ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXXV, NO. 1, 2021

SECTIO A

61 - 67

JAN KUREK and WŁODZIMIERZ M. MIKULSKI

On lifting of 2-vector fields to r-jet prolongation of the tangent bundle

ABSTRACT. If $m \geq 3$ and $r \geq 1$, we prove that any natural linear operator A lifting 2-vector fields $\Lambda \in \Gamma(\bigwedge^2 TM)$ (i.e., skew-symmetric tensor fields of type (2,0)) on m-dimensional manifolds M into 2-vector fields $A(\Lambda)$ on r-jet prolongation J^rTM of the tangent bundle TM of M is the zero one.

Introduction. All manifolds considered in this paper are assumed to be finite dimensional and smooth. Maps between manifolds are assumed to be smooth (of C^{∞}).

Let $\mathcal{M}f_m$ be the category of m-dimensional manifolds and their submersions and \mathcal{VB} be the category of vector bundles and their vector bundle homomorphisms.

The r-jet prolongation of the tangent bundle over m-manifolds is the (vector bundle) functor $J^rT: \mathcal{M}f_m \to \mathcal{VB}$ sending any m-manifold M into the vector bundle J^rTM of r-jets j_x^rX at points $x \in M$ of vector fields X on M and every $\mathcal{M}f_m$ -map $\varphi: M \to N$ into $J^rT\varphi: J^rTM \to J^rTN$ given by $J^rT\varphi(j_x^rX) = j_{\varphi(x)}^r(T\varphi \circ X \circ \varphi^{-1})$.

An $\mathcal{M}f_m$ -natural linear operator $A: \bigwedge^2 T \leadsto \bigwedge^2 T(J^rT)$ is an $\mathcal{M}f_m$ -invariant family of **R**-linear regular operators (functions)

$$A: \Gamma\biggl(\bigwedge^2 TM\biggr) \to \Gamma\biggl(\bigwedge^2 T(J^rTM)\biggr)$$

²⁰¹⁰ Mathematics Subject Classification. 58A20, 58A32.

Key words and phrases. Natural operator, 2-vector field, r-jet prolongation.

for m-manifolds M, where $\Gamma(\bigwedge^2 TN)$ is the vector space of 2-vector fields (i.e., skew-symmetric tensor fields of type (2,0)) on a manifold N. The invariance of A means that if $\Lambda \in \Gamma(\bigwedge^2 TM)$ and $\Lambda_1 \in \Gamma(\bigwedge^2 TM_1)$ are φ -related (i.e., $\bigwedge^2 T\varphi \circ \Lambda = \Lambda_1 \circ \varphi$) for a $\mathcal{M}f_m$ -map $\varphi : M \to M_1$, then $A(\Lambda)$ and $A(\Lambda_1)$ are $J^T T\varphi$ -related.

The main result of the present note can be written as follows.

Theorem 0.1. If $m \geq 3$ and $r \geq 1$, then any natural linear operator A lifting 2-vector fields $\Lambda \in \Gamma(\bigwedge^2 TM)$ on m-manifolds M into 2-vector fields $A(\Lambda) \in \Gamma(\bigwedge^2 T(J^rTM))$ on J^rTM is the zero one.

The general concept of natural operators can be found in the fundamental monograph [2]. Natural operators lifting 2-vector fields can be applied in investigations of Poisson structures. That is why, they are studied in many papers, see e.g. [1, 3].

From now on, the usual coordinates on \mathbf{R}^m will be denoted by x^1, \ldots, x^m . The usual canonical vector fields on \mathbf{R}^m will be denoted by $\partial_1, \ldots, \partial_m$.

1. Some lemmas. The proof of Theorem 0.1 will occupy the rest of the note. We start with several lemmas.

Lemma 1.1. Let $m \geq 3$ and $r \geq 1$ be integers. Consider an $\mathcal{M}f_m$ -natural linear operator $A: \bigwedge^2 T \hookrightarrow \bigwedge^2 T(J^r T)$. Assume that $A((x^1)^q \partial_2 \wedge \partial_3)_{|j_0^r \partial_1} = 0$ for $q = 0, 1, 2, \ldots$. Then A = 0.

Proof. To prove that A = 0, it is sufficient to show that $A(\Lambda)_{|j_x^r Y} = 0$ for any m-manifold M, any $x \in M$, any $Y \in \mathcal{X}(M)$ and any $\Lambda \in \Gamma(\bigwedge^2 TM)$.

Of course, we may (without loss of generality) assume $Y_{|x} \neq 0$. Then by the invariance of A with respect to charts and the Frobenius theorem we may assume $M = \mathbf{R}^m$, x = 0 and $Y = \partial_1$. Since A is linear, we may assume that $\Lambda = fZ_1 \wedge Z_2$, where $f : \mathbf{R}^m \to \mathbf{R}$ and Z_1 and Z_2 are constant vector fields on \mathbf{R}^m . Moreover, we may assume that ∂_1, Z_1, Z_2 are \mathbf{R} -linearly independent. Then, because of the invariance of A with respect to linear isomorphisms, we may assume that $Z_1 = \partial_2$ and $Z_2 = \partial_3$. Then by the multi-linear Peetre theorem (Theorem 19.9 in [2]) we may assume that $f = (x_1)^{\alpha_1}(x^2)^{\alpha_2}(x^3)^{\alpha_3}\dots(x^m)^{\alpha_m}$ is an arbitrary monomial.

Let $\alpha_1, \ldots, \alpha_m$ be arbitrary non-negative integers. There exists a 0-preserving $\mathcal{M}f_m$ -map $\varphi = (x^1, \varphi^2(x^2), x^3, \ldots, x^m)$ preserving x^1, x^3, \ldots, x^m , ∂_1 , ∂_3 and sending (the germ at 0 of) ∂_2 into (the germ at 0 of) $\partial_2 + (x^2)^{\alpha_2}\partial_2$. Then by the invariance of A with respect to φ , from the assumption $A((x^1)^{\alpha_1}\partial_2 \wedge \partial_3)|_{j_0^r\partial_1} = 0$, we get

$$A((x^1)^{\alpha_1}\partial_2 \wedge \partial_3 + (x^1)^{\alpha_1}(x^2)^{\alpha_2}\partial_2 \wedge \partial_3)_{|j_0^r\partial_1} = 0.$$

Then $A((x^1)^{\alpha_1}(x^2)^{\alpha_2}\partial_2 \wedge \partial_3)_{|j_0^r\partial_1} = 0$. Furthermore, there exists an $\mathcal{M}f_m$ map $\psi = (x^1, x^2, \psi^3(x^3, \dots, x^m), \dots, \psi^m(x^3, \dots, x^m))$ preserving $0, x^1, \dots, x^m$

 x^2 , ∂_1 , ∂_2 and sending the germ at 0 of ∂_3 into the germ at 0 of $\partial_3 + (x^3)^{\alpha_3} \dots (x^m)^{\alpha_m} \partial_3$. Then by the invariance of A with respect to ψ , from the equality $A((x^1)^{\alpha_1}(x^2)^{\alpha_2}\partial_2 \wedge \partial_3)_{|j_0^n}\partial_1 = 0$, we get

$$A((x^{1})^{\alpha_{1}}(x^{2})^{\alpha_{2}}\partial_{2} \wedge \partial_{3} + (x^{1})^{\alpha_{1}}(x^{2})^{\alpha_{2}}(x^{3})^{\alpha_{3}} \dots (x^{m})^{\alpha_{m}}\partial_{2} \wedge \partial_{3})_{|j_{0}^{r}\partial_{1}} = 0.$$

Then $A((x^1)^{\alpha_1}(x^2)^{\alpha_2}(x^3)^{\alpha_3}\dots(x^m)^{\alpha_m}\partial_2\wedge\partial_3)_{|j_0^r\partial_1}=0$. The lemma is complete.

Lemma 1.2. (Lemma 42.4 in [2]) Let N be a n-manifold and $x_o \in N$ be a point. Let X and Y be vector fields on a manifold N such that $X_{|x_o} \neq 0$ and $j_{x_o}^r(X) = j_{x_o}^r(Y)$. Then there exists an $\mathcal{M}f_n$ -map φ such that $j_{x_o}^{r+1}(\varphi) = j_{x_o}^{r+1}(\mathrm{id})$ and $(\varphi)_*Y = X$ on some neighborhood of x_o .

Lemma 1.3. Let $m \geq 3$ and $r \geq 1$ be integers. Consider an $\mathcal{M}f_m$ -natural linear operator $A: \bigwedge^2 T \hookrightarrow \bigwedge^2 T(J^r T)$. Assume that $A((x^1)^q \partial_2 \wedge \partial_3)_{|j_0^r \partial_1} = 0$ for $q = 0, 1, 2, \ldots, r$. Then A = 0.

Proof. Let $q \ge r+1$ be an integer. Since $j_0^r \partial_2 = j_0^r (\partial_2 + (x^1)^q \partial_2)$, then (by Lemma 1.2) there exists an $\mathcal{M} f_m$ -map

$$\varphi = (\varphi^1(x^1, x^2), \varphi^2(x^1, x^2), x^3, \dots, x^m)$$

preserving ∂_3 , sending the germ at 0 of ∂_2 into the germ at 0 of $\partial_2 + (x^1)^q \partial_2$ and such that $j_x^{r+1} \varphi = j_0^{r+1} (\mathrm{id})$. Then φ preserves $j_0^r \partial_1$. Using the invariance of A with respect to φ , from assumption $A(\partial_2 \wedge \partial_3)_{|j_0^r \partial_1} = 0$, we get $A(\partial_2 \wedge \partial_3 + (x^1)^q \partial_2 \wedge \partial_3)_{|j_0^r \partial_1} = 0$. So, $A((x^1)^q \partial_2 \wedge \partial_3)_{|j_0^r \partial_1} = 0$. Then $A((x^1)^q \partial_2 \wedge \partial_3)_{|j_0^r \partial_1} = 0$ for any $q = 0, 1, \ldots$ So, A = 0 because of Lemma 1.1. The lemma is complete.

Let $\mathcal{J}^r(X^C)$ be the flow lift of a vector field X on M to J^rTM and $\mathcal{J}^r(X^V)$ be the vertical lift of X to J^rTM given by

$$\mathcal{J}^r(X^V)_{|j^r_xY} = \frac{d}{dt}_{|t=0}(j^r_xY + tj^r_xX).$$

Lemma 1.4. Let X be a vector field on a manifold M such that $X_{|x_o} = 0$ for some point $x_o \in M$. Let $\rho = j_{x_o}^r Y \in J^r T_{x_o} M$. Then

$$\mathcal{J}^{r}(X^{C})_{|\rho} = -\frac{d}{d\tau}_{|\tau=0}(\rho + \tau j_{x_{o}}^{r}([X,Y])) = -\mathcal{J}^{r}([X,Y]^{V})_{\rho},$$

where the bracket is the usual one on vector fields.

Proof. Let $\{\varphi_t\}$ be the flow of X. Then $\{J^r T \varphi_t\}$ is the flow of $\mathcal{J}^r(X^C)$ and $\varphi_t(x_o) = x_o$ for any sufficiently small t. Then

$$\begin{split} \mathcal{J}^{r}(X^{C})_{|\rho} &= \frac{d}{dt}_{|t=0} J^{r} T \varphi_{t}(j_{x_{o}}^{r}(Y)) = \frac{d}{dt}_{|t=0} j_{x_{o}}^{r}((\varphi_{t})_{*}Y) \\ &= -\frac{d}{dt}_{|t=0} j_{x_{o}}^{r}((\varphi_{-t})_{*}Y)) = -\frac{d}{d\tau}_{|\tau=0} (\rho + \tau j_{x_{o}}^{r}([X,Y])) \,. \end{split}$$

Lemma 1.5. For any $\lambda \in \mathbf{R}$, the collection consisting of

$$v_i(\lambda) := \mathcal{J}^r((\partial_i)^C)_{|j_0^r(\lambda \partial_1)} \text{ and } V_j^{\alpha}(\lambda) := \mathcal{J}^r((x^{\alpha} \partial_j)^V)_{|j_0^r(\lambda \partial_1)}$$

for all i, j = 1, ..., m and $\alpha = (\alpha_1, ..., \alpha_m) \in (\mathbf{N} \cup \{0\})^m$ with $|\alpha| = \alpha_1 + \cdots + \alpha_m \le r$ is the basis in $T_{j_0^r(\lambda \partial_1)} J^r T \mathbf{R}^m$. Of course, $x^{\alpha} := (x^1)^{\alpha_1} \cdot \cdots \cdot (x^m)^{\alpha_m}$.

Proof. We have $V_j^{\alpha}(\lambda) = \frac{d}{dt}_{|t=0}(j_0^r(\lambda\partial_1) + tj_0^r(x^{\alpha}\partial_j))$. So, the lemma is clear.

Lemma 1.6. Let $m \geq 3$ and $r \geq 1$ be integers. Consider an $\mathcal{M}f_m$ -natural linear operator $A: \bigwedge^2 T \leadsto \bigwedge^2 T(J^rT)$. Denote $v_i := v_i(1)$ and $V_i^{\alpha} := V_i^{\alpha}(1)$. Then, given $q = 0, 1, \ldots, r-1$, we have

$$A((x^1)^q \partial_2 \wedge \partial_3)_{|j_0^T(\partial_1)} = a^{(q)} v_2 \wedge v_3$$

for some (unique) real number $a^{(q)}$. Moreover, we have

$$A((x^1)^r \partial_2 \wedge \partial_3)_{|j_0^r(\partial_1)} = av_2 \wedge v_3 + bv_2 \wedge V_3^{(r,0,\dots,0)} - bv_3 \wedge V_2^{(r,0,\dots,0)}$$

for some (unique) real numbers a and b.

Proof. Let $q \in \{0, 1, ..., r\}$. Because of Lemma 1.5, we can write

$$\begin{split} A((x^1)^q \partial_2 \wedge \partial_3)_{|j_0^r(\lambda \partial_1)} &= \sum_{1 \leq i < j \leq m} a^{i,j}(\lambda) v_i(\lambda) \wedge v_j(\lambda) \\ &+ \sum_{i,j,\alpha} b_\alpha^{i,j}(\lambda) v_i(\lambda) \wedge V_j^\alpha(\lambda) + \sum_{(i,\alpha) < (j,\beta)} c_{\alpha,\beta}^{i,j}(\lambda) V_i^\alpha(\lambda) \wedge V_j^\beta(\lambda) \end{split}$$

for some (unique) real numbers $a^{i,j}(\lambda), b^{i,j}_{\alpha}(\lambda), c^{i,j}_{\alpha,\beta}(\lambda)$ smoothly depending on λ (and depending on q), where $\sum_{i,j,\alpha}$ is the sum over all $i,j \in \{1,\ldots,m\}$ and all $\alpha \in (\mathbf{N} \cup \{0\})^m$ with $|\alpha| \leq r$, and $\sum_{(i,\alpha)<(j,\beta)}$ is the sum over all $i,j \in \{1,\ldots,m\}$ and all $\alpha,\beta \in (\mathbf{N} \cup \{0\})^m$ with $|\alpha| \leq r$ and $|\beta| \leq r$ and $(i,\alpha) < (j,\beta)$. Here $(\mathbf{N} \cup \{0\}) \times (\mathbf{N} \cup \{0\})^m$ is ordered lexicographically, i.e., $(i,\alpha) \leq (j,\beta)$ iff i < j or $(i = j \text{ and } \alpha_1 < \beta_1)$ or $(i = j, \alpha_1 = \beta_1 \text{ and } \alpha_2 < \beta_2)$ or \ldots or $(i = j, \alpha_1 = \beta_1, \ldots, \alpha_{m_1} = \beta_{m_1}, \alpha_m \leq \beta_m)$.

If $\alpha_2 + \cdots + \alpha_m \geq 1$, using the invariance of A with respect to (x^1, tx^2, \dots, tx^m) , we get $t^2b_{\alpha}^{i,j}(\lambda) = t^sb_{\alpha}^{i,j}(\lambda)$ for some integer s < 2. Hence $b_{\alpha}^{i,j}(\lambda) = 0$ if $\alpha_2 + \dots + \alpha_m \geq 1$. If $\alpha_2 + \dots + \alpha_m = 0$ and $(i, j) \notin \{(2, 3), (3, 2)\}$, then (applying the invariance of A with respect to $(x^1, tx^2, \tau x^3, x^4, \dots, x^m)$) we get $b_{(\alpha_1, 0, \dots, 0)}^{i,j}(\lambda) = 0$. By almost the same arguments, if $\alpha_2 + \dots + \alpha_m + \beta_2 + \dots + \beta_m \geq 1$ or $(i, j) \neq (2, 3)$, then $c_{\alpha, \beta}^{i,j}(\lambda) = 0$.

Similarly, by the invariance of A with respect to $(x^1, tx^2, \tau x^3, x^4, \dots, x^m)$, if $(i, j) \neq (2, 3)$, then $a^{i,j}(\lambda) = 0$. Hence

$$A((x^{1})^{q}\partial_{2} \wedge \partial_{3})_{|j_{0}^{r}(\lambda\partial_{1})} = a(\lambda)v_{2}(\lambda) \wedge v_{3}(\lambda)$$

$$+ \sum_{l=0}^{r} b_{l}(\lambda)v_{2}(\lambda) \wedge V_{3}^{(l,0,\dots,0)}(\lambda) + \sum_{l=0}^{r} c_{l}(\lambda)v_{3}(\lambda) \wedge V_{2}^{(l,0,\dots,0)}(\lambda)$$

$$+ \sum_{l_{1},l_{2}=0}^{r} d_{l_{1},l_{2}}(\lambda)V_{2}^{(l_{1},0,\dots,0)}(\lambda) \wedge V_{3}^{(l_{2},0,\dots,0)}(\lambda)$$

for the (unique) real numbers $a(\lambda), b_l(\lambda), c_l(\lambda), d_{l_1, l_2}(\lambda)$ smoothly depending on λ (and depending on q).

Since $[\partial_2 + x^2 \partial_3, \partial_3] = 0$, there exists an $\mathcal{M}f_m$ -map

$$\varphi = (x^1, \varphi^2(x^2, x^3), \varphi^3(x^2, x^3), x^4, \dots, x^m)$$

preserving 0 and x^1 and ∂_1 and (the germ at 0 of) ∂_3 and sending (the germ at 0 of) ∂_2 into (the germ at 0 of) $\partial_2 + x^2 \partial_3$. One can easily see that such φ preserves (the germ at 0 of) $(x^1)^q \partial_2 \wedge \partial_3$ (as $\partial_2 \wedge \partial_3 = (\partial_2 + x^2 \partial_3) \wedge \partial_3$), $j_0^r(\lambda \partial_1)$, $v_2(\lambda)$ (as $\mathcal{J}^r((x^2 \partial_3)^C)_{|j_0^r(\lambda \partial_1)} = 0$ because of Lemma 1.4), $v_3(\lambda)$, $V_3^{(l,0,\ldots,0)}(\lambda)$ and $V_2^{(r,0,\ldots,0)}(\lambda)$, and it sends $V_2^{(l,0,\ldots,0)}(\lambda)$ into $V_2^{(l,0,\ldots,0)}(\lambda) + V_3^{(l,1,0,\ldots,0)}(\lambda)$ for $l = 0, 1, \ldots, r-1$. Then using the invariance of A with respect to φ , we get

$$\sum_{l=0}^{r-1} c_l(\lambda) v_3(\lambda) \wedge V_3^{(l,1,0,\dots,0)}(\lambda)$$

$$+ \sum_{l_1=0}^{r-1} \sum_{l_2=0}^r d_{l_1,l_2}(\lambda) V_3^{(l_1,1,0,\dots,0)}(\lambda) \wedge V_3^{(l_2,0,\dots,0)}(\lambda) = 0.$$

Then $c_l(\lambda) = 0$ for l = 0, ..., r - 1 and $d_{l_1, l_2} = 0$ for $l_1 = 0, ..., r - 1$ and $l_2 = 0, ..., r$. Quite similarly, replacing 2 by 3 and vice-versa, we get $b_l(\lambda) = 0$ for l = 0, ..., r - 1 and $d_{l_1, l_2}(\lambda) = 0$ for $l_2 = 0, ..., r - 1$ and $l_1 = 0, ..., r$. Moreover, $b_r(\lambda) = -c_r(\lambda)$. Hence

$$A((x^{1})^{q}\partial_{2} \wedge \partial_{3})_{|j_{0}^{r}(\lambda\partial_{1})} = a(\lambda)v_{2}(\lambda) \wedge v_{3}(\lambda)$$

$$+ b(\lambda)v_{2}(\lambda) \wedge V_{3}^{(r,0,\dots,0)}(\lambda) - b(\lambda)v_{3}(\lambda) \wedge V_{2}^{(r,0,\dots,0)}(\lambda)$$

$$+ c(\lambda)V_{2}^{(r,0,\dots,0)}(\lambda) \wedge V_{3}^{(r,0,\dots,0)}(\lambda)$$

for the (unique) real numbers $a(\lambda)$, $b(\lambda)$, $c(\lambda)$ smoothly depending on λ (and depending on q). Then, using the invariance of A with respect to (tx^1, x^2, \dots, x^m) , we get $\frac{1}{t^q}b(t\lambda) = \frac{1}{t^r}b(\lambda)$ and $\frac{1}{t^q}c(t\lambda) = \frac{1}{t^{2r}}c(\lambda)$. Then $c(\lambda) = 0$ for $q = 0, \dots, r$, and $b(\lambda) = 0$ for $q = 0, \dots, r - 1$. The lemma is complete.

Lemma 1.7. Let $m \geq 3$ and $r \geq 1$ be integers. Consider an $\mathcal{M}f_m$ -natural linear operator $A: \bigwedge^2 T \leadsto \bigwedge^2 T(J^rT)$. Then $A(\partial_2 \wedge \partial_3)_{|j_0^r(\partial_1)} = 0$.

Proof. Since $j_0^r(\partial_2 + (x^1)^{r+1}\partial_2) = j_0^r(\partial_2)$, then (by Lemma 1.2) there exists an $\mathcal{M}f_m$ -map

$$\varphi = (\varphi^1(x^1, x^2), \varphi^2(x^1, x^2), x^3, \dots, x^m)$$

preserving 0 and ∂_3 and sending the germ at 0 of ∂_2 into the germ at 0 of $\partial_2 + (x^1)^{r+1}\partial_2$ and such that $j_0^{r+1}\varphi = j_0^{r+1}(\mathrm{id})$. Then φ preserves v_3 , $j_0^r(\partial_1)$ and it sends v_2 into $v_2 + (r+1)V_2^{(r,0,\ldots,0)}$. Then by the invariance of A with respect to φ and Lemma 1.6, we get

$$A((x^1)^{r+1}\partial_2 \wedge \partial_3)_{|j_0^r(\partial_1)} = (r+1)a^{(0)}V_2^{(r,0,\dots,0)} \wedge v_3.$$

Similarly, replacing 2 on 3 and vice-versa, we easily get

$$A((x^1)^{r+1}\partial_2 \wedge \partial_3)_{|j_0^r(\partial_1)} = (r+1)a^{(0)}v_2 \wedge V_3^{(r,0,\dots,0)}.$$

Then $a^{(0)} = 0$. The lemma is complete.

Lemma 1.8. Let $m \geq 3$ and $r \geq 1$ be integers. Consider an $\mathcal{M}f_m$ -natural linear operator $A: \bigwedge^2 T \hookrightarrow \bigwedge^2 T(J^r T)$. Then $A(f(x^1, x^2)\partial_2 \wedge \partial_3)_{|j_0^r(\partial_1)} = 0$ for any smooth map $f: \mathbf{R}^2 \to \mathbf{R}$ with $j_0^r(f) = 0$.

Proof. Let $f: \mathbf{R}^2 \to \mathbf{R}$ be such that $j_0^r(f) = 0$. Since $j_0^r(\partial_2 + f(x^1, x^2)\partial_2) = j_0^r(\partial_2)$, then (by Lemma 1.2) there exists an $\mathcal{M}f_m$ -map

$$\psi = (\psi^1(x^1, x^2), \psi^2(x^1, x^2), x^3, \dots, x^m)$$

preserving 0 and ∂_3 , and sending the germ at 0 of ∂_2 into the germ at 0 of $\partial_2 + f(x^1, x^2)\partial_2$ and such that $j_0^{r+1}(\psi) = j_0^{r+1}(\mathrm{id})$ (then ψ preserves $j_0^r(\partial_1)$). Then using Lemma 1.7 and the invariance of A with respect to ψ from $A(\partial_2 \wedge \partial_3)_{|j_0^r(\partial_1)} = 0$, we get $A(\partial_2 \wedge \partial_3 + f(x^1, x^2)\partial_2 \wedge \partial_3)_{|j_0^r(\partial_1)} = 0$. \Box

2. Proof of the main result.

Proof of Theorem 0.1. Let $m \geq 3$ and $r \geq 1$ be integers. Consider an $\mathcal{M}f_m$ -natural linear operator $A: \bigwedge^2 T \leadsto \bigwedge^2 T(J^rT)$. We are going to prove that A = 0. Because of Lemma 1.3 it is sufficient to prove that $A((x^1)^q \partial_2 \wedge \partial_3)_{|j_0^r(\partial_1)} = 0$ for $q = 0, \ldots, r$.

Let $q \in \{0, ..., r\}$. By Lemma 1.7, we may assume that $q \geq 1$. Since $j_0^r(\partial_2 + (x^1)^{r+1}\partial_2) = j_0^r(\partial_2)$, then (by Lemma 1.2) there exists an $\mathcal{M}f_m$ -map

$$\varphi = (\varphi^1(x^1, x^2), \varphi^2(x^1, x^2), x^3, \dots, x^m)$$

preserving 0 and ∂_3 , and sending the germ at 0 of ∂_2 into the germ at 0 of $\partial_2 + (x^1)^{r+1}\partial_2$ and such that $j_0^{r+1}\varphi = j_0^{r+1}(\mathrm{id})$. Then φ preserves ∂_3 , v_3 , $j_0^r(\partial_1)$, $V_2^{(r,0,\ldots,0)}$, $V_3^{(r,0,\ldots,0)}$, and it sends v_2 into $v_2 + (r+1)V_2^{(r,0,\ldots,0)}$ (to see

this we propose to use Lemma 1.4) and it sends the germ at 0 of $(x^1)^q \partial_2$ into the germ at 0 of $(x^1)^q \partial_2 + f(x^1, x^2) \partial_2$ for some $f : \mathbf{R}^2 \to \mathbf{R}$ with $j_0^r(f) = 0$.

If $q \leq r-1$, then by the invariance of A with respect to φ and Lemma 1.6 and Lemma 1.8, we get

$$0 = A(f(x^1, x^2)\partial_2 \wedge \partial_3)_{|j_0^r(\partial_1)} = (r+1)a^{(q)}V_2^{(r,0,\dots,0)} \wedge v_3.$$

Then $a^{(q)} = 0$, and then $A((x^1)^q \partial_2 \wedge \partial_3)_{|j_0^r(\partial_1)} = 0$.

If q = r, then by the invariance of A with respect to φ and Lemma 1.6 and Lemma 1.8, we get

$$0 = A(f(x^{1}, x^{2})\partial_{2} \wedge \partial_{3})_{|j_{0}^{r}(\partial_{1})}$$

= $(r+1)aV_{2}^{(r,0,\dots,0)} \wedge v_{3} + b(r+1)V_{2}^{(r,0,\dots,0)} \wedge V_{3}^{(r,0,\dots,0)}$.

Then a = 0 and b = 0, and then $A((x^1)^r \partial_2 \wedge \partial_3)_{|j_0^r(\partial_1)} = 0$.

Hence A = 0 because of Lemma 1.3 and Theorem 0.1 is complete.

References

- [1] Debecki, J., Linear natural lifting p-vectors to tensors of type (q,0) on Weil bundles, Czechoslovak Math. J. **66(141)** (2) (2016), 511–525.
- [2] Kolář, I, Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
- [3] Mikulski, W. M., The linear natural operators lifting 2-vector fields to some Weil bundles, Note di Math. 19(2) (1999), 213–217.

Jan Kurek

Institute of Mathematics

Maria Curie-Skłodowska University

Pl. Marii Curie-Skłodowskiej 1

20-031 Lublin

Poland

e-mail: kurek@hektor.umcs.lublin.pl

Włodzimierz M. Mikulski

Institute of Mathematics

Jagiellonian University

ul. Łojasiewicza 6

30-348 Cracow

Poland

e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

Received December 24, 2020