤ tCθm∗e
Jθ [Ψ0(γ̂)]2e−c̄θ(t)Ψ0(γ̂) (5.62)

≤ 3
√
tCθm∗e

Jθ−2 exp
(
− (c̄θ(t) − 2

3
√
t)Ψ0(γ̂)

)
≤ 3

√
tCθm∗e

Jθ−2,

which yields the convergence

sup
γ̂∈Γ̂

|Jt(γ̂)| → 0, t→ 0.

Now we turn to Kt(γ̂). First, by (5.41) we have

|θs(x̂) − θt+s(x̂)| =
∣∣∣ ∫ t+s

s

( ∂

∂α
θu(x, α) −m(x, α)θu(x, α)

)
du
∣∣∣. (5.63)

Next, by (5.43) and (5.40) it follows that∣∣∣ ∂
∂α

θu(x, α)
∣∣∣ = e−gu(x,α)|g′u(x, α)|

≤ eJθ(σ̄c+ 2m∗)gu(x, α)

≤ eJθ(σ̄c+ 2m∗)g(x, 0),

and also
|m(x, α)θu(x, α)| ≤ m∗gu(x, α) ≤ m∗g(x, 0).
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The latter two estimates yield

LHR(5.63) ≤ eJθ(c̄+ 3m∗)g(x, 0).

By (5.52) this yields

Kt(γ̂) ≤ tm∗(σ̄ + 3m∗)e
3JθΨ0(γ̂)e−c̄Ψ0(γ̂)

≤ tm∗(σ̄ + 3m∗)
e3Jθ−1

c̄
→ 0, t→ +∞.

By (5.58) this completes the proof for L2. Next, we write

(L1F
θs
t )(γ̂) − (L1F

θsθs)(γ̂) = Qt(γ̂) +Rt(γ̂), (5.64)

Qt(γ̂) =
∑
x̂∈γ̂

θ′t+s(x̂)
[
F θs
t (γ̂ x̂) − F θs(γ̂ \ x̂)

]
,

Rt(γ̂) =
∑
x̂∈γ̂

[
θ′t+s(x̂) − θ′s(x̂)

]
F θs(γ̂ \ x̂).

Then

Qt(γ̂) = −
∑
x̂∈γ̂

g′t+s(x̂)
[
F θs
t (γ̂) − F θs(γ̂)

]
+ F θs(γ̂)

∑
x̂∈γ̂

g′t+s(x̂)
[
egs(x̂)−gt+s(x̂) − 1

]
=: Q

(1)
t (γ̂) +Q

(2)
t (γ̂).

By (5.50) and then by (5.59), (5.60), (5.61) we get

|Q(1)
t (γ̂)| ≤ eJθ(σ̄c+ 2m∗)(Υ1(t, γ̂) + Υ2(t, γ̂))

∑
x̂∈γ̂

gt+s(x̂)

≤ tχ(g(·, 0))eJθ(σ̄c+ 2m∗)
(∑
x̂∈γ̂

gt+s(x̂)
)

exp
(
−
∑
x̂∈γ̂

gt+s(x̂)
)

+ tCθe
Jθ(σ̄c+ 2m∗)e

−c̄θ(t)Ψ0(γ̂)[Ψ0(γ̂)]2

=: Ξ
(1)
t (γ̂) + Ξ

(2)
t (γ̂).

Then
Ξ
(1)
t (γ̂) ≤ tχ(g(·, 0))eJθ−1(σ̄c+ 2m∗) → 0, t→ 0,

and also, cf. (5.62),

Ξ
(2)
t (γ̂) ≤ 3

√
tCθe

Jθ−2(σ̄c+ 2m∗) exp
(
− (c̄θ(t) − 2

3
√
t)Ψ0(γ̂)

)
≤ 3

√
tCθm∗e

Jθ−2(σ̄c+ 2m∗),
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for t ≤ tθ. The latter two estimates yield

sup
γ̂∈Γ̂

|Q(1)
t (γ̂)| → 0, t→ 0. (5.65)

Next, by (5.44), (5.50) and (5.52) we have

|Q(2)
t (γ̂)| ≤ eJθF θs(γ̂)

∑
x̂∈γ̂

|g′t+s(x̂)||gt+s(x̂) − gs(x̂)| (5.66)

≤ e3Jθ(σ̄c+ 2m∗)
2F θs(γ̂)

∑
x̂∈γ̂

gt+s(x̂)

∫ t+s

s

gu(x̂)du

≤ tJθe
3Jθ(σ̄c+ 2m∗)

2Ψ0(γ̂) exp (−c̄Ψ0(γ̂))

≤ tJθe
3Jθ

(σ̄c+ 2m∗)
2

c̄
→ 0, t→ 0,

which together with (5.65) yields

sup
γ̂∈Γ̂

|Qt(γ̂)| → 0, t→ 0. (5.67)

Now we turn to estimating Rt. By (5.40) we have

|θ′t+s(x, α) − θ′s(x, α)| ≤ |θ′(x, α + t+ s)||qt+s(x, α) − qs(x, α)| (5.68)

+ |θ′(x, α + t+ s) − θ′(x, α + s)|

+ |m(x, α + t+ s) −m(x, α + s)| · |θt+s(x, α)|

+ |m(x, α + s) −m(x, α)||θs(x, α)|

=: δ1(t, x̂) + δ2(t, x̂) + δ3(t, x̂) + δ4(t, x̂).

By (5.50) we have

δ1(t, x̂) ≤ e−g(x,α+t+s)|g′(x, α + t+ s)|
∫ α+t+s

α+s

m(x, β)dβ (5.69)

≤ tm∗e
Jθ(σ̄c+ 2m∗)g(x, 0).

To estimate δ2, by (5.43) we first get

θ′(x̂) = −g′(x̂)e−g(x̂),
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by which we then obtain

δ2(t, x̂) ≤ |g′(x, α + t+ s) − g′(x, α + s)|e−g(x,α+t+s)

+ |g′(x, α + s)||e−g(x,α+t+s) − e−g(x,α+s)|

≤ |g′(x, α + t+ s) − g′(x, α + s)|

+ |g′(x, α + s)||g(x, α + t+ s) − g(x, α + s)|

=: δ2,1(t, x̂) + δ2,2(t, x̂).

Now we recall that g(x, α) is as in (5.22) with wk,n defined in (5.8). Thus, we
can write

δ2,1(t, x̂) ≤
∑
j

vsj(x)

∫ t+s

s

|w′′kj, nj(α + u)|du. (5.70)

For each k and n, we have

|w′′
k,n(α)| = | − σku

′′

n(α)e−σkun(α) + [σku
′
n(α)]2e−σkun(α)|

≤ σ̄|u′′

n(α)| + |σ̄u′n(α)2| ≤ C̄,

holding for some C̄ > 0 that is independent of k, n and α. The latter conclusion
follows by (5.9) and the fact that |u′′

n(α)| ≤ 2ϕ(nα3) with

ϕ(β) =
1 + β2

(1 + β)3
, β ≥ 0.

Then by (5.70) we get
δ2,1(t, x̂) ≤ tC̄g(x, 0). (5.68)

At the same time, by (5.36) and (5.37) it follows that

δ2,2(t, x̂) ≤ |g′(x, α + s)|
∫ t+s

s

|g′(x, α + u)|du ≤ t(σ̄c)2Jθg(x, 0),

which together with (5.3.2) yields

δ2(t, x̂) ≤ t[C̄ + (σ̄c)2Jθ]g(x, 0). (5.68)

Finally, (5.2) and (5.43), (3.13) we have

δ3(t, x̂) ≤ κ(t)gt(x̂) ≤ κ(t)g(x, 0).

The same estimate holds true also for δ4(t, x̂). Then by (5.68) and (5.69), (5.3.2) we
have that

|θ′t(x, α) − θ′(x, α)| ≤ ω(t)g(x, 0), ω(t) → 0, t→ 0.
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holding for some continuous function ω and all x̂ ∈ X̂. Now we use this in (5.64)
and obtain, cf.(5.66)

|Rt(γ̂)| ≤ ω(t)eJθF θ(γ̂)Ψ0(γ̂) ≤ ω(t)eJθΨ0(γ̂)e−c̄Ψ0(γ̂) ≤ ω(t)eJθ

c̄
, (5.68)

which together with (5.67) yields

sup
γ̂∈Γ̂

|(L1F
θt)(γ̂) − (L1F

θ)(γ̂)| → 0, t→ 0.

This completes the whole proof.

5.3.3 The domain

We recall that Θ consists of the functions as in (5.22) and the countable collection
F θ ⊂ Cb(Γ̂) consists of the functions introduced in (5.25). It has a number of useful
properties established in Propositions 5.2.1 and 5.2.2. Let C0 be the linear span with
rational coefficients of the set F θs : s ∈ Q+, θ ∈ Θ, i.e., each F ∈ C0 is a finite linear
combination of F θs , with positive rational s and θs given in (5.40) with all possible
choices of θ ∈ Θ.

Remark 5.3.3. The set C0 is countable. It enjoys all the properties mentioned in
Proposition 5.2.2.

Now we set
C = C0, (5.69)

i.e., C is the closure of C0 in the norm of Cb(Γ̂), which we denote ∥ · ∥. With this
norm it is then a separable Banach space.

For λ > 0 and θ ∈ Θ and s ≥ 0, we define, cf. (5.45),

Fλ,θs(γ̂) =

∫ ∞

0

e−λtF θs
t (γ̂)dt (5.70)

=

∫ ∞

0

exp
[
− λt+

∫ t

0

(∫
X

θs(x, α)e−M(x,α)χ(dx)
)
dα
]
F θt+s(γ̂)dt.

Since θs(x, α) ≤ 0 and F θs
t satisfies (5.46), the above integral converges for each γ̂.

By the dominated convergence theorem and the boundedness F θs
t (γ̂) ≤ 1 it follows

that Fλ,θs ∈ Cb(Γ̂). Moreover, it can also be understood as the Bochner integral
in the latter Banach space. Therefore, Fλ,θ can be approximated in ∥ · ∥ by the
Riemann integral sums centered at rational t, which means that

Fλ,θs ∈ C, for all s ≥ 0 and λ > 0. (5.71)

At the same time, we also have

0 < Fλ,θs(γ̂) <
1

λ
, γ̂ ∈ Γ̂. (5.72)
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Let α ∈ (0,+∞). The continuous differentiability of the map

α → Fλ,θs(γ̂ \ x̂ ∪ (x, α)) ∈ R

for each γ̂ and x̂ ∈ γ̂ follows from the dominated convergence theorem.

Lemma 5.3.4. For each λ > 0, s ≥ 0 and θ ∈ Θ, the following holds

LFλ,θs = λFλ,θs − F θs (5.73)

Proof. By (5.45) and (5.70) we have

LFλ,θs = L

∫ +∞

0

e−λtF θs
t dt =

∫ +∞

0

e−λtLF θs
t dt (5.74)

=

∫ +∞

0

e−λt
∂

∂t
F θs
t dt = −F θs + λFλ,θs ,

where we have taken into account the upper bound in (5.72). The commutation
L
∫

=
∫
L can be justified by means of the Lebesgue dominated convergence theo-

rem.

Lemma 5.3.5. For each θ ∈ Θ and s ≥ 0, it follows that ∥λFλ,θs − F θs∥ → 0 and
∥λLFλ,θs − LF θs∥ → 0 as λ→ +∞.

Proof. In view of (5.72), {λFλ,θs : λ > 0} is bounded. By (5.70) we have

λFλ,θs(γ̂) =

∫ +∞

0

exp
(
− t+

∫ εt

0

(∫
X

θα+s(x, 0)χ(dx)
)
dα
)
F θεt+s(γ̂)dt,

where ε := λ− 1.
Then by (5.56) it follows that

|λFλ,θs(γ̂) − F θs(γ̂)| ≤
∫ +∞

0

e−t|F θs
εt (γ̂) − F θs(γ̂)|dt ≤ lθ

λ
,

which yields that ∥λFλ,θs − F θs∥ → 0 as λ→ +∞. In the same way, by Proposition
5.3.2 we have, cf. (5.3.2), that

∥λLFλ,θs − LF θs∥ ≤ ω̃
(1

λ

)
→ 0, λ→ +∞,

holding for an appropriate continuous ω̃ such that ω̃(ε) → 0 as ε→ 0.

Let D0(L) denote the linear span of the set {Fλ,θs : λ > 0, s ≥ 0, θ ∈ Θ}.
By Lemma 5.3.5 and (5.69) it follows that

C0 ⊂ D0(L), (5.75)

i.e., C0 is contained in the closure of D0(L) in the norm of Cb(Γ̂).
Hence, D0(L) is a dense subset of the Banach space C, see (5.69). Define

∥F∥L = ∥F∥ + ∥LF∥, F ∈ D0(L), (5.76)

where as above ∥ · ∥ is the norm of Cb(Γ̂) .
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Definition 5.3.6. By the domain of the Kolmogorov operator L, denoted by D(L),
we mean the closure of D0(L) in the graph-norm introduced in (5.76).

Lemma 5.3.7. The operator (L,D(L)) is closed and densely defined in C. Its re-
solvent set contains (0,+∞) and C0 ⊂ D(L).

Proof. In view of (5.71) and (5.75), the ∥ · ∥−closure of D(L) is C. The closedness
of (L,D(L)) is immediate, and the inclusion C0 ⊂ D(L) follows by the second part
of Lemma 5.3.5. By (5.73) it follows that the resolvent of L, denoted Rλ(L), has
the property

Rλ(L)F θs = Fλ,θs , λ > 0, s ≥ 0, θ ∈ Θ,

by which and (5.72) we also have that the operator norm of Rλ(L) satisfies

∥Rλ(L)∥ ≤ 1

λ

as F θs form a dense subset of C. This completes the whole proof.

5.3.4 Solving the Kolmogorov equation.

The result obtained in Lemma 5.3.7 allows one to solve the Kolmogorov equation
(2.4) in the following sense.

Theorem 5.3.8. Let (L,D(L)) and C be as in Lemma 5.3.7. Then, for each F ∈
D(L), there exists a unique continuously differentiable map

[0,+∞) ∋ t→ Ft ∈ D(L) ⊂ C,

which solves (2.4) with F0 = F . In particular, for F = F θs, with F θs as in (5.40),
s ≥ 0 and θ ∈ Θ, the solution has the following explicit form, cf. (5.45)

Ft(γ̂) = exp
(∫ t

0

(∫
X

θs(x, α)χ(dx)
)
dα
)
F θt+s(γ̂). (5.77)

Proof. By the celebrated Hille-Yosida theorem, see, e.g, Pazy (1983), page 8, [32],
(L,D(L)) is the generator of a C0−semigroup of bounded linear operators S(t) : C →
C such that ∥S(t)∥ = 1 and the solution in question is Ft = S(t)F , the uniqueness
of which is also a standard fact, see Pazy (1983), Theorem 1.3, page 102, [32]. The
validity of (5.77) follows by the calculations as in (5.54).

5.4 The result

5.4.1 The martingale problem

We begin by recalling, see Proposition 5.2.2, that the class of functions FΘ, see
(5.25), is separating, i.e., if µ1(F ) = µ2(F ) for all F ∈ FΘ, then µ1 = µ2, that holds
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for each pair µ1, µ2 ∈ P(Γ̂). Next, for t ≥ 0, µ ∈ P(Γ̂) and θ ∈ Θ, we determine
µt ∈ P(Γ̂) like in definition 4.1.2 by the relation

µt(F θ) = µ(F θt). (5.78)

Recall that, for a positive Radon measure ϱ on X̂, the Poisson measure π with
intensity measure ϱ is defined in (5.26). For t ≥ 0, we then introduce the Poisson
measure πt = πϱt by defining its intensity measure

ϱt(dx̂) = 1[0,t)(α) exp (−M(x̂))χ(dx)dα, (5.79)

where χ is the same as in (5.1), dα is the Lebesgue measure on R+, M is as in (5.40),
and 1[0,t)(·) in (2.1). Note that π0({∅}) = 1 since π0(F

θ) = 1 for all θ. Then we set,
see (5.27),

µt = πt ⋆ µ
t, t ≥ 0. (5.80)

Let δγ̂ be the Dirac measure centered at a given γ̂ ∈ Γ̂. Then

pγ̂t := πt ⋆ δ
t
γ̂ (5.81)

is a transition function, cf. Ethier and Kurtz (1986), page 156, [13]. Indeed, pγ̂t ∈
P(Γ̂), pγ̂0 = δγ̂ and the measurability of the map (t, γ̂) → pγ̂t (B) ∈ R, B ∈ B(Γ̂)
, follows by the measurability of (t, γ̂) → δtγ̂(B) ∈ R and the continuity of t →
πt(B) ∈ R. In view of the separating property of F θ, see Proposition 5.2.2, item
(iii), the flow property of {pγ̂t }t≥0 can be obtained by showing that

pγ̂t+s(F
θ) =

∫
Γ̂

pγ̂
′

t (F θ)pγ̂s (dγ̂
′), t, s ≥ 0, θ ∈ Θ. (5.82)

By (5.27) we have

pγ̂t (F
θ) = exp

(∫
X

∫ t

0

θα(x, 0)dαχ(dx)
)
δtγ̂′(F

θ)

= exp
(∫

X

∫ t

0

θα(x, 0)dαχ(dx)
)
F θt(γ̂′),

see also (5.78) and (5.40). By the latter formula and (5.79), (5.81) we then get

RHS(5.82) = exp
(∫

X

∫ t

0

θα(x, 0)dαχ(dx) +

∫
X

∫ s

0

θt+α(x, 0)dαχ(dx)
)
δsγ̂′(F

θt)

= exp
(∫

X

∫ t+s

0

θα(x, 0)dαχ(dx)
)
F θt+s(γ̂) = LHS(5.82).
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As is known, cf. Ethier and Kurtz (1986), Theorem 1.2, page 157 [13], the tran-
sition function (5.81) determines a Markov process X with values in Γ̂, the finite-
dimensional distributions of which are given by the following formula

P (X (s1) ∈ B1, . . . ,X (sn) ∈ Bn) =

∫
Γ̂

∫
B1

. . .

∫
Bn−1

p
γ̂n−1

sn−sn−1
(Bn)p

γ̂n−2

sn−1−sn−2
(dγ̂n−1)

× . . .× pγ̂1s2−s1(dγ̂2)p
γ̂
s1

(dγ̂1)µ(dγ̂), (5.83)

holding for all n ∈ N, 0 < s1 ≤ s2 ≤ . . . ≤ sn and Bi ∈ B(Γ̂). Here µ ∈ P(Γ̂) is the
initial distribution of X . Our aim is to show that such a process is unique up to
modifications.

5.4.2 The statement

The process determined by (5.83) describes the stochastic evolution of the population
which we consider. To verify whether it is the only one, we have to specify which
processes of this kind can be associated to the model defined by the Kolmogorov
operator (5.1). As is standard, the corresponding specification is made by their
martingale property, see Ethier and Kurtz (1986), Chapt. 4, [13].

Definition 5.4.1. Let X be a measurable process on some probability space (Ω,F,P)
with values in Γ̂. Let also {Ft}t≥0 be a filtration such that X (t) and∫ t

0

G(X (u))du

are Ft−measurable for all t and G ∈ B(Γ̂). We say that X is a solution of the
martingale problem for (L,D(L)) if for each F ∈ D(L),

M(t) := F (X(t)) −
∫ t

0

(LF )(X (u))du

is a Ft−martingale. If there exists a solution of the martingale problem for (L,D(L))
and uniqueness holds, we say that the problem is well-posed. In the same way, we
define the martingale problem for (L,D(L), µ) if the initial distribution µ ∈ P(Γ̂) is
specified.

The process related to the transition function (5.81) solves the martingale prob-
lem for (L,D(L)). Its uniqueness will be shown by proving that all other solutions
have the same finite-dimensional marginals, i.e., they coincide with those defined in
(5.83). We are going also to show that the solution is temporarily ergodic.

Definition 5.4.2. Let the martingale problem for (L,D(L), µ) be well-posed. Then
µ ∈ P(Γ̂) is said to be a stationary distribution if for each n and 0 < s1 < s2 <
. . . < sn, the n−dimensional marginals introduced in (5.83) corresponding to t +
s1, . . . , t+ sn are independent of t ≥ 0.
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Definition 5.4.3. By a solution of (2.3) we understand a map R+ ∋ t→ µt ∈ P(Γ̂)
possessing the following properties:

(a) for each F ∈ Cb(Γ̂, the map R+ ∋ t→ µt(F ) ∈ R is measurable;

(b) the equality in (2.3) holds for all F ∈ D(L).

If P is as in (5.83), then µ is stationary if and only if

µ =

∫
Γ̂

pγ̂sµ(dγ̂),

holding for all t > 0. Now we can formulate our result.

Theorem 5.4.4. The martingale problem for (L,D(L)) is well-posed in the sense of
Definition 5.4.1. Its solution is defined by finite-dimensional marginals, see (5.83),
with the transition function defined in (5.81). If the departure function satisfies
m(x̂) ≥ m0 > 0, holding for all x̂ and some m0, then there exists a unique stationary
distribution µ = πϱ, which is the Poisson measure with intensity measure

ϱ(dx̂) = exp (−M(x̂))χ(dx)dα. (5.84)

Moreover, in this case the solution X of the martingale problem for (L,D(L), µ) is
temporarily ergodic in the following sense. Let µt ∈ P(Γ̂) be the law of X (t), t ≥ 0.
Then µt ⇒ πϱ as t→ +∞.

Proof. The proof of Theorem 5.4.4 is divided into the following steps:

(a) Proving uniqueness.

(b) Showing the stationarity and ergodicity if m(x̂) ≥ m∗ > 0.

The realization of (a) is based on the Fokker-Planck equation (2.3) for this for L. It
turns out that its solutions can be obtained explicitly. We are going to do this now.

Lemma 5.4.5. For each µ0 ∈ P(Γ̂), the map t → µt defined in (5.80) is a unique
solution of (2.3).

Proof. For each θ ∈ Θ, the map t → µt(F
θ) = µ0(F

θt) is continuous by the domi-
nated convergence theorem and hence measurable. By (5.28) we then have

µt(F
θ) = πt(F

θ)µt(F
θ) = πt(F

θ)µ0(F
θt)

= exp
(∫ t

0

[ ∫
X

θ(x, α)e−M(x,α)χ(dx)
]
dα
)
µ0(F

θt).

Thus, the map t→ µt(F
θ) is continuous and hence measurable. Then the measura-

bility of t→ µt(F ) for all F ∈ Cb(Γ̂) follows by claim (ii) of Proposition 5.2.2. Now
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we turn to proving the equality in (2.3) for F = Fλ,θ, θ ∈ Θ, see Definition5.3.6. By
(5.80) and (5.45) for s, t ≥ 0 and θ ∈ Θ, we have

µt(F
θs) = exp

(∫ s

0

(∫
X

θα(x, 0)χ(dx)
)
dα
)
πt(F

θs)µt(F θs)

= exp
(∫ s

0

(∫
X

θα(x, 0)χ(dx)
)
dα

+

∫ t

0

(∫
X

θs+α(x, 0)χ(dx)
)
dα
)
µ0

(
F θs+t

)
= exp

(∫ s+t

0

(∫
X

θα(x, 0)χ(dx)
)
dα
)
µ0

(
F θs+t

)
= µ0

(
F θ
s+t

)
.

Then by Fubini’s theorem and the latter fact we get

µt(Fλ,θ) − µ0(Fλ,θ) =

∫ +∞

0

e−λs
[
µt(F

θ
s ) − µ0(F

θ
s )
]
ds

=

∫ +∞

0

e−λsµ0

(
F θ
t+s − F θ

s

)
ds

=

∫ +∞

0

e−λs
∫ t

0

∂

∂u
µ0

(
F θ
s+u

)
dsdu

=

∫ +∞

0

e−λs
∫ t

0

∂

∂s
µu(F

θ
s )dsdu

=

∫ t

0

µu

(∫ +∞

0

e−λs
∂

∂s
F θ
s ds
)
du =

∫ t

0

µu(LFλ,θ)du,

where we have used also (5.74). Now we prove uniqueness by applying arguments
similar to those used in Costantini and Kurtz (2015), Lemma 2.11. Assume that a
map t→ µt satisfies condition (a) Definition 5.4.3 and F , G ∈ Cb(Γ̂) are such that

µt(F ) − µ0(F ) =

∫ t

0

µs(G)ds,

holding for all t ≥ 0. Then the map t → µt(F ) is almost everywhere differentiable
and

dµt(F ) = µt(G)dt.

Then integrating by parts we get

−λ
∫ t

0

e−λsµs(F )ds = e−λtµt(F ) − µ0(F ) −
∫ t

0

e−λsµs(G)ds,



67

which yields

µ0(F ) = e−λtµt(F ) +

∫ t

0

e−λs
[
λµs(F ) − µs(G)

]
ds,

holding for all t, λ > 0. Passing here to the limit t → +∞, for F = Fλ,θ and
G = LFλ,θ, see (2.3), we arrive at

µ0(Fλ,θ) =

∫ +∞

0

e−λsµs(λFλ,θ − LFλ,θ)ds =

∫ +∞

0

e−λsµs(F
θ)ds, (5.85)

see (5.73). Assume now that (2.3) has two solutions, µt and µ̃t, satisfying the same
initial condition µt|t=0 = µ̃t|t=0 = µ0. By (5.85) the Laplace transforms of both maps
t→ µt(F

θ) and t→ µ̃t(F
θ) coincide, which yields µt(F

θ) = µ̃t(F
θ) holding for each

t and all F θ, θ ∈ Θ. Then the uniqueness in question follows by Proposition 5.2.2.
This completes the whole proof.

The existence of a solution of the martingale problem for (L,D(L)) was shown
by the very construction of the finite-dimensional marginals of X in (5.83). To prove
uniqueness we use the following fact, see Ethier and Kurtz (1986), Proposition 4.2,
page 184. Given µ ∈ P(Γ̂), let X and X ′ be solutions of the martingale problem
for (L,D(L), µ) whose onedimensional marginals, µt and µt

′, coincide for all t ≥ 0.
Then all their finite-dimensional marginals coincide and hence the problem is well-
posed. Clearly, both µt and µ′

t solve the Fokker-Planck equation with the initial
condition µ. Then they coincide by Lemma 5.4.5. This yields well-posedness.

Now we show the stated ergodicity. If m satisfiesm(x̂) ≥ m0 > 0, thenM(x, α) ≥
m0α, see (5.40), which for θ as in (5.40) yields

∀t>0|θt(x̂)| ≤ e−tm0 .

By the continuity of the map t→ µ(F θt) we then get

µt(F
θ) = exp

(∫ t

0

[
θα(x, 0)χ(dx)

]
dα
)
µ(F θt) (5.86)

→ exp
(∫ +∞

0

[ ∫
X

θα(x, 0)χ(dx)
]
dα
)
, t→ +∞.

By claim (iv) of Proposition 5.2.2 this yields µt ⇒ πϱ, see (5.84), holding for each

initial µ ∈ P(Γ̂). Clearly, µt = πϱ if µ = πϱ, which means that πϱ is a stationary
state. If there exists another stationary state, say µ′, then (5.86) fails to hold for
µ = µ′, which contradicts the convergence just established. This completes the proof
of Theorem 5.4.4.
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Chapter 6

Appendix

Here we prove that r̃ introduced in (5.3) satisfies (5.4). During the whole proof, we
deal with the function l(α) = α + 1

α
, for α > 0. In case α2 = 0, and α1, α2 ≤ 1 we

have ω(α1) = α1, ω(α2) = α2, r(α1, α3) = |α3 − α1|. The triangle inequality turns
into true statement:

α1 ≤ |α3 − α1| + α3.

For α3 > 1 we can have:

α3 − α1 ≤ α1 +
1

α3

or

α3 − α1 > α1 +
1

α3

.

For the first one we get:

ω(α1) = α1 ≤ α3 − α1 +
1

α3

= r(α1, α3) + ω(α3).

Then
2α1 ≤ l(α3).

The equality holds only for α1 = α3 = 1. In the second case we have true inequality
α1 ≤ α1 + 2

α3
.

For α1 > 1, α3 ≤ 1, we have two possibilities:

α1 − α3 ≤ α3 +
1

α1

or

α1 − α3 > α3 +
1

α1

.

In the first case we have

ω(α1) =
1

α1

≤ α1 = α1 − α3 + α3,
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which yields (5.4). In the second case we have:

ω(α1) =
1

α1

≤ α3 +
1

α1

+ α3.

It remained to consider the situation when α3 ≥ α3 > 1 and 1 < α1 < α3.
When α1 ≥ α3 > 1 for α1 − α3 ≤ 1

α1
+ 1

α1
we have:

ω(α1) =
1

α1

≤ 1

α3

≤ α1 − α3 +
1

α3

,

which proves (5.4) for this case.
When α3 ≥ α3 > 1 for α1 − α3 >

1
α1

+ 1
α1

we have:

ω(α1) =
1

α1

≤ 1

α3

≤ α1 +
1

α3

+
1

α3

,

which yields (5.4).
When 1 < α1 < α3 for α1 − α3 ≤ 1

α1
+ 1

α1
we have to prove :

1

α1

≤ α3 − α1 +
1

α3

,

which is equivalent to l(α1) ≤ l(α3). The latter follows by α3 ≥ α1 > 1 as l is
increasing. For α3 − α1 >

1
α1

+ 1
α3

the proof of (5.4) is immediate.
Now we consider the case 0 < α1 < α2. If α2 ≤ 1 and α3 = 0, then

α2 − α1 ≤ ω(α1) + ω(α2) = α1 + α2.

For α3 ∈ (0, 1], it follows that r̃(α3, αi) = |α3−αi|. Then (5.4) turns into the triangle
inequality for | · |.
The same is true also for α3 > 1 such that α3 − 1

α3
≤ 2α1. For

2α1 < α3 −
1

α3

≤ 2α2,

the right-hand side of (5.4) is α3 − α2 + α1 + 1
α3

. Then α2 − α1 ≤ RHS(5.4) turns
into 2(α2 − α1) ≤ l(α3), which holds since 2(α2 − α1) ≤ 2 < l(α3) for α3 > 1. For
2α2 < α3 − 1

α3
, the right-hand side of (5.4) is α1 + α2 + 2/α3, which is bigger than

α2 − α1.
Consider now 0 < α1 ≤ 1 < α2 and α2 − 1

α2
≤ 2α1. The latter means that

r̃(α2, α1) = α2 − α1.

For α3 = 0, the right-hand side of (5.4) is α1 + 1
α2
, and the latter turns into α2 −

1
α2

≤ 2α1, which holds in this case. The same is true for 2α3 ≤ α2 − 1
α2

. For

α2 − 1
α2

≤ 2α3 ≤ 2α1, the right-hand side of (5.4) is α2 − α3 + α1 − α3, which is
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bigger than α2 − α1 as α3 ≤ α1.
For α1 ≤ α3 ≤ 1, the right-hand side of (5.4) is

α2 − α3 + α3 − α1 = LHS(5.4),

Next, consider 1 < α3 ≤ α2, where

α3 −
1

α3

≤ α2 −
1

α2

≤ 2α1.

For α2 − 1
α2

≤ l(α3), the right-hand side of (5.4) is

α2 − α3 + α3 − α1 = RHS(5.4).

The case of α2 − 1
α2
> l(α3) > 2 is impossible since α2 − 1

α2
≤ 2α1 ≤ 2. For α3 > α2

such that α3 − 1
α3

≤ 2α1 and α3 − 1
α3

≤ l(α2), we have r̃(α3, α1) = α3 − α1 and
r̃(α3, α2) = α3 − α2. Then the right-hand side of (5.4) is

α3 − α1 + α3 − α2 = 2α3 − (α2 + α1),

which is bigger than α2 − α1. The case of α3 − 1
α3

> l(α2) is impossible for α3 −
1
α3

≤ 2α1. For α3 > α2 such that α3 − 1
α3

> 2α1 and α3 − 1
α3

≤ l(α2), we have

r̃(α3, α1) = α1 + 1
α3

and r̃(α3, α2) = α3 − α2. Then the right-hand side of (2.2) is

l(α3) − α2 + α1,

which yields (5.4) in the form 2(α2−α1) ≤ l(α3). By α2− 1
α2

≤ 2α1, α2 > 1, we have

that 2(α2−α1) ≤ 2
√

1 + α2
1, whereas α3− 1

α3
> 2α1 yields l(α3) > l(α∗) = 2

√
1 + α2

1,

which proves (5.4) in this case. Here α∗ is the positive solution of α− 1
α

= 2α1.
For α3 > α2 such that α3− 1

α3
> 2α1 and α3− 1

α3
> l(α2), we have r̃(α3, α1) = α1+ 1

α3

and r̃(α3, α2) = 1
α3

+ 1
α2
. Then (5.4) turns to

α2 − α1 ≤ α1 + 2/α3 +
1

α2

,

which holds as α2 − 1
α2

≤ 2α1.

Consider now 0 < α1 ≤ 1 < α2 and α2 − 1
α2

> 2α1. The latter means that

r̃(α1, α2) = α1+ 1
α2
. For α3 ∈ [0, α1], we have that r̃(α1, α3) = α1−α3 and r̃(α2, α3) =

α3 + 1
α2
. Hence, (5.4) turns into equality.

For α3 ∈ (α1, 1] such that α2− 1
α2
> 2α3, we have the right-hand side of (5.4) in the

following form

α3 − α1 + α3 +
1

α2

,

which is bigger that r̃(α1, α2) since α1 < α3.
For α3 ∈ (α1, 1] such that α2 − 1

α2
≤ 2α3, we have that the right-hand side of (5.4)

is
α3 − α1 + α2 − α3 = α2 − α1 > r̃(α1, α2).
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Consider now α3 > 1 such that α3 − 1
α3

≤ 2α1, which means that α3 < α2

and r̃(α1, α3) = α3 − α1. For r̃(α2, α3) = α2 − α3, the right-hand side of (5.4) is
α2 − α3 + α3 − α1 ≥ r̃(α2, α3). For r̃(α2, α3) = 1

α3
+ 1

α2
, the right-hand side of (5.4)

is

α3 − α1 +
1

α2

+
1

α3

;

hence, (5.4) turns into 2α1 ≤ l(α3), which holds since α1 ≤ 1 and l(α3) ≥ 2. For
α3 > 1 such that α3 − 1

α3
> 2α1, we have that r̃(α1, α3) = α1 + 1

α3
. Then (5.4) turns

into
1

α2

≤ 1

α3

+ r̃(α2, α3), (6.1)

which clearly holds for α3 ≤ α2, and also for α3 > α2, where for r̃(α2, α3) = α3 −α2

it turns into l(α2) ≤ l(α3) – which is true as l(α) is increasing for α > 1. For
r̃(α2, α3) = 1

α3
+ 1

α2
, the validity (6.1) is immediate.

Let us consider now the case of 1 < α1 < α2 and l(α1) ≤ α2 − 1
α2
, where

r̃(α2, α1) = 1
α1

+ 1
α2
. For α3 ≤ 1 such that 2α3 ≤ α1 − 1

α1
, we have r̃(α3, αi) =

α3 + 1
αi
, i = 1, 2. Then (5.4) obviously holds.

For α3 ≤ 1 satisfying α1 − 1
α1
< 2α3 ≤ α2 − 1

α2
, we have r̃(α3, α1) = α1 − α3 and

r̃(α3, α2) = α3 + 1
α2
. Hence, (5.4) turns into equality in this case. The remaining

case α2 − 1
α2
< 2α3 ≤ 2 is impossible since α2 − 1

α2
≥ l(α1) > 2.

For α3 > 1 such that 2α3 ≤ α1− 1
α1
, we have r̃(α3, αi) = 1

α3
+ 1

αi
, i = 1, 2. Then (5.4)

obviously holds. For α3 ∈ (1, α1] satisfying α1 − 1
α1

< 2α3 ≤ α2 − 1
α2
, (5.4) turns

into
1

α1

+
1

α2

≤ α1 − α3 +
1

α2

+
1

α3

,

which holds for α3 ≤ α1 as the function α − 1
α

is increasing. For α3 ∈ (α1, α2] such
that α3− 1

α3
≤ l(α1) < l(α3) < α2− 1

α2
, the right-hand side of (5.4) is α3−α1+ 1

α3
+ 1
α2
,

and hence the latter turns into l(α1) < l(α3). For α3 ∈ (α1, α2] satisfying α3 − 1
α3

≤
l(α1) and α2 − 1

α2
≤ l(α3), we have (5.4) in the form 1

α2
+ 1

α1
≤ α2 − α3 + α3 − α1,

which holds as l(α1) < α2 − 1
α2
. For α3 ∈ (α1, α2] satisfying l(α1) < α3 − 1

α3
and

α2 − 1
α2

≤ l(α3), the right-hand side of (5.4) is

1

α1

+
1

α3

+ α2 − α3

which is bigger than r̃(α1, α2) as α− 1
α

is increasing. For α3 > α2 such that α3− 1
α3

≤
l(α2), the right-hand side of (5.4) is

1

α1

+
1

α3

+ α3 − α2.

Hence, (5.4) holds as l(α2) < l(α3). For α3 − 1
α3
> l(α2), (5.4) turns into

1

α1

+
1

α2

≤ 1

α1

+
1

α3

+
1

α3

+
1

α2

.
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Finally, let us consider the case of 1 < α1 < α2 and l(α1) > α2 − 1
α2
, where

r̃(α2, α1) = α2 − α1. For α3 ≤ 1 such that 2α3 ≤ α1 − 1
α1
, it follows that r̃(αi, α3) =

α3 + 1
αi
, i = 1, 2. Then (5.4) turns into

α2 −
1

α2

≤ l(α1) + 2α3,

which evidently holds in this case. For α1 − 1
α1

< 2α3 ≤ α2 − 1
α2
, we have that

r̃(α1, α3) = α1 − α3 and r̃(α2, α3) = α3 + 1
α2
. Then (5.4) turns into

α2 −
1

α2

≤ 2α1,

which is the case for 2α1 > l(α1) > α2 − 1
α2
.

For α3 ≤ 1 satisfying 2α3 > α2 − 1
α2
, it follows that r̃(αi, α3) = αi − α3, i = 1, 2.

Then (5.4) turns into
2α3 ≤ 2α1.

which is obviously the case.
For α3 ∈ (1, α1] such that l(α3) ≤ α1− 1

α1
, we have that r̃(αi, α3) = 1

αi
+ 1

α3
, i = 1, 2.

Then (5.4) amounts to α2 − 1
α2

≤ l(α1) + 2/α3, which obviously holds.

For α1 − 1
α1
< l(α3) ≤ α2 − 1

α2
, we have that r̃(α1, α3) = α1 − α3 and r̃(α2, α3) =

1
α2

+ 1
α3
. Then (5.4) amounts to

α1 − α3 + α1 +
1

α3

≥ α2 −
1

α2

,

which is the case for

α1 − α3 + α1 +
1

α3

≥ α1 +
1

α3

≥ l(α1) > α2 −
1

α2

.

For α2 − 1
α2
< l(α3), we have r̃(αi, α3) = αi − α3, i = 1, 2. Then (5.4) is

α2 − α1 ≤ α2 − α3 + α1 − α3,

which obviously holds as α3 ≤ α1.
Now we consider α3 ∈ (α1, α2]. For α3 − 1

α3
≤ l(α1), we have r̃(α1, α3) = α3 −α1

and r̃(α2, α3) = α2 − α3, which yields equality in (5.4).
Recall that α2 − 1

α2
< l(α1); hence, α3 − 1

α3
> l(α1) is impossible for α3 ≤ α2.

It remains to consider α3 > α2. For α3 − 1
α3

≤ l(α1), we have that r̃(αi, α3) =
α3 − αi, i = 1, 2. Then (5.4) takes the form

α2 − α1 ≤ 2α3 − α1 − α2,

which obviously holds in this case. For l(α1) < α3 − 1
α3

≤ l(α2), (5.4) amounts to

2α2 ≤ l(α3) + l(α1), which holds as l(α1) > α2 − 1
α2

(assumed) and l(α3) > α2 + 1
α2
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for α3 > α2. For α3 − 1
α3
> l(α2), we have that r̃(α3, αi) = 1

α3
+ 1

αi
, i = 1, 2. Then

(5.4) turns into

α2 − α1 ≤ 2/α3 +
1

α2

+
1

α1

,

which holds since l(α1) > α2 − 1
α2
.

This completes the whole proof of Proposition 5.1.1.
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