ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XXXI, 9

SECTIO D

1976

Zakład Chemii Ogólnej. Instytut Chemii Podstawowych. Akademia Medyczna w Lublinie Kierownik: doc. dr hab. Stanisław Biliński

Stanisław BILIŃSKI, Józef CHMIELEWSKI * Jerzy GOSPODAREK, Tadeusz URBAN

Analiza oscylopolarograficzna produktów cyklizacji 4-R-tio/seleno/semikarbazydów kwasów pirydynowych z α-chlorowcoketonami

Осциллополярографический анализ продуктов циклизации 4-R-тио/селено/семикарбазидов пиридиновых кислот с α-хлоркетонами

Oscillopolarographic Analysis of the Cyclization Products of 4-R-thio/selene/semicarbazides of Pyridine Acids with Alpha-chloro-ketones

Przebieg cyklizacji 4-R-tio/seleno/semikarbazydów kwasów, zwłaszcza pirydynowych, z α -chlorowcoketonami oraz struktura otrzymywanych pochodnych zależy m.in. od takich parametrów, jak: odczyn środowiska reakcji, charakter podstawnika w położeniu -4 składowej tio/seleno/semikarbazydowej i mocy wyjściowego kwasu (1-6). Przeprowadzona synteza szeregu związków modelowych pozwoliła nam na przebadanie możliwości rozróżniania na drodze analizy oscylopolarograficznej acylowych pochodnych typu I i II, stanowiących główne produkty tytułowej reakcji.

$\mathbf{R} - \mathbf{\hat{N}} - \mathbf{C} - \mathbf{R}_2$	$R_1 - CO - NH - N - C - R_2$
$\mathbf{R}_{1} - \mathbf{CO} - \mathbf{NH} - \mathbf{N} = \mathbf{C} \qquad \mathbf{CH}$	R - N = C CH
x	×
Ι	II

Wszystkie badane związki I i II otrzymane zostały przez bezpośrednią kondensację 4-R-tio/seleno/semikarbazydu odpowiedniego kwasu z chloroacetonem lub ω -chloroacetofenonem, a następnie rozdział powstałej mieszaniny. W przypadku niektórych związków I przeprowadzono również jednoznaczną syntezę drogą pirydoilowania wolnego hydrazonu 3-R₁-4-R₂-tiazolonu-2. Pomiary przeprowadzono na oscylopolarografie LP-600 Polaroscope produkcji CSSR, używając kroplowej elektrody rtęciowej. Elektrolity podstawowe stanowiły 1 m roztwory H₂SO₄ lub KOH w mie-

			1m H ₂ SO ₄ /metanol 1:1									1m KOH/metanol 1:1							
Nr	x	R	R2	Piśmien- nictwo	TYC.	k	wcie atod Q•:	cia lowe 100		ryc.			wci kato Q•	i ęcia dow 100	é	•	w a do Q	rcię- zia no- owe • 100	
I-1	S	Ħ	CH,	7	1			67	72	5		45	50	60	73	83	16	26	
I-2	S	н	C ₄ H ₅	7	2		61			6	30	46					15	23	
I-3	S	CH ₃	CH,	1	3		60	64		7							16	24	
I-4	Se	C_2H_5	CH,	8	3		57	65		8	34						15	25	
I-5	S	CH,	C ₆ H ₅	2	2		60			9	27				67		11	21	
I-6	Se	$C_2 H_5$	C ₆ H ₅	8	2		60			10			50		65		13		
I-7	s	C ₆ H ₅	CH.	1	3		60	66		11							14	22	
I-8	Se	C ₈ H ₅	CH	8	2			64		12		42					16		
I-9	s	C ₆ H ₅	C ₆ H ₅	2	2		61			13		40					15	26	
I-10	Se	C ₆ H ₅	C ₆ H ₅	8	4	54	60			14			52		68				

				1m H	1m KOH/metanol 1:1								
Nr	R	R ₂	Piśmien- nictwo	ryc.	wei katoo Q•	ecia lowe 100	ryc.	v ka (∕cięc todo ⊋ • 10	ia we 0		wci anoc Q ·	ęcia lowe 100
I-11	н	CH ₈	9	15	79	90	17	18	24	40	70		23
I-12	н	C_6H_5	9	15	78	90	18		24	43	62		24
I-13	CH_3	CH ₃	3	15	79	90	19		24			16	
I-14	CH_3	$C_{\theta}H_{5}$	4	15	80	91	20		28		66		
I-15	C ₆ H ₅	CH_3	3	15	78	89	21		24		68	12	
I-16	C ₆ H ₅	C ₆ H ₅	4	16	73		20		27		67		_

szaninie z metanolem w stosunku objętościowym 1:1. Czas trwania kropli — 2 sekundy. Obrazy rejestrowano fotograficznie. Uzyskane wyniki przedstawiono w tab. 1-5.

Pomiary w roztworze 1m H₂SO₄/metanol

Obrazy pochodnych pirydoilowych I i II wykazują dużą zależność od charakteru podstawników R i R_2 pierścienią tiazolowego lub selenazolo-

		wcięcia	anodowe	Q · 100	21	16 21	18	16	
							90	88	
	ol				65	67	20		
	'metan 1		e		57				
	КОН/ 1:	vciecia	atodow	Q · 100	42			46	47
$^ m R_2^-$	1m		ke			33	30	32	
CH CH					23	27	i		
					14		10	16	
				τλς.	27	% %	8	31	32
					92	91			
IN -	Iout	, ,	ve			84			
- 0	meta	nieci	katodo	- 10(69	75	11	73	72
-	S0,/	8		÷ ×	61	64	61	65	2
N ⁴ H	л H ₂				12				
– C,H	11			τλς.	22	23 24	25	26	26
4 1		-	ол uə	imài¶ vioin	15	15	9 0	ŝ	9
		Ĕ	202		CH3	μ Η Ο	C.H.	CH,	C,H,
		μ	2		H	H H	CH	C,H,	C,H,
		N ⁺			1-17	I-18 T-19	I-20	I-21	I-22

		wcięcia anodowe Q • 100		11					
	Im KOH/metanol 1:1	wcięcia katodowe Q · 100	1 34 48 86	62 74 87	66 80	00	63	38	64
2		:261	5 0	ର _	ର ର ଜ	N 0 N 0	าลี วิล	4	2
CH CH	tmetanol 1	wcię- cia ano- dowe Q·100	4	4	44 4 [0. 10	- 4	4	56 4
A C-N	1m H ₂ SO, 1:	ięcia odowe • 100	67		20 20	83 76	80		72 79
Tab. NH - N		kato Q	ଞ	62	ą	\$		2	
		τλς.	33	34	82 82	20 20 20 20 20 20 20 20 20 20 20 20 20 2	37	38	39
R1 — C		Piśmien- Dictwo	1	8	67 6	، م) 4	ວ	9
-		\mathbf{R}_{2}	CH.	CH.	С, Н	Ϋ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	i H U U	CH.	C,H,
		R	C.H.	C [°] H	C,H,	н U U U	ĨΗ D	C,H,	C,H,
		×	s S	s N	ŝ	ያባ	n n	ŝ	S
		ъ	v-birvdvl	γ-pirydyl	γ-pirydyl	γ-pirydyl	b-pirydyl 8-pirydyl	a-pirydyl	α-pirydyl
		Nr	11-1	II-2	II-3	11-4 11 5	9-11 9-11	11-7	11-8

`

1		ia we 0		32	33
		ciec odor 2 - 10	18 18 18	23 23	22 23
		N LIG	15	Io	
			116;	8	6
	anol		64	19	
	/met		55		56
	HO 1:	cia lowe 100	45 45 47	47	44 46 46
	H H	wcie atod		42 40	39 39
		X	27 24	$23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\$	26 24 24
C NH R X			ľ	20	ľ
			16	12	12
		ryc.	55 54 53 56 55 53	57 58 59	62 62 63 62 61 63 62
			62 70		
		ecia dov dov	24 19		
			94	88	800010 100001
ab. 5 NH	ano			77	81 77
Ë F	/met		70 70 72 72	68	
HN -	204 21:	scia lowe 100	28		
0	Hu	wcie Q.		28	
Ŭ	11	Ч	17 19		18
$\mathbf{R_{1}}^{-}$					12
		ryc.	45 46 47 48	49 50	50 52 50
		Piśmien- nictwo	12 8 11 8 21	3 n 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 84 5 5
		ц	CCH CHI	C ₆ H, H CH,	ໍມີ ເອີ້ອີ້ສິ່ງ
		×	လ လ လွ လ	ຜູ້ ຜູ	ຑຑຑຑ
		R1	γ-pirydyl γ-pirydyl γ-pirydyl v-pirydyl	γ-pirydyl β-pirydyl β-pirydyl	β-pirydyl α-pirydyl α-pirydyl α-pirydyl
		Nr	111-1 111-2 111-3 111-3	111-5 111-6 111-7	· 8-111 9-111 11-10

wego. Przejawia się to w liczbie i wielkości potencjałów kolejnych wcięć. Nie stwierdza się natomiast określonych charakterystycznych zmian w szeregu porównywanych pochodnych α -, β - i γ -pirydoilowych. Połączenia hydrazydu kwasu izonikotynowego — typu I, tiazolowe i selenazolowe wykazują jedno wyraźnie wykształcone wcięcie katodowe o wartości Q w granicach 0.57-0.61. Zmiana podstawnika R_1 nie wpływa na charakter krzywej. W przypadku kiedy $R_2 = CH_3$ pojawia się zawsze dodatkowe wcięcie katodowe (Q=0.64-0.72). Połaczenia izonikotynoilowe typu II zależności takich nie wykazują. Porównywana para związków I i II $(R=C_6H_5; R_2=CH_3)$ daje obrazy o praktycznie jednakowych wartościach Q. Obraz mieszaniny zawiera jednak wcięcia pochodzące od obu połączeń, co umożliwia ich rozróżnianie. Pochodne 2,4-dwufenylowe zawierające układ 2-fenyloimino-3-amino-4-tia(selena)zoliny zachowują się identycznie jak odpowiednie związki aldehydów pirydynowych. W roztworze 1 m H₂SO₄/metanol dają dobrze zdefiniowane obrazy. W samym 1 m H_2SO_4 obserwuje się również charakterystyczne przepętlenie w pobliżu lewego punktu krzywej. Połączenia hydrazydu kwasu nikotynowego — typu I z wyjątkiem I-16, dają dwa wyraźnie wykształcone wcięcia katodowe o wartościach Q=0.73-0.80 i 0.89-0.91.

Nikotynoilowe związki II w mieszaninie 1 m H₂SO₄/metanol dają odmienne od I obrazy oscylopolarograficzne, pozwalające na rozróżnianie obu struktur. W 1 m H₂SO₄ związki II-5 i I-15 dają jednakowe krzywe. Taki sam jest również obraz mieszaniny obu połączeń. W przypadku związku II-6 obserwuje się wspomniane wyżej charakterystyczne przepętlenie. Pochodne hydrazydu kwasu pikolinowego — o budowie I z wyjątkiem I-17 i I-18 (przy R=H), dają praktycznie jednakowe krzywe o dwóch wcięciach katodowych (Q=0,61 — 0,65 i 0,71 — 0,75). Związki II dają wyraźnie odmienne obrazy, a przy II-8 dodatkowym elementem odróżniającym jest wcięcie anodowe o Q=0,56. W samym 1 m H₂SO₄ połączenia pikolinoilowe zachowują się tak samo jak ich analogii β i γ -pirydyilowe.

```
Pomiary w roztworze 1 m KOH/metanol (tab. 1-5)
```

Podobnie jak przy pochodnych aldehydowych wszystkie badane połączenia wykazują bardzo zróżnicowane obrazy oscylopolarograficzne, w których brak jest wcięć charakterystycznych dla struktury I lub II. Różne obrazy dają także mieszaniny odpowiednich izomerycznych par związków.

Ryc. 1. Krzywe oscylopolarograficzne (objaśnienia w tekście) Oscillopolarographic curves (explanations in the text)

Ryc. 2. Krzywe oscylopolarograficzne (objaśnienia w tekście) Oscillopolarographic curves (explanations in the text)

Ryc. 3. Krzywe oscylopolarograficzne (objaśnienia w tekście) Oscillopolarographic curves (explanations in the text)

PIŚMIENNICTWO

- 1. Biliński S.: Ann. Univ. Mariae Curie-Skłodowska, Sec. AA. 13, 183-202, 1968.
- Biliński S.: Ann. Univ. Mariae Curie-Skłodowska, Sec. AA. 13, 203-222, 1968.
- Biliński S., Bielak L.: Ann. Univ. Mariae Curie-Skłodowska, Sec. D. 28, 161-170, 1973.
- Biliński S., Bielak L.: Ann. Univ. Mariae Curie-Skłodowska, Sec. D. 28, 171-187, 1973.
- Biliński S., Bielak L.: Ann. Univ. Mariae Curie-Skłodowska, Sec. D. 30, 101-108, 1975.
- Biliński S., Bielak L.: Ann. Univ. Mariae Curie-Skłodowska, Sec. D. 30, 113-123, 1975.
- Urban T.: O pewnych heterocyklicznych pochodnych hydrazydu kwasu izonikotynowego. Dysertacja doktorska. Uniwersytet Jagielloński, Kraków 1963.
- 8. Chmielewski J.: Studia nad syntezą nowych selenazolowych pochodnych hydrazydu kwasu izonikotynowego. Dysertacja doktorska, Akademia Medyczna, Lublin 1974.
- Biliński S.: Studia nad syntezą pochodnych kwasu nikotynowego. Dysertacja doktorska. Uniwersytet Jagielloński, Kraków 1963.
- 10. Fox H.: J. Org. Chem. 17, 555-562, 1952.
- 11. Patent węgierski 148949 Feb. 28, 1962.
- 12. Dymek W.: Disser. Pharmac. 13, 313-325, 1961.
- 13. Gardner T. S.: J. Org. Chem. 16, 1121-1125, 1951.
- Hammerich P., Prijs B., Erlenmeyer H.: Helv. Chim. Acta 41, 2058— --2065, 1958.
- 15. Biliński S., Łukasiewicz J.: Wyniki nie opublikowane.

Otrzymano 24 VI 1975.

РЕЗЮМЕ

Пиридольные производные гидрозона 3-R-4-R₂-тиа/селено/золона-2 (I) и 2---R-имино-3-амино-4-R₂-4-тиа/селено/золина (II) — возможные продукты конденсации 4-R-тио/селено/семикарбазида пиридиновых кислот с α -хлоркетонами показывают характеристические осциллограммы. Делает это возможным различать соединения I и II (x=S, Se) даже непосредственно в реакционной смеси.

SUMMARY

The pyridoyl derivative of $3-R-4-R_2$ -thia/selena/zoline hydrazone (I) and 2-R-imino- $4-R_2$ -4-thia/selena/zoline (II), obtained by means of the cyclization of 4-R-thio/selena/semicarbazides of pyridine acids with alpha-chloro-ketones, give characteristic oscillopolarographic pictures. This permits the differentation of (I) and (II)-compounds (X=S,Se) even directly in the postreactional mixture.