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Introduction

Large systems of individuals interacting with each other and with the
environment are being studied in life sciences such as biology, chem-
istry, physics, ecology, genetics, oceanology, as well as in economics,
social sciences, etc. There exists a great amount of works dedicated to
the mathematical theory of such objects characterized by the level of
sophistication that varies from simple heuristic modeling to advanced
approaches based on the use of deep real-world models supported by
appropriate numerical methods and computer simulation techniques
[9, 10]. Among the most important issues studied in these works are
various aspects of the time evolution of such systems. The aim of the
present thesis is to contribute to the development of the dynamical the-
ory of infinite particle systems undergoing fragmentation. First the-
oretical works on coagulation-fragmentation processes can be traced
back to works by Marian Smoluchowski appeared at the beginning
of the XX century. Such processes are considered, see [6], as basic
acts of nature, which points to the great importance of their mathe-
matical theory. Fragmentation can also be interpreted as branching,
cf. [12], the first works on which go back to the Galton-Watson the-
ory of the extinction of families [27]. Their modern development is
mostly conducted in the framework of the theory of stochastic pro-
cesses [21, Chapt. 4], among which one can distinguish works [13, 14]
on branching in particle systems.

Studying branching in particle systems is usually restricted to those
dwelling in a compact habitat [21, Chapt. 4], or to finite particle sys-
tems [13, 14]. As mentioned above, this work is dedicated to studying
infinite particle systems, which seems to be the first instance of the
theory of this kind. Namely, the following two models are introduced
and studied. In the first model, [38,39], an infinite population of point
entities is placed in Rd. Each entity undergoes binary fission with dis-
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appearance afterward. It is also subject to a random death caused by
crowding – local competition. By this, the particles interact with each
other. The pure states of the system are locally finite simple config-
urations γ ⊂ Rd and the general states are probability measures on
the space Γ of all such configurations. This model may be considered
as a branching version of the Bolker-Pacala model [16, 32, 34]. In the
proposed model, an entity, with trait x ∈ Rd, undergoes the follow-
ing: (a) independent fission with rate b(x|y1, y2) in the course of which
the particle gives birth to two new particles with traits y1, y2 ∈ Rd

and disappears afterwards; (b) state-dependent death (disappearance)
with rate m(x) +

∑
y∈γ\x a(x− y). When dealing with infinite config-

urations, one usually imposes a priori restrictions on the properties of
probability measures modeling states of the system. The main idea of
this is to pass to considering dynamics on spaces of finite configurations
by employing so called correlation measures and functions [43]. In this
work, this is done by introducing sub-Poissonian measures Pexp(Γ), see
Definition 1.2.3 below. Then the ultimate goal is to construct the evo-
lution t 7→ µt ∈ Pexp(Γ) of this model. The first step in this direction
is performed by considering its finite version, cf. [37]. Here I apply the
Thieme-Voigt perturbation technique [50] adapted to our purposes, see
Section 1.5, to obtain the evolution of states in the Banach space of
signed measures with finite variation. Thereafter, this construction is
used to achieve the main result mentioned above. This is done in The-
orem 2.3.5 and Corollary 2.3.6. A characteristic feature of this result
is the use of the evolution equations for correlation functions in the
corresponding L∞-type Banach spaces. In view of this, the standard
semigroup methods cannot be directly applied here. To deal with this,
I construct a certain (sun-dual) C0-semigroup in appropriated Banach
space, which I use to obtain a family of linear bounded operators acting
from smaller to bigger spaces, see Lemma 4.1.3, which gives a classi-
cal solution of the mentioned equation. I demonstrate that the local
competition – interaction explicitly taken into account – can produce
a global regulating effect, i.e. by Theorem 2.3.5 the evolution of mea-
sure is obtained by identifying the measure µt with the solution of the
evolution correlation functions equation. Moreover, I prove that µt is
the sub-Poissonian state for all t > 0 (continuation), which means that
the evolution of measures preserves the sub-Poissonicity of the states
and hence the self-regulation takes place.
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The second model presented in this thesis was introduced and stud-
ied in [40]. Its preliminary version was introduced in [49]. In contrast
to the first model, here the particles do not interact with each other,
however, the basic space where they are placed in is a general locally
compact Polish space. Each particle produces at random a finite cloud
of new particles, and disappears afterwards. An infinite system of such
point particles – an infinite ‘cloud’ – is placed in a locally compact Pol-
ish space X in such a way that each compact Λ ⊂ X contains only
finitely many elements of the cloud, but multiple locations of parti-
cles are possible. Here I also employ probability measures as states
of the system, the evolution of which is described by the correspond-
ing Fokker-Planck equation directly, i.e., without calling correlation
functions. The branching mechanism here is presented by a branch-
ing (probability) kernel bx(dξ), which describes the distribution of off-
springs (constituting cloud ξ) of the particle located at x. Models of
this type (and even much more complex) are well-known [13, 14], but
in the finite-system version. To deal with infinite configurations, simi-
larly as in the first model I impose a restriction on the support of the
considered states µ ∈ P(Γ) by imposing a condition on the branch-
ing kernel. This allows for passing to tempered configurations, the
set of which, Γψ, equipped with a certain topology becomes a Polish
space (Proposition 1.1.4). Then I define the Kolmogorov operator L
as a closed linear operator with domain D(L) in an appropriate space
of continuous functions. First important result here is Theorem 3.3.1
which gives the unique classical solvability of the Kolmogorov equa-
tion. I obtain the solution by constructing a C0-semigroup generated
by (L,D(L)). The key step of this is solving a nonlinear evolution
equation in the space of bounded continuous function on X defined by
the branching kernel, see Lemma 3.2.2. Thereby, in Theorem 3.3.3,
I prove the existence and uniqueness of the solution of the Fokker -
Planck equation.

Statements similar to Theorems 2.3.5, 3.3.1 and 3.3.3 give a micro-
scopic description of the dynamics of the system where we take into
account the traits of each individual particle. To establish the connec-
tion of such the description with phenomenological theories, i.e. the
meso- and macroscopic description [5,47,48], we use scaling techniques,
which is also a subject of the dissertation. I make a comparison of such
descriptions for fission-death model. I rescaled the interaction between
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entities, cf. [26], and obtain the kinetic equation correspond to fission-
death model, and also to the Bolker-Pacala-type model, which means
that only microscopic level give us a fully precise description of the
considered system.

The work has the following structure. In Chapter 1 I introduce
phase space, spaces of functions and measures, and provide informa-
tion and the analysis in such spaces. I deal with function acting on
such spaces and present the corresponding evolution equations, like
Kolmogorov equation and Fokker-Planck equation. At the end of the
chapter, I add elements of semigroup theory. In Chapters 2 and 3, I
introduce the fission - death model and the free branching model that
are the subject of the dissertation and present main results connected
to these models, including consideration about both finite and infinite
systems. The final Chapter contains the proofs of the most important
results of the thesis.



Chapter 1

Preliminaries

In this chapter, I present the main technical aspects of the work and
comments, in particular, regarding the spaces in which I consider mod-
els of fragmentation, measures and functions in these spaces and the
corresponding evolution equations. A detailed description of these as-
pects can be found in [2, 35, 43] and the literature quoted in these
articles.

1.1 Configuration spaces

Simple configurations in Rd

The Euclidean space Rd, d ≥ 1, is supposed to be equipped with the
usual norm topology. By B(Rd) we denote the corresponding Borel
σ-field of subsets of Rd. In the approach used in this work the phase
space is the configuration space, i.e. the set

Γ = {γ ⊂ Rd : |γΛ| <∞ for any compact Λ ⊂ Rd},

where γΛ := γ ∩ Λ and | · | stands for cardinality. The elements of Γ
are called configurations. We associate Γ with the subset of the space
of all positive Radon measures on Rd by using the representation

γ =
∑
x∈γ

δx,

where δx is the Dirac measure centered at x. That is, the atomic
measure with a single atom at x ∈ R with mass one. For a given
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B ∈ B(Rd), it takes values

δx(B) = IB(x) =

{
1, if x ∈ B,
0, otherwise,

where IB is the indicator of B. Hence, we may equip Γ with a measur-
able structure, which we do by introducing a topology. Let K be any
nonempty set and Z = {ζi}i∈I be a family of maps ζ : K → R indexed
by an arbitrary set I. The topology on K induced by Z is the weakest
topology that makes continuous all the maps ζi. Let Ccs(Rd) stand for
the set of all continuous functions f : Rd → R which have compact
support. For f ∈ Ccs(Rd), we define the map

Γ 3 γ 7→ 〈f, γ〉 :=

∫
Rd
f(x)γ(dx) =

∑
x∈γ

f(x) ∈ R.

Definition 1.1.1. The vague topology on Γ is the topology induces
by the family {〈f, ·〉 : f ∈ Ccs(Rd)}.

By B(Γ) we then denote the Borel σ−field of subsets of Γ.
The topology on Γ admits a metrization, see [36] and [44]. Let

Br(x) denote the open ball with radius r ∈ R+ and centre x ∈ Rd.
Then, for any subset A ⊂ Rd and ε > 0, the neighbourhood of A is
defined by Aε :=

⋃
a∈ABε(a). For any η1, η2 ∈ Γ0 let us first define the

Prohorov distance d : Γ0 × Γ0 → R+ by the formula

d(η1, η2) := inf{ε > 0 : η1(A) ≤ η2(Aε) + ε and η2(A) ≤ η1(Aε) + ε
(1.1)

for all closed A ∈ R}.

Using (1.1), for any γ1, γ2 ∈ Γ we introduce the metric D on Γ

D(γ1, γ2) :=

∫ ∞
0

e−r
d(γ

(r)
1 , γ

(r)
2 )

1 + d(γ
(r)
1 , γ

(r)
2 )

dr, (1.2)

where γ(r)(A) = γ(A ∩ Br(0)) for all measurable A ⊂ Rd. Then we
obtain the following two results.

Theorem 1.1.2. [44, Theorem 1.1] Let (γk)k∈N be a sequence in Γ and
γ ∈ Γ. Then the following statements are equivalent:
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(i) D(γk, γ)→ 0 as k →∞;

(ii)

∫
Rd
f(x)γk(dx)→

∫
Rd
f(x)γ(dx) as k →∞ for all bounded con-

tinuous functions f on Rd with compact support;

(iii) there exists an increasing sequence (rn)n∈N with rn →∞ as n→
∞ such that d(γ

(rn)
k , γ(rn))→ 0 as k →∞ for all n ∈ N;

(iv) γk(A) → γ(A) as k → ∞ for all bounded sets A ∈ Rd such that
γ(∂A) = 0, where ∂A is the boundary of A.

Theorem 1.1.3. [44, Theorem 1.2] The space (Γ, D) has the proper-
ties:

(i) Γ is a complete and separable metric space (Polish space) when
it is equipped with the distance function D defined in (1.2).

(ii) The Borel σ−field B(Γ) is the smallest σ−field that makes all
mappings ΦA : Γ → N ∪ {∞}, A ∈ B(Rd), measurable, where
ΨA(γ) = γ(A).

Thereby, (Γ,B(Γ)) is a standard Borel space. By P(Γ) we denote
the set of all probability measures on (Γ,B(Γ)).

Let Λ be compact. Set ΓΛ = {γ : γ ⊂ Λ} and define the following
sub-field of B(Γ):

B(ΓΛ) = {A ∩ ΓΛ : A ∈ B(Γ)}.

Hence, (ΓΛ,B(ΓΛ)) is also a standard Borel space. By BΛ(Γ) we denote
the smallest sub-σ-field of B(Γ) that contains all cylinder events

CA = {γ ∈ Γ : γΛ ∈ A}. (1.3)

For a compact Λ, we define the map

Γ 3 γ 7→ NΛ(γ) = |γΛ| ∈ N0,

where N0 denotes the set of all nonnegative integers. Then B(Γ) is
generated by the family of sets

ΓΛ,n := {γ ∈ Γ : NΛ(γ) = n}, n ∈ N0, Λ− compact. (1.4)



8

By setting Λ = Rd in (1.4), we obtain the set Γn of all n−point
configurations and then we define the set of finite configurations by
the formula

Γ0 :=
∞⋃
n=0

Γn ∈ B(Γ).

Each Γn is equipped with the topology related to the Euclidean topol-
ogy of the underlying space Rd and then Γ0 ∈ B(Γ). Hence, the
(Γ0,B(Γ0)) is a standard Borel space with corresponding Borel σ-field
of subsets of Γ0 coincides with the σ-field

B(Γ0) = {A ∩ Γ0 : A ∈ B(Γ)}.

Multiple configurations in a locally compact Polish space

In this part, the trait space X is just a locally compact Polish space.
By Cb(X) we denote the set of all continuous and bounded functions
f : X → R and by C+

b (X) - the set of positive elements of Cb(X).
Then by C+

0 (X) we denote the set of all f ∈ C+
b (X) which satisfy: (a)

f(x) > 0 for all x ∈ X; (b) for each ε > 0, one finds a compact Λε ⊂ X
such that f(x) < ε whenever x ∈ X \ Λε.

As in [43], by a configuration γ we mean a finite or countably infi-
nite, unordered system of points placed in Rd, in which several points
may have the same location. As in the previous case, the set Γ is
equipped with the vague (weak-hash) topology – the weakest topology
that makes continuous all the maps γ 7→

∑
x∈γ g(x), g ∈ Ccs(R

d). Here
by writing

∑
x∈γ g(x) we understand

∑
i g(xi) for a certain enumera-

tion of the elements of γ. Clearly, such sums are independent of the
enumeration choice, see [43]. In the same sense, we shall understand
sum of this kind ∑

x∈γ

∑
x∈γ\x

· · ·

The vague topology is separable and consistent with a complete metric,
which makes Γ a Polish space.

In dealing with infinite configurations, we may restrict ourselves to
those ones that have a priori prescribed properties. Here we do this by
employing a function ψ ∈ C+

b (X), ψ(x) ≤ 1, for which we set

Ψ(γ) =
∑
x∈γ

ψ(x). (1.5)
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Then the set of tempered configurations is defined as

Γψ = {γ ∈ Γ : Ψ(γ) <∞},

cf. [21, page 41]. It is clear that

Γψ
′ ⊃ Γψ, whenever ψ′ ≤ ψ. (1.6)

By this observation we get a possibility to vary Γψ from Γ (by taking
ψ ∈ C+

0 (X)) to Γ0, corresponding to ψ ≡ 1. If ψ ∈ C+
0 (X), then Γψ

is a proper subset of Γ and subset of Γ0. As an example one can take
X = R and ψ(x) = e−α|x|, α > 0. Then the configuration N ⊂ R is in
Γψ, whereas {log n : n ∈ N} is not if α ≤ 1.

For each γ ∈ Γψ, the measure

νγ =
∑
x∈γ

ψ(x)δx (1.7)

is finite. Thus, one can equip Γψ with the topology defined as the
weakest one that makes continuous all the maps

Γψ 3 γ 7→
∑
x∈γ

g(x)ψ(x), g ∈ Cb(X). (1.8)

Similarly as in Proposition 2.7 and Corollary 2.8 of [41], one can prove
the following.

Proposition 1.1.4. Let ψ ∈ C+
b (X) be separated away from zero, i.e.

ψ(x) > 0 for x in a compact Λ ⊂ X. Then with the topology defined
in (1.8), Γψ is a Polish space, continuously embedded in Γ. Thus,
B(Γψ) = {A ∈ B(Γ) : A ⊂ Γψ}.

Proof. First we note that the set of measures {νγ : γ ∈ Γψ} is a subset
of the space N of all positive finite Borel measures on X, which is a
Polish space with the weak topology. Let us prove that Γψ is a closed
subset of N . To this end, we take a sequence {γn}n∈N ⊂ Γψ such that
{νγn}n∈N is a Cauchy sequence in a metric of N that makes this space
complete. Let ν ∈ N be its limit, and hence∑

x∈γn

g(x)ψ(x)→ ν(g), n→ +∞, (1.9)
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holding for all g ∈ Cb(X), in particular for g ∈ Ccs(X) . Since ψ
is separated away from zero, each h ∈ Ccs(X) can be written in the
form h(x) = g(x)ψ(x) with g ∈ Ccs(X). Hence, the sequence {γn}n∈N
vaguely converges to some locally finite counting Borel measure ν#

on X as the set N# of all such measures with the vague topology
is a Polish space, see [20, Proposition 9.1.IV, page 6]. The limiting
counting measure can be associated with a certain γ ∈ Γ, i.e., ν(h) =
ν#
γ (h) =

∑
x∈γ h(x), holding for all h ∈ Ccs(X). To prove that this γ

lies in Γψ, we take an ascending sequence of compact Λm ⊂ X, i.e.,
Λm ⊂ Λm+1, m ∈ N, such that each x ∈ X is contained in some Λm.
Then we take g(m) ∈ Ccs(X) such that g(m)(x) = 1 for x ∈ Λm, and
g(m)(x) = 0 for x ∈ X \ Λm+1, which is possible by Urysohn’s lemma.
Then

ν#
γ (h(m)) =

∑
x∈γ

g(m)(x)ψ(x) = ν(g(m)) ≤ ν(X),

h(m)(x) = g(m)(x)ψ(x).

Now we pass here to the limit m → +∞ and obtain (by the Beppo -
Levi theorem) that Ψ(γ) ≤ ν(X), which yields, γ ∈ Γψ. Thus, ν in
(1.9) is equal to ν#

γ , which yields that {νγ : γ ∈ Γψ} is closed in N , and
thereby is also Polish, see [18, Proposition 8.1.2, page 240]. In view of
the aforementioned identification γ with νγ, the latter proves the first
half of the statement. The stated continuity of the embedding Γψ ↪→ Γ
is immediate. Then the conclusion concerning the σ-fields follows by
Kuratowski’s theorem, see [45, Theorem 3.9, page 21].

Remark 1.1.5. The continuity of the embedding Γψ ↪→ Γ allows one to
establish the following fact:

P(Γψ) = {µ ∈ P(Γ) : µ(Γψ) = 1}. (1.10)

That is, each µ ∈ P(Γ) possessing the property µ(Γψ) = 1 can be
redefined as a probability measure on Γψ. Therefore, by restricting
ourselves to tempered configurations – members of Γψ – we exclude
from our consideration all those µ ∈ P(Γ) that fail to satisfy the men-
tioned support condition.

Let Bb(X) denote the set of all bounded and measurable functions
f : X → R. Following [24, page 11], we say that a sequence {hn}n∈N ⊂
Bb(X) converges to a certain h ∈ Bb(X) boundedly and pointwise if:
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(a) supn ‖hn‖ < ∞; (b) hn(x) → h(x) for each x ∈ X. In this case,

we write hn
bp→ h. A subset, H ⊂ Bb(X), is said to be bp-closed, if

{hn} ⊂ H and hn
bp→ h imply h ∈ H. The bp-closure of H ⊂ Bb(X)

is the smallest bp-closed subset of Bb(X) that contains H. An H′ is
bp-dense in H, if the latter is the smallest bp-closed set that contains
H′.

Let F be a family of functions f : X → R. By σF we denote
the smallest sub-field of B(X) such that each f ∈ F is σF/B(R)-
measurable. The weak topology of P(X) is defined as the weakest one
that makes continuous all the maps µ 7→ µ(f), f ∈ Cb(X). With this
topology P(X) can also be turned into a Polish space. By writing µn ⇒
µ, n → +∞, we mean that {µn}n∈N weakly converges to µ. A family
F of functions f : X → R is called separating if µ1(f) = µ2(f), holding
for all f ∈ F , implies µ1 = µ2 for each pair µ1, µ2 ∈ P(X). F is said to
separate the points of X if for each distinct x, y ∈ X, one finds f ∈ F
with the property f(x) 6= f(y). If F separates points and is closed with
respect multiplication, it is separating, see [24, Theorem 4.5, page 113].
A family F is called convergence determining if µn(f)→ µ(f), f ∈ F ,
implies µn ⇒ µ. The following is known, see [24, Proposition 4.2, page
111] and/or [21, Lemmas 3.2.1, 3.2.3, pages 41, 42].

Proposition 1.1.6. For each Polish space X, there exists a countable
family H ⊂ C+

b (X) that has the following properties: (a) the linear
span of H is bp-dense in Bb(X); (b) B(X) = σH; (c) it contains the
unit function u(x) ≡ 1 and is closed with respect to addition; (d) it is
separating; (e) it is convergence determining.

Let V = {vl}l∈N ⊂ C+
b (X) be a family of functions with the prop-

erty as in Proposition 1.1.6. We may and will assume that each vl ∈ V
satisfies infX vl(x̂) ≥ c0,l > 0 for an appropriate c0,l, cf. [21, Remark
3.2.3, page 42]. Indeed, if this is not the case, instead of vl one can take
ṽl := vl + c0,l. Then the family {ṽl}l∈N has all the properties we need.
For γ ∈ Γψ, we have, cf. (1.7), νγ(vl) =

∑
x∈γ vl(x)ψ(x). Then the

topology mentioned in Proposition 1.1.4 is metrizable with the metric

υ∗(γ, γ
′) =

∞∑
l=0

2−l |νγ(vl)− νγ′(vl)|
1 + |νγ(vl)− νγ′(vl)|

. (1.11)
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For µ ∈ P(Γψ), its Laplace transform is defined by the expression

Lµ(g) = µ(Gg), g ∈ C+
b (X) (1.12)

Gg(γ) := exp (−νγ(g)) = exp

(
−
∑
x∈γ

g(x)ψ(x)

)
.

The following is known, see [21, Lemma 3.2.5 and Theorem 3.2.6,
page 43].

Proposition 1.1.7. Let V be the family of functions used in (1.11).
Then:

(i) B(Γψ) = σ{Gv : v ∈ V};

(ii) Bb(Γψ) is the bp-closure of the linear span of {Gv : v ∈ V};

(iii) {Gv : v ∈ V} is separating;

(iv) {Gv : v ∈ V} is convergence determining.

The proof of claim (iv) is essentially based on the concrete choice
of the metric (1.11), by which one shows that the family {Gv : v ∈ V}
is strongly separating, cf. [24, page 113]. In the sequel, we will use the
following functions

φ(x) = 1− θ(x) = exp (−g(x)ψ(x)) , (1.13)

with g ∈ C+
b (X).

1.2 Functions and measures on configu-

ration spaces

In this section, all the statements and fact hold true for both multiple
and single configurations, and X stands for the habitat, that includes
also the case X = Rd. We write Rd rather than X to stress that we
mean exactly this habitat.
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Recall that Ccs(X) denotes the set of all compactly supported con-
tinuous numerical functions on X. By Θ we denote the set of all those
θ ∈ Ccs(X) which take values in (−1, 0]. Then the map

Γ 3 γ 7→ F θ(γ) :=
∏
x∈γ

(1+θ(x)) = exp

(∑
x∈γ

log(1 + θ(x))

)
, θ ∈ Θ,

(1.14)
is (vaguely) continuous and satisfies 0 < F θ(γ) ≤ 1 for all γ. The
upper bound is evident, and the continuity follows by the continuity
of γ 7→

∑
x∈γ log(1 + θ(x)). The set Θ has the following properties:

(a) for each pair of distinct γ, γ′ ∈ Γ, there exists θ ∈ Θ such that
F θ(γ) 6= F θ(γ′);

(b) for each pair θ, θ′ ∈ Θ, the point-wise combination θ+ θ′+ θθ′ is
also in Θ;

(c) the zero function belongs to Θ.

The mentioned properties yield that {F θ : θ ∈ Θ} is a separating
family, see [1, Proposition 1.3.28, page 113]. Moreover, for each θ ∈ Θ,
µ(F θ) = µΛθ(F θ), where a compact Λθ is such that θ(x) = 0 for x ∈
Λc
θ := Rd \ Λθ.

A function G : Γ0 → R is B(Γ0)/B(R)-measurable if and only if,
for each n ∈ N, there exists a collection of symmetric Borel functions
G(n) : (Rd)n → R, such that

G(η) = G(n)(x1, . . . , xn), for η = {x1, . . . , xn}. (1.15)

Definition 1.2.1. A measurable function G : Γ0 → R is said to have
bounded support if: (a) there exists a compact Λ ⊂ Rd such that
G(η) = 0 whenever η ∩ Λ 6= η; (b) there exists N ∈ N such that
G(η) = 0 whenever |η| > N . By Bbs(Γ0) we denote the set of all
bounded functions with bounded support.

Definition 1.2.2. F : Γ → R is a cylinder function if there exists a
compact Λ and a B(ΓΛ)/B(R)-measurable functionG such that F (γ) =
G(γΛ), γ ∈ Γ.

For a compact Λ and A ∈ B(ΓΛ) let BΛ(Γ) be the sub-σ-field of
B(Γ) generated by all cylinder sets CA defined in (1.3). By Definition
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1.2.2, a cylinder function F : Γ → R is BΛ(Γ)/B(R)-measurable for
some compact Λ. For a compact Λ and a given µ ∈ P(Γ), we define
the projection of µ on ΓΛ by the relation

µ(CA) = µΛ(A) (1.16)

which determines µΛ ∈ P(ΓΛ). Note that all such projections {µΛ}Λ

of a given µ ∈ P(Γ) are consistent in the Kolmogorov sense.
In the sequel, we consider probability measures on Γ as state of the

system. Each µ ∈ P(Γ) is characterized by its values on the sets (1.4).
A homogeneous Poisson measure πκ ∈ P(Γ) with density κ > 0 (see,
e.g., [30]) is then defined by the following expression.

πκ(ΓΛ,n) =
(κ|Λ|)n

n!
exp (−κ|Λ|) , (1.17)

where |Λ| stands for the Lebesgue measure of Λ.
For a given µ ∈ P(Γ), we introduce the Bogolubov functional as

Bµ(θ) = µ(F θ) =

∫
Γ

F θdµ, θ ∈ Θ. (1.18)

For the Poisson measure it has the following form

Bπκ(θ) = exp

(
κ
∫
Rd
θ(x)dx

)
.

Obviously πκ(F θ) can be continued to an exponential type entire func-
tion of θ ∈ L1(Rd). Having this in mind we introduce the following
class of measures.

Definition 1.2.3. The set of sub-Poissonian measures Pexp(Γ) con-
sists of all those µ ∈ P(Γ) for each of which µ(F θ) can be continued
to an exponential type entire function of θ ∈ L1(Rd).

It can by shown that the measure πκ has the property: πκ(Γ0) = 0,
and for each µ ∈ Pexp(Γ), there exists κ > 0 such that

µ(ΓΛ,n) ≤ πκ(ΓΛ,n), (1.19)

holding for all compact Λ and n ∈ N.
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By Definition 1.2.3, see [35], a given µ belongs to Pexp(Γ) if and
only if µ(F θ) can be written down in the form

µ(F θ) = 1 +
∞∑
n=1

1

n!

∫
(Rd)n

k(n)
µ (x1, . . . , xn)θ(x1) · · · θ(xn)dx1 · · · dxn,

(1.20)

where k
(n)
µ - called n-th order correlation function of the state µ- is

a positive and symmetric element of L∞((Rd)n). Moreover, for the

collection {k(n)
µ }n∈N satisfies Ruelle’s bound

‖k(n)
µ ‖L∞((Rd)n ≤ κn, n ∈ N, (1.21)

holding with some κ > 0. Note that k
(n)
πκ = κn.This implies the form

of Bπκ , and so k
(n)
µ (x1, . . . , xn) ≤ κn, cf. (1.19).

Recall that Bbs(Γ0) stands for the set of all bounded functions with
bounded support.

Definition 1.2.4. The Lebesgue-Poisson measure λ on (Γ0,B(Γ0)) is
defined by the integrals∫

Γ0

G(η)λ(dη) = G(∅) +
∞∑
n=1

1

n!

∫
(Rd)n

G(n)(x1, . . . xn)dx1 · · · dxn,

(1.22)
holding for all G ∈ Bbs(Γ0).

For G ∈ Bbs(Γ0), we set

(KG)(γ) =
∑
ηbγ

G(η), γ ∈ Γ, (1.23)

where η b γ means that η ⊂ γ and η is finite. For each G ∈ Bbs(Γ0), by
ΛG and NG we denote the smallest Λ and N with the properties men-
tioned in Definition 1.2.1, and use the notations CG = supη∈Γ0

|G(η)|.
Then, cf. Definition 1.2.1,

|(KG)(γ)| ≤ CG (1 + |γ ∩ ΛG|)NG , G ∈ Bbs(Γ0).

Like in (1.15), we introduce the real valued function kµ : Γ0 → R
such that kµ(η) = k(n)(x1, . . . , xn) for η = {x1, . . . , xn}, n ∈ N, and
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kµ(∅) = 1. Then we rewrite (1.20) as follows

µ(F θ) =

∫
Γ0

kµ(η)e(θ; η)λ(dη), e(θ; η) :=
∏
x∈η

θ(x), (1.24)

where λ is the Lebesgue-Poisson measure introduced in (1.22). In the
sequel, we call kµ the correlation function corresponding to the measure
µ.

For µ ∈ Pexp(Γ) and a compact Λ, the projection µΛ, as a measure
on (Γ0,B(Γ0)), is absolutely continuous with respect to the Lebesgue-
Poisson measure λ, see [35]. Hence, we may write

µΛ(dη) = RΛ
µ (η)λ(dη). (1.25)

Then the Radon-Nikodym derivative RΛ
µ and the correlation function

kµ are related to each other by

kµ(η) =

∫
ΓΛ

RΛ
µ (η ∪ ξ)λ(dξ), η ∈ ΓΛ, Λ - compact. (1.26)

For each G ∈ Bbs(Γ0) and k : Γ0 → R such that k(n) ∈ L∞((Rd)n) the
integral

〈〈G, k〉〉 :=

∫
Γ0

G(η)k(η)λ(dη) (1.27)

exists. Hence, by (1.20), (1.23), (1.25) and (1.27) we obtain∫
Γ

(KG) (γ)µ(dγ) = 〈〈G, kµ〉〉 (1.28)

holding for all G ∈ Bbs(Γ0) and µ ∈ Pexp(Γ). Set

B?
bs(Γ0) = {G ∈ Bbs(Γ0) : (KG) (γ) ≥ 0 for all γ ∈ Γ}. (1.29)

By [35, Theorems 6.1, 6.2 and Remark 6.3] we know that the following
Proposition is true.

Proposition 1.2.5. Let a measurable function k : Γ0 → R have the
following properties:

(a) 〈〈G, kµ〉〉 ≥ 0, for all G ∈ B?
bs(Γ0);

(b) k(∅) = 1;

(c) k(η) ≤ C |η|;

with (c) holding for some C > 0 and λ-almost all η ∈ Γ0. Then there
exists a unique µ ∈ Pexp(Γ) such that k is its correlation function.
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Finally, we present the inequality which will extensively be used in
the sequel

npe−σn ≤
( p
eσ

)p
, p ≥ 1, σ > 0, n ∈ N, (1.30)

and two useful formulas holding for appropriate functions g : Rd → R

and G : Γ0 → R.

∀x ∈ γ
∑
ηbγ

∏
z∈η

g(z) = (1 + g(x))
∑
ηbγ\x

∏
z∈η

g(z), (1.31)

∫
Γ0

∑
ξ⊂η

G(ξ, η, η \ ξ)λ(dη) =

∫
Γ0

∫
Γ0

G(ξ, η ∪ ξ, η)λ(dξ)λ(dη), (1.32)

see [25], Lemma 2.4.

1.3 Evolution equations

Here and in the sequel, we use the notation, cf. (1.18),

µ(F ) =

∫
Fdµ.

The Markov evolutions which are studied in this work are described
by the (backward) Kolmogorov equation

d

dt
Ft =: Ḟt = LFt, Ft|t=0 = F0, (1.33)

where Ḟt denotes the time derivative and Ft : Γ→ R is an observable.
The expression LF determines the model, i.e. contains all informations
about it.

Recall that we consider probability measures on Γ as states of the
system. The evolution of such states µ0 7→ µt is defined by the Fokker-
Planck equation

µ̇t = Lµµt, µt|t=0 = µ0. (1.34)

Both evolutions, (1.33) and (1.34), are in the duality µ0(Ft) = µt(F0).
This means that Lµ is obtained from L by the following rule∫

Γ0

(LF )(γ)µt(dγ) =

∫
Γ0

F (γ)(Lµµt)(dγ). (1.35)
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For infinite systems, the direct use of (1.33) and (1.34) is rather impos-
sible, so we proceed as follows. Having in mind (1.24), instead of the
Fokker-Planck equation (1.34) we may consider the following evolution
equation for correlation functions

d

dt
kt = L∆kt, kt|t=0 = kµ0 , (1.36)

where operator L∆ is obtained from L in (1.33) by the rule

∫
Γ

(LF )(γ)µ(dγ) =

∫
Γ0

(L∆kµ)(η)

(∏
x∈η

θ(x)

)
λ(dη) (1.37)

In the case of finite configurations measures of our interest are abso-
lutely continuous with respect to λ defined in (1.22). Set, cf. (1.25),

µt(dγ) = Rt(γ)λ(dγ).

Then one can also transform (1.34) into the problem

d

dt
Rt(η) = (L†Rt)(η), Rt|t=0 = R0.

according to

(Lµµ)(dη) = (L†Rµ)(η)λ(dη). (1.38)

1.4 Spaces of measures and functions

We introduce here spaces in which equations (1.33), (1.34) and (1.36)
will be considered. We start with the space of signed measures with
bounded variation, where the equation (1.34) can be defined. By M
we denote the Banach space of all signed measures on (Γ0,B(Γ0)). Let
M+ stands for the cone of positive elements ofM, which is generating,
i.e. M = M+ −M+, see [18] and [50] for more details. Using the
Hahn-Jordan decomposition µ = µ+ − µ−, µ± ∈ M+, we define the
norm of µ ∈M as

‖µ‖M = µ+(Γ0) + µ−(Γ0).
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Then P(Γ0) is a subset ofM+ consisting of those µ for which ‖µ‖M =
1. Note that, the linear functional

ϕM(µ) := µ(Γ0) =

∫
Γ0

µ(dη) = µ+(Γ0)− µ−(Γ0)

has the property ϕM(µ) = ‖µ‖M for each µ ∈ M+; hence, ‖ · ‖M is
additive on the cone M+. Therefore M is an AL-space, see [50].

For an increasing function χ : N0 → [0,+∞), we set

Mχ =

{
µ ∈M :

∫
Γ0

χ(|η|)µ±(dη) <∞
}
, M+

χ =Mχ ∩M+,

(1.39)
and introduce

ϕMχ(µ) =

∫
Γ0

χ(|η|)µ(dη) (1.40)

=

∫
Γ0

χ(|η|)µ+(dη)−
∫

Γ0

χ(|η|)µ−(dη), µ ∈Mχ.

Regarding χ we assume that Mχ is a proper subset of M and the
corresponding embedding is continuous.

Along with the space M we will consider its subspace consisting
of all measures absolutely continuous with respect to the Lebesgue-
Poisson measure, which is

R := L1(Γ0, λ).

As we did before, we define the functional

ϕR(R) =

∫
Γ0

R(η)λ(dη).

Let R+ and R+
1 stands for the cone of positive elements of R and the

probability densities, respectively. Then ϕR(R) = ‖R‖R for R ∈ R+

and hence R is AL-space too. Similarly, as in (1.39) and (1.40), for an
increasing function χ : N0 → [0,+∞), we set

Rχ =

{
R ∈ R :

∫
Γ0

χ(|η|)|R(η)|λ(dη) <∞
}
, (1.41)

ϕRχ(R) =

∫
Γ0

χ(|η|)R(η)λ(dη), R ∈ Rχ,

R+
χ = Rχ ∩R+, R+

χ,1 = {R ∈ R+
χ : ϕR(R) = 1}.
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Let us now consider the L∞-like Banach spaces of functions Kα.
Having in mind that the correlation functions of measures from the set
Pexp(Γ) satisfy (1.21), for appropriated non-increasing function w(|η|)
and α ∈ R, we introduce the following norms

‖k‖α,w = ess sup
η∈Γ0

w(|η|)e−α|η||k(η)|, (1.42)

and the corresponding spaces

Kα = {k : Γ0 → R : ‖k‖α,w <∞}, (1.43)

equipped with the usual point-wise linear operations. For α′ < α, we
have that ‖k‖α′ ≥ ‖k‖α. Therefore, Kα′ ↪→ Kα, where “↪→” denotes
continuous embedding. In view of this, we have obtained an ascending
scale of Banach spaces {Kα}α∈R.

For α ∈ R, we set, cf. (1.28), (1.29) and Proposition 1.2.5,

K?α = {k ∈ Kα : 〈〈G, k〉〉 ≥ 0 and k(∅) = 1}. (1.44)

Note that K?α is a proper subset of the

K+
α := {k ∈ Kα : k(η) ≥ 0}. (1.45)

1.5 Thieme - Voigt perturbation theory

In this section, we present elements of the semigroup theory [46] and
the Thieme - Voigt perturbation theory [50], see also [4]. Here, we
adapted the theory to our purposes. Let E be either M or R, and
‖ · ‖E stand for the corresponding norm. The sets E+, E+

1 , Eχ, E+
χ ,

E+
χ,1, and the functionals ϕE , ϕEχ are defined analogously to the sets

and functional defined in Section 1.4, i.e., they should coincide with
the corresponding objects introduced in Section 1.4 if E is replaced by
M or R (by M+

1 we then understand P(Γ0)). Let D ⊂ E be a linear
subspace, D+ = D ∩ E+ and (A,D), (B,D) be operators in E . Set
also Dχ = {u ∈ D ∩ Eχ : Au ∈ Eχ} and denote by Aχ the trace of
A in Eχ, i.e., the restriction of A to Dχ. Recall that a C0-semigroup
of bounded linear operators S = {S(t)}t≥0 in E is called positive if
S(t) : E+ → E+ for each t ≥ 0. A sub-stochastic (resp. stochastic)
semigroup in E is a positive C0-semigroup such that ϕE(S(t)u) ≤ ϕE(u)
(resp. ϕE(S(t)u) = ϕE(u)) whenever u ∈ E+.
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Proposition 1.5.1. [50, Proposition 2.2] Let (A,D) be the generator
of a positive C0-semigroup in E, and (B,D) be positive, i.e., B : D+ →
E+. Suppose also that

∀u ∈ D+ ϕE((A+B)u) ≤ 0. (1.46)

Then, for each r ∈ (0, 1), the operator (A+ rB,D) is the generator of
a sub-stochastic semigroup in E.

Proposition 1.5.2. [50, Proposition 2.7] Assume that:

(i) −A : D+ → E+ and B : D+ → E+;

(ii) (A,D) be the generator of a sub-stochastic semigroup S = {S(t)}t≥0

on E such that S(t) : Eχ → Eχ for all t ≥ 0 and the restrictions
S(t)|Eχ constitute a C0-semigroup on Eχ generated by (Aχ,Dχ);

(iii) B : Dχ → Eχ and ϕE ((A+B)u) = 0, for u ∈ D+;

(iv) there exist c > 0 and ε > 0 such that

ϕEχ ((A+B)u) ≤ cϕEχ(u)− ε‖Au‖E , for u ∈ Dχ ∩ E+.

Then the closure of (A + B,D) in E is the generator of a stochastic
semigroup SE = {SE(t)}t≥0 in E which leaves Eχ invariant. The re-
strictions SEχ(t) := SE(t)|Eχ, t ≥ 0, constitute a C0-semigroup SEχ in
Eχ generated by the trace of the generator of SE in Eχ.



Chapter 2

Fission-death system with
competition

This chapter is devoted to the evolution of the system of interacting
point entities with traits x ∈ Rd, introduced and studied in [38, 39].
In the model, each entity is subject to a state-dependent death (with
rate that includes a competition term) and independent fission, in the
course of which each entity produces two descendants and simultane-
ously disappears. The states of the system are probability measures on
the corresponding configuration space. We also perform a multi-scale
analysis of this system.

2.1 The model and the basic assumptions

The Markov evolution of the model is described by the Kolmogorov
equation (1.33), in which L specifies the model. In the considered case
it has the following form

(LF )(γ) =
∑
x∈γ

m(x) +
∑
y∈γ\x

a(x− y)

 [F (γ \ x)− F (γ)] (2.1)

+
∑
x∈γ

∫
(Rd)2

b(x|y1, y2) [F (γ \ x ∪ {y1, y2})− F (γ)] dy1dy2.

In expressions like γ ∪ x, we treat x as a singleton configuration {x}.
The first term in (2.1) corresponds to the death of the particle with

22
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trait x occurring:
(i) independently with rate m(x) ≥ 0;
(ii) under the influence (competition) of the other particles in γ occur-
ring with rate

Ea(x, γ \ x) :=
∑
y∈γ\x

a(x− y) ≥ 0. (2.2)

The second term in (2.1) is responsible for an independent fission with
rate b(x|y1, y2) ≥ 0.

Assumption 1. The nonnegative measurable functions a, b and m are
subject to the following:

(i) a is integrable and bounded; hence, we may set

sup
x∈Rd

a(x) = a∗,

∫
Rd
a(x)dx = 〈a〉.

(ii) There exist positive r and a∗ such that a(x) ≥ a∗ whenever
|x| ≤ r.

(iii) For each x ∈ Rd, b(x|y1, y2)dy1dy2 is a symmetric finite measure
on (Rd)2; hence, we may set

〈b〉 =

∫
(Rd)2

b(x|y1, y2)dy1dy2,

where, for simplicity, we restrict the consideration to the trans-
lation invariant case where the right-hand side of the latter for-
mula is independent of x. The mentioned symmetry means that
b(x|y1, y2) = b(x|y2, y1) for all values of the arguments.

(iv) For each y1, y2 ∈ Rd, b(·|y1, y2) is integrable, and hence we may
set

β(y1 − y2) =

∫
Rd
b(x|y1, y2)dx,

where the function β ≥ 0 has the property

∫
Rd
β(x)dx = 〈b〉 and

is supposed to be such that

sup
x∈Rd

β(x) =: β∗ <∞.
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Our consideration includes also the case where b is a distribution.
In particular, b may take the form

b(x|y1, y2) =
1

2
(δ(x− y1) + δ(x− y2))β(y1 − y2)

which corresponds to the Bolker-Pacala model [32].

Remark 2.1.1. The function β describes the dispersal of newborn twins,
which are subject to the competition described by a. As in the Bolker-
Pacala model, the following two cases may occur:

• short dispersal: there exists ω > 0 such that a(x) ≥ ωβ(x)
holding for all x ∈ Rd;

• long dispersal: for each ω > 0, there exists x ∈ Rd such that
a(x) < ωβ(x).

For η ∈ Γ0, we set, cf. (2.2),

Ea(η) =
∑
x∈η

Ea(x, η \ x) =
∑
x∈η

∑
y∈η\x

a(x− y), (2.3)

Eb(η) =
∑
x∈η

∑
y∈η\x

β(x− y) =
∑
x∈η

∑
y∈η\x

∫
Rd
b(z|x, y)dz.

The properties of the model mentioned in (ii) and (iv) of Assumption
1 imply the following fact.

Proposition 2.1.2. There exist ω > 0 and υ ≥ 0 such that

υ|η|+ Ea(η) ≥ ωEb(η), (2.4)

holding for each η ∈ Γ0.

The inequality above can be rewritten in the form

Φω(η) :=
∑
x∈η

∑
y∈η\x

[
a(x− y)− ω

∫
Rd
b(z|x, y)dz

]
≥ −υ|η|. (2.5)

Proposition 2.1.3. Assume that (2.5) holds true for some ω0 > 0
and υ0 > 0. Then for each ω < ω0, it holds also for υ = υ0ω/ω0.
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Proof. For ω ∈ [0, ω0] by adding and subtracting ω
ω0
Ea(η) we obtain

Φω(η) =
ω

ω0

[(ω0

ω
− 1
)
Ea(η) + Φω0(η)

]
≥ − ω

ω0

υ0|η|.

Proof of Proposition 2.1.2. According to Assumption 1, β is Riemann
integrable, then for arbitrary ε > 0, one can divide Rd into equal cubic
cells El, l ∈ N, of small enough side h > 0 such that the following
holds

hd
+∞∑
l=1

βl ≤ 〈β〉+ ε, βl := sup
x∈El

β(x). (2.6)

For r > 0, set Kr(x) = {y ∈ Rd : |x− y| < r}, x ∈ Rd, and

ar = inf
x∈K2r(0)

a(x). (2.7)

Then we fix ε and pick r > 0 such that ar > 0. For fixed r, h and ε
as above, we prove the proposition by the induction in the number of
points in η. By (2.5) we rewrite inequality (2.4) in the form

Uω(η) := υ|η|+ Φω(η) ≥ 0, (2.8)

and for some x ∈ η, consider

Uω(x, η \ x) := Uω(η)− Uω(η \ x)

= υ + 2

∑
y∈η\x

a(x− y)− ω
∑
y∈η\x

β(x− y)

 .

Set cd = |K1| and let ∆(d) be the packing constant for regid balls in
Rd, cf. [28]. Then set

δ(β) = max{β∗; (〈b〉+ ε)gd(h, r)}, (2.9)

gd(h, r) =
∆(d)

cd

(
h+ 2r

hr

)d
.

Next,assume that υ and ω satisfy the following, cf. (2.7),

ω ≤ min{ υ

2δ(β)
;
ar
δ(β)
}. (2.10)

Let us show that
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(i) for each η = {x, y}, (2.10) implies (2.8);

(ii) for each η, one finds x ∈ η such that Uω(x, η \ x) ≥ 0 whenever
(2.10) holds.

To prove (i) by (2.10) and (2.9) we get

Uω({x, y}) = 2υ + 2a(x− y)− 2ωβ(x− y)

≥ (υ − 2ωβ∗) + 2a(x− y) ≥ 0.

To prove (ii), for y ∈ η, we set

s = max
y∈η
|η ∩K2r(y)|. (2.11)

Let also x ∈ η be such that |η ∩ K2r(x)| = s. For this x, by El(x),
l ∈ N, we denote the corresponding translates of El which appear in
(2.6). Set ηl = η ∩ El(x) and let l∗ ∈ N be such that η ⊂

⋃
l≤l∗ El(x)

which is possible since η is finite. For a given l, a subset ζl ⊂ ηl is called
r−admissible if for each distinct y, z ∈ ζl, one has that Kr(y)∩Kr(z) =
∅. Such a subset ζl is called maximal r−admissible if |ζl| ≥ |ζ ′| for any
other r−admissible ζ ′l . It is clear that

ηl ⊂
⋃
z∈ζl

K2r(z). (2.12)

Otherwise, one finds y ∈ ηl such that |y − z| ≥ 2r, for each z ∈ ζl,
which yields that ζl is not maximal. Since all the balls Kr(z), z ∈ ζl,
are contained in the h−extended cell

Eh
l (x) := {y ∈ Rd : inf

z∈El(x)
|y − z| ≤ h},

their maximum number - and hence |ζl| - can be estimated as follows

|ζl| ≤ ∆(d)V (Eh
l (x))/cdr

d = hd
∆(d)

cd

(
h+ 2r

hr

)d
= hdgd(h, r), (2.13)

where cd and ∆(d) are as in (2.9). Then by (2.11) and (2.12) we get

∑
y∈η\x

β(x− y) ≤
l∗∑
l=1

∑
z∈ζl

∑
y∈K2r(z)∩ηl

βl.
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The cardinality of K2r(z) ∩ ηl does not exceed s, see (2.11), whereas
the cardinality of ζl safisfies (2.13). Then

∑
y∈η\x

β(x− y) ≤ sgd(h, r)
∞∑
l=1

βlh
d ≤ sgd(h, r)(〈b〉+ ε) ≤ sδ. (2.14)

On other hand, by (2.7) and (2.11) we get∑
y∈η\x

a(x− y) ≥
∑

y∈(η\x)∩K2r(x)

a(x− y) ≥ (s− 1)ar.

We use this estimate and (2.14) in (2.8) and obtain

Uω(x, η \ x) ≥ 2δ
[( υ

2δ
− ω

)
+ (s− 1)

(ar
δ
− ω

)]
≥ 0,

see (2.10). Thus, (ii) also holds and the proof follows by the induction
in |η|.

�

2.2 Evolution of states of the finite sys-

tem

Here we assume that the initial state in the Fokker-Plank equation
(1.34) has the property µ0(Γ0) = 1, that is, the system in µ0 is finite.
Then the evolution related to (1.34) will be constructed in the Banach
space of signed measures with bounded variation introduced in Section
1.4, where the generator Lµ can be defined as an unbounded linear
operator and C0-semigroup techniques can be applied.

We consider the following types of function χ(n) that defines the
spaces Mχ, cf. (1.39),
(a) χm(n) := (1 + n)m, m ∈ N,
(b) χκ(n) := eκn, κ > 0.

Let us then set, cf. Assumption 1 and (2.3),

Ψ(η) = M(η)+Ea(η)+〈b〉|η|, M(η) :=
∑
x∈η

m(x) ≤ m∗|η|, (2.15)
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and then

D =

{
µ ∈M :

∫
Γ0

Ψ(η)µ±(dη) <∞
}
. (2.16)

By (2.3) we have that Ψ(η) ≤ C|η|2 for an appropriate C > 0; hence,
Mχ2 ⊂ D.

Proposition 2.2.1. For µ ∈ D, we set Lµ = A+B, where

(Aµ)(dη) = −Ψ(η)µ(dη), (Bµ)(dη) =

∫
Γ0

Ξ(dη|ξ)µ(dξ), (2.17)

where for A ∈ B(Γ0) the measure kernel Ξ is

Ξ(A|ξ) =
∑
x∈ξ

(m(x) + Ea(x, ξ \ x))1A(ξ \ x) (2.18)

+
∑
x∈ξ

∫
(Rd)2

b(x|y1, y2)1A(ξ \ x ∪ {y1, y2})dy1dy2,

and 1A is the indicator of A. See also Assumption 1 and (2.15).

By direct inspection one checks that Lµ satisfies µ(LF ) = (Lµµ)(F )
holding for all µ ∈ D and appropriate F : Γ0 → [0,+∞), see (2.1).

By a global solution of (1.34) in M with µ0 ∈ D we understand a
continuous map [0,+∞) 3 t 7→ µt ∈ D ⊂ M, which is continuously
differentiable in M on (0,+∞) and is such that both equalities in
(1.34) hold. Our main result here is as follows.

Theorem 2.2.2. The problem in (1.34) with µ0 ∈ D has a unique
global solution µt ∈M, which has the following properties:

(a) for each m ∈ N, µt ∈ Mχm ∩ P(Γ0) for all t > 0 whenever
µ0 ∈Mχm ∩ P(Γ0);

(b) for each κ > 0 and κ′ ∈ (0, κ), µt ∈ Mχκ′ ∩ P(Γ0) for all t ∈
(0, T (κ, κ′)) whenever µ0 ∈Mχκ ∩ P(Γ0), where

T (κ, κ′) =
κ− κ′

〈b〉
e−κ; (2.19)

(c) for all t > 0, µt(dη) = Rt(η)λ(dη) whenever µ0(dη) = R0(η)λ(dη).
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2.3 Evolution of states of the infinite sys-

tem

In this section, we construct the evolution of states µ0 → µt assuming
that the system in µ0 is infinite. In particular, we have to consider also
infinite configurations for which sums as those in, e.g., (2.18) may not
exist. Hence, the direct use of Lµ as linear operator in appropriated Ba-
nach spaces is rather impossible and the method developed in Section
2.2 does not work anymore. Instead, we will try to obtain evolution
µ0 → µt from the evolution B0 → Bt, where B0(θ) = µ0(F θ) and the
initial state µ0 is taken in the set Pexp(Γ), see (1.18) and Definition
1.2.3. In view of (1.24), the evolution B0 → Bt can be constructed
by employing correlation functions, the evolution of which will be per-
formed in the following three steps: (a) constructing k0 → kt for t < T
(for some T < ∞) by solving equation (1.36); (b) proving that kt is
the correlation function of a unique µt ∈ Pexp(Γ); (c) continuing kt to
all t > 0. Using the relation (1.37) between operators L and L∆ we
obtain the following.

Proposition 2.3.1. Operator L∆ in (1.36) has the form

L∆ = A∆
1 + A∆

2 +B∆
1 +B∆

2 , (2.20)

(A∆
1 k)(η) = −Ψ(η)k(η),

(A∆
2 k)(η) =

∫
Rd

∑
y1∈η

∑
y2∈η\y1

k(η ∪ x \ {y1, y2})b(x|y1, y2)dx,

(B∆
1 k)(η) = −

∫
Rd
k(η ∪ x)Ea(x, η)dx,

(B∆
2 k)(η) = 2

∫
(Rd)2

∑
y1∈η

k(η ∪ x \ y1)b(x|y1, y2)dy2dx,

where Ψ is given in (2.15).

Our aim is to employ the scale of Banach spaces in which we can
define linear operator acting as in (2.20). Thus we use the norm intro-
duced in (1.42) with w(|η|) = 1 and the corresponding Banach spaces
Kα, see (1.43). This yields that

|k(η)| ≤ eα|η|‖k‖α, α ∈ R. (2.21)
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First, for a given α ∈ R, we define an unbounded operator (L∆
α ,D∆

α ),
where

D∆
α = {k ∈ Kα : Ψk ∈ Kα}. (2.22)

Thus, A∆
1 : D∆

α → Kα. Furthermore, for each k ∈ D∆
α , there exists

C > 0 such that (1 + Ψ(η))|k(η)| ≤ eα|η|C. We apply the latter fact
and item (iv) of Assumption 1 to get

∣∣(A∆
2 k)(η)

∣∣ ≤ Ce−α+α|η|

1 + Ψ(η)

∑
y1∈η

∑
y2∈η\y1

β(y1 − y2) ≤ Cβ∗e−α+α|η|,

which means that also A∆
2 maps D∆

α to Kα. In a similar way, we prove
that B∆

i : D∆
α → Kα, i = 1, 2. Thus, the expression in (2.20) can be

used to define (L∆
α ,D∆

α ). By means of the inequality (1.30) one readily
proves that

∀α′ < α Kα′ ⊂ D∆
α . (2.23)

Proposition 2.3.2. For α′ < α and L∆ as in (2.20), we define a
bounded linear operator L∆

αα′ : Kα′ → Kα, the operator norm of which
satisfies

‖L∆‖αα′ ≤
(

4
m∗ + 〈b〉+ a∗ + β∗e−α

′

e2(α− α′)2
+
〈a〉eα′ + 2〈b〉
e(α− α′)

)
. (2.24)

Then, in view of (2.23), we have that each k ∈ Kα′ lies in D∆
α , and

L∆
αα′k = L∆

α k. (2.25)

In the sequel, we consider two types of operators with the action as in
(2.20): (a) unbounded operators (L∆

α ,D(L∆
α )), α ∈ R, with domains

as in (2.22); (b) bounded operators L∆
αα′ satisfying (2.24) and related

to the operator L∆
α by (2.25), i.e., L∆

αα′ can be considered as the re-
striction of L∆

α to Kα′ .

Let us fix some α1 ∈ R. Then take α2 > α1 and consider the
following Cauchy problem in space Kα2 , cf. (1.43),

k̇t = L∆
α2
kt, kt|t=0 = k0 ∈ Kα1 . (2.26)

By its solution on a time interval [0, T ) we mean a continuous (in Kα2)
map [0, T ) 3 t 7→ kt ∈ D∆

α2
, which is continuously differentiable on
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(0, T ) and satisfies both equalities in (2.26). For α, α′ ∈ R such that
α′ < α and for υ ≥ 0 as in Proposition 2.1.2, we set

T (α, α′) =
α− α′

2〈β〉+ υ + 〈a〉eα
. (2.27)

Lemma 2.3.3. Let ω and υ be as in Proposition 2.1.2. Then for each
α1 > − logω and an arbitrary k0 ∈ Kα1, the problem in (2.26) has a
unique solution kt ∈ D∆

α2
on the time interval [0, T (α2, α1)).

In contrast to the case of finite configurations described in Theorem
2.2.2, the construction of a C0-semigroup that solves (2.26) is rather
hopeless. In view of this, we will try to find the solution of the equation
(2.26) in the following steps:

(i) the operator L∆ will be written in the form L∆ = A∆
υ + B∆

υ in
such a way that A∆

υ := A∆
1,υ + A∆

2 will be used to construct a
certain (sun-dual) C0-semigroup in Kα2 ;

(ii) this semigroup andB∆
υ := B∆

1 +B∆
2,υ, will be used to construct the

family of operators {Qαα′(t) : t ∈ [0, T (α, α′))}, see (2.27), such
that Qαα′(t) ∈ L(Kα′ ,Kα) and kt = Qα2α1(t)k0 is the solution of
(2.26). By L(Kα′ ,Kα) we denote the Banach space of all bounded
linear operators acting from Kα′ to Kα

Our next aim is to show that the solution obtained in Lemma 2.3.3
has the property kt = kµt for a unique µt ∈ Pexp(Γ). We call this
identification since it allows us to identify the mentioned solutions as
correlation functions of sub-Poissonian states.

Recall that υ and ω appear in Proposition 2.1.2 and K?α is defined
in (1.44).

Lemma 2.3.4 (Identification). For each α2 > α1 > − logω, it follows
that Qα2α1(t) = Qα2α1(t;B∆

υ ) : K?α1
→ K?α2

for all t ∈ [0, τ(α2, α1)] with
τ(α2, α1) = T (α2, α1)/3.

The proof of this lemma consists in the following steps:

(i) constructing an approximation kapp
t of kt = Qα2α1(t)k0, k0 ∈ K?α1

,
such that 〈〈G, kapp

t 〉〉 ≥ 0 for all G ∈ B?
bs(Γ0), which includes also

constructing an auxiliary model;
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(ii) proving that 〈〈G, kapp
t 〉〉 → 〈〈G, kt〉〉 as the approximations are

eliminated.

The figure above provides an illustration to the idea of how to re-
alize step (i). The origin of the inequality in question is in (1.28) and
(1.29). To relate kt with a positive measure one uses local approxima-
tions of µ0, the densities of which (not necessarily normalized) evolve
Rapp

0 → Rapp
t in L1-like spaces according to Theorem 2.3.5. These ap-

proximations are tailored in such a way that the corresponding correla-
tion functions (1.26) (that have the desired property by construction)
also evolve qapp

0 → qapp
t in L1-like spaces Gϑ. The technique developed

in Sect. 4.1.5 allows for proving that 〈〈G, kapp
t 〉〉 converges to 〈〈G, kt〉〉

only if kapp
t = Qαα0(t)qapp

0 . That is, at this stage there is no connec-
tion between the evolutions qapp

0 → qapp
t and qapp

0 → kapp
t as they take

place in (different) spaces, Gϑ and Kα, respectively. It turns out, that
these spaces have an intersection Uσα constructed with the help of some
objects dependent on a parameter σ > 0. To employ this fact we use
auxiliary models (indexed by σ), for which we prove that both evolu-
tions qapp

0 → qapp
t and qapp

0 → kapp
t take place in Uσα and thus coincide.

That is qapp
t = kapp

t for t ≤ τ with some positive τ , that yields the
desired positivity of kapp

t . Then step (ii) includes also taking the limit
σ → 0+.

In Section 1.4, for α ∈ R, we defined spaces K?α and K+
α , see (1.44)

and (1.45). Since the spaces set in (1.43) form an ascending scale, we
have that k ∈ Kα0 lies in all Kα with α > α0. Our main result is given
by the following statement.

Theorem 2.3.5. For each µ0 ∈ Pexp(Γ0), one can choose real α0 and c
such that kµ0 ∈ Kα0 and there exists a unique map [0,+∞) 3 t 7→ kt ∈
K?αt with αt = α0 + ct and k0 = kµ0, which has the following properties:
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(i) For each T > 0, and all t ∈ [0, T ), the map

[0, T ) 3 t 7→ kt ∈ Kαt ⊂ D(L∆
αT

) ⊂ KαT

is continuous on [0, T ) and continuously differentiable on (0, T )
in KαT .

(ii) For all t ∈ (0, T ) it satisfies

k̇t = L∆
αT
kt.

Corollary 2.3.6. Let kt ∈ K?αt, t ≥ 0, be as in Theorem 2.3.5, and
then µt ∈ Pexp(Γ) be the measure corresponding to this kt according to
Proposition 1.2.5. Then the map t 7→ µt is such that

1. for each compact Λ and t ≥ 0, µΛ
t lies in the domain D ⊂ M

defined in (2.16);

2. for each θ ∈ Θ, the map [0,+∞) 3 t 7→ µt(F
θ) is continuous and

continuously differentiable on (0,+∞) and the following holds

d

dt
µt(F

θ) = (L∗µΛθ
t )(F θ) = 〈〈e(θ, ·), L∆

αT
kt〉〉, (2.28)

where the latter equality holds for all T > t, see (1.24) and (1.27).

The main part of the proof of these statements contained the fol-
lowing: (a) constructing the evolution kµ0 7→ kt for t belonging to a
bounded interval (Lemma 2.3.3); (b) proving that kt belongs to K?α
with an appropriate α, which with the help of Proposition 1.2.5 will
allow to associate it with a unique µ ∈ Pexp(Γ) (Identification Lemma
2.3.4); (c) proving that kt lies in Kαt on the mentioned time interval,
which will be used to continue kt to all t > 0.

2.4 Mesoscopic description

Along with the microscopic theory based on the equation (1.33), we
also consider its relation with phenomenological models through the
mesoscopic description of the system obtained by the so-called Vlasov
scaling, see [26] and [11]. Here, the scale is described by a parameter



34

ε ∈ (0, 1], in such a way that ε = 1 corresponds to the microscopic
level. In the scaling limit ε → 0, the corpuscular structure of the
system disappears and it turns into a medium described by the density.
Having in mind, that any Poissonian state π% is fully characterized by
the density, see (1.17), we introduce the following definition, cf. [8,11].

Definition 2.4.1. A state µ ∈ Pexp(Γ) is said to be Poisson - approx-
imable if: (i) there exist α ∈ R and % ∈ L∞(Rd) such that both kµ
and kπ% lie in Kα; (ii) for each ε ∈ (0, 1], there exists q(ε) such that
q(1) = kµ and ‖q(ε) − kπ%‖α → 0 as ε→ 0.

Our aim is to show that the evolution µ0 7→ µt from Theorem
2.3.5 preserves the Poisson-approximability defined above, respecting
the density function %t obtained from the kinetic equation

d

dt
%t = −m%t − (a ∗ %t)%t + (b ∗ %t), %t|t=0 = %0. (2.29)

where for B being either β or a we set

(B ∗ %t)(x) =

∫
Rd

B(x− y)%t(y)dy.

Theorem 2.4.2. Let kt be the solution of equation (1.36) with initial
condition kt|t=0 = kµ0 ∈ Kα0 obtained in Theorem 2.3.5 and %t be
the solution of (2.29). Let also µ0 be Poisson-approximable by the

measure π%, i.e. there exist α0 ∈ R and q
(ε)
0 such that kµ0 = q

(1)
0 and

‖kπ% − q
(ε)
0 ‖α0 → 0 as ε → 0. Then there exists α∗ > α0 and T > 0

such that the following holds

lim
ε→0

sup
t∈[0,T ]

‖q(ε)
t − kπ%t‖α∗ = 0.



Chapter 3

Free branching in the
continuum

In this chapter we discuss the model of fragmentation of an infinite
system of point particles introduced in [49] and study in [40] placed
in locally compact Polish space X. Here, each ‘particle’ produces at
random a finite ‘cloud’ (possibly empty) of new particles, and disap-
pears afterwards. In contrast to the fission - death model presented in
Chapter 2, here particles undergo the free branching. The main result
of this chapter is the construction of the solutions of both Kolmogorov
and Fokker - Planck evolution equations.

3.1 The model

The model is determined by the Kolmogorov equation (1.33), where
the generator L has the following form

(LF )(γ) =
∑
x∈γ

∫
Γ

[F (γ \ x ∪ ξ)− F (γ)]bx(dξ). (3.1)

The branching kernel bx is a map (X,N ) 3 (x,Ξ) 7→ bx(Ξ) ∈ [0, 1]
such that each bx is a probability measure on N and x 7→ bx(Ξ) is
measurable for each Ξ ∈ B(N ). We assume that, for each x ∈ X, bx
is a probability measure on (Γ0,B(Γ0)). Its correlation measure βx is

35
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defined by the integrals∫
Γ0

(∑
η⊂ξ

G(η)

)
bx(dξ) =

∫
Γ0

G(η)βx(dη) (3.2)

= G(∅) +
∞∑
n=1

1

n!

∫
Xn

G(n)(x1, . . . , xn)β(n)
x (dx1, . . . , dxn),

with G running through a separating family. As such one, we can
take the family of all bounded Borel functions G : Γ0 → R such that
G(n) ≡ 0 whenever n > N , see (1.15). For n ∈ N0, we set Γn = {ξ ∈
Γ0 : |ξ| = n}. Then bx(Γ

n) is the probability of producing n offsprings
by the particle located at x. Note that δ(x) := bx(Γ

0) is just the death
probability, and

n(x) :=

∫
Γ0

|ξ|bx(dξ) =
∞∑
n=1

nbx(Γn) = β(1)
x (X) (3.3)

is the expected number of offsprings of the particle located at x.
For φ as in (1.13), we define

(Φφ)(x) =

∫
Γ0

(∏
y∈ξ

φ(y)

)
bx(dξ). (3.4)

Clearly, 0 ≤ (Φφ)(x) ≤ 1 for each x ∈ X. Recall that we use ψ in (1.5)
in defining tempered configurations.

Assumption 2. The probability kernel b is subject to the following
conditions:

(i) Φφ ∈ Cb(X) for each φ as in (1.13);

(ii) supx∈X n(x) =: n∗ <∞;

(iii) the death probability δ satisfies δ(x) ≥ 1−ψ(x) ≥ δ∗ > 0, holding
for all x ∈ X;

(iv) there exists m > 0 such that, for all x ∈ X, the following holds∫
X

ψ(y)β(1)
x (dy) ≤ n(x)mψ(x). (3.5)
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By (1.13), (3.5) and Jensen’s inequality we get

− log(Φφ)(x) ≤
∫

Γ0

(
− log

∏
y∈ξ

φ(y)

)
bx(dξ)

=

∫
X

g(x)ψ(y)β(1)
x (dy) ≤

(
sup
x∈X

g(x)

)
n(x)mψ(x).

Note that by (1.12) and (3.4) it follows that

(Φφ)(x) =

∫
Γ0

Gg(ξ)bx(dξ) = Lbx(g).

Then assumption (i) can be reformulated as the continuity of the map
X 3 x 7→ Lbx(g) ∈ R, holding for all g ∈ C+

b (X). The remaining
assumptions are supposed to control the production of new particles,
of which (ii) and (iii) are related to the properties of bx(Γ

n), n ∈ N0,
see (3.3). In general, (ii) and (iii) may be quite independent as the
choice of δ(x) leaves enough possibilities to modify n(x). However, in
some cases, δ(x) and n(x) can be expressed through each other. For
instance, if bx is a Poisson measure, then δ(x) = e−n(x). In this case,
(ii) follows by (iii) with n∗ = − log δ∗. The role of (iv) is to control
the dispersal of offsprings, and thus the nonlocality of the process. To
illustrate its role, we take X = R and

β̄x(dy) := β(1)
x (dy)/n(x) =

1

2r
I[x−r,x+r](y)dy, r > 0.

Then ψ(y) = e−α|y| satisfies

∫
X

ψ(y)β̄x(dy) ≤
(
eαr − e−αr

2αr

)
ψ(x),

which yields (3.5) with m = sinh(αr)/αr > 1. Note that this m can be
made arbitrarily close to one by taking small enough either r or α. The
former corresponds to a short dispersal, whereas by choosing small α
one makes Γψ – and hence P(Γψ) – smaller, cf. (1.6) and (1.10).
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3.2 The Kolmogorov Operator

3.2.1 Solving the log-Laplace equation

Our aim now is to prepare solving (1.34), which we begin by making
precise the definition of the Kolmogorov operator. To this end, how-
ever, we have to study the following nonlinear equation. For φ ∈ Cb(X)
and x ∈ X define θ(x) := 1− φ(x) and then

Cψ(X) = {φ ∈ Cb(X) : ∀x ∈ X 0 < cφψ(x) ≤ 1− φ(x) ≤ 1− δ(x)} ,
(3.6)

i.e., each θ = 1−φ has its own lower bound, whereas the upper bound
is one and the same for all such functions. Notably, by item (iii) of
Assumption 2 it follows that each φ ∈ Cψ(X) satisfies

φ(x) ≥ 1− ψ(x) ≥ δ∗. (3.7)

Let us prove that (Φφ)(x) ≥ δ(x), holding for each φ ∈ Cψ(X). Indeed,
by (3.4) we have

(Φφ)(x) = bx(Γ
0) +

∞∑
n=1

1

n!

∫
Xn

n∏
j=1

φ(yj)b
(n)
x (dy1, . . . dyn) (3.8)

≥ δ(x) ≥ 1− ψ(x) ≥ δ∗,

see item (iii) of Assumption 2. Moreover, by (1.13) and (3.7) it follows
that

g(x) ≤ − 1

ψ(x)
log(1− ψ(x)) =

∞∑
n=1

[ψ(x)]n−1

n
≤ − log(1− δ∗)

1− δ∗
=: g∗.

(3.9)
Both (3.7) and (3.9) holding for all x ∈ X.

Now for T > 0, by CT we denote the Banach space of continuous
maps [0, T ] 3 t 7→ ϕt ∈ Cb(X), equipped with the norm

‖ϕ‖T = sup
t∈[0,T ]

sup
x∈X
|ϕt(x)|. (3.10)

We also set

CTψ = {ϕ ∈ CT : ϕt ∈ Cψ(X), t ∈ [0, T ]},
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and
CTψ (φ) = {ϕ ∈ CTψ : ϕ0 = φ}, φ ∈ Cψ(X).

Obviously, the latter is a closed subset of CT . Thereafter, we define

(Kϕ)t(x) = ϕ0(x)e−t +

∫ t

0

e−(t−s)(Φϕs)(x)ds. (3.11)

Proposition 3.2.1. Let n∗ introduced in Assumption 2 and T satisfy
n∗(1− e−T ) < 1. Then for each φ ∈ Cψ(X), the map K has a unique
fixed point ϕ ∈ CTψ (φ).

Now we consider the following nonlinear equation

∂

∂t
φt(x) = −φt(x) + (Φφt)(x), φ0 = φ. (3.12)

In a sense, it is a nonlocal analog of the log-Laplace equation – a
standard object in the theory of branching processes, see, e.g., [21, page
61]. By a solution of (3.12) we will understand a map R+ 3 t 7→ φt ∈
Cb(X) which is everywhere continuously differentiable and satisfies
both equalities mentioned therein.

Lemma 3.2.2. For each φ ∈ Cψ(X), (3.12) has a unique solution
t 7→ φt ∈ Cψ(X) which satisfies

cφ(t)ψ(x) := e−tcφψ(x) ≤ 1− φt(x) =: θt(x) ≤ ψ(x). (3.13)

For n∗ < 1, this solution tends to φ∞(x) ≡ 1 in the norm of Cb(X).

Remark 3.2.3. By Lemma 3.2.2 and its proof (see (4.120)), it follows
that the solution (3.12) – which is a nonlinear Cauchy problem in the
Banach space Cb(X) – is given by a continuous semigroup of nonlinear
operators, say {ρt}t≥0, in the form φt = ρt(φ0), φt ∈ Cψ(X). If one
writes φt ∈ Cψ(X) in the form φt(x) = exp(−gt(x)ψ((x)), see (1.13),
then the map g 7→ gt also has the flow property, and hence can be
considered as the continuous semigroup of nonlinear operators {rt}t≥0

such that gt = rt(g0). It is known as the log-Laplace semigroup, see
[21, page 60].

We conclude this subsection by establishing the following useful
properties of the solution φt.



40

Lemma 3.2.4. Let φt = 1 − θt be the solution as in Lemma 3.2.2.
Then, for each t ≥ 0, u > 0 and all x ∈ X, the following holds

(a) |φt+u(x)− φt(x)| = |θt+u(x)− θt(x)| ≤ 2uψ(x), (3.14)

(b) |gt+u(x)− gt(x)| ≤ 2u/δ∗,

(c) |(Φφt+u)(x)− (Φφt)(x)| ≤ 2un∗mψ(x).

3.2.2 Basic estimates

In defining L, we employ a number of estimates which we derive now.
To simplify our notations, for φ ∈ Cψ(X) we set, see (1.13),

F φ(γ) =
∏
x∈γ

φ(x) = exp

(
−
∑
x∈γ

g(x)ψ(x)

)
= Gg(γ), (3.15)

where Gg(γ) is as in (1.12).

Proposition 3.2.5. Let F φ be as in (3.15) with φ ∈ Cψ(X), see (3.6).
Then, for each γ ∈ Γψ, the following holds∣∣LF φ(γ)

∣∣ ≤ 2

eδ∗cφ
, (3.16)

where cφ defines the lower bound in (3.6). By (3.16) it follows that
LF φ ∈ Cb(Γψ).

As in (3.6) we do not restrict the lower bounds, the right-hand side
of (3.16) can be arbitrarily large for small enough cφ.

Lemma 3.2.6. For a given φ ∈ Cψ(X), let φt be the solution of (3.12),
see Lemma 3.2.2. Then, for each t ≥ 0, u > 0 and γ ∈ Γψ, the
following holds ∣∣F φt+u(γ)− F φt(γ)

∣∣ ≤ 2uet+u

eδ∗cφ
.

Lemma 3.2.7. Let φ, t and u be as in Lemma 3.2.6. Then there exists
Cφ > 0 such that, for all γ ∈ Γψ, the following holds∣∣(LF φt+u)(γ)− (LF φt)(γ)

∣∣ ≤ Cφue
2(t+u). (3.17)
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3.2.3 The domain and the resolvent

We begin by introducing

E(Γψ) = E0(Γψ), E0(Γψ) := l.s.{F φ : φ ∈ Cψ(X)}, (3.18)

where l.s. denotes linear span and the closure is taken in the Banach
space Cb(Γψ), i.e., in

‖F‖ := sup
γ∈Γψ
|F (γ)|.

With this norm, E(Γψ) becomes a separable Banach space.

Remark 3.2.8. The set E0(Γψ), and hence also E(Γψ), have all the
properties stated in Proposition 1.1.7. This follows by the fact that
the family {Gv : v ∈ V} mentioned therein is a subset of E0(Γψ), see
(3.15).

Since the map t 7→ F φt ∈ Cb(Γψ) is continuous and bounded (by
one), for each λ > 0 the Bochner integral, see [3, Sect. 1.1, pages 6–15]

F φ
λ =

∫ +∞

0

e−λtF φtdt, φ ∈ Cψ(X), (3.19)

is the limit of the corresponding Riemannian integral sums. Hence,
F φ
λ ∈ E(Γψ) for each λ > 0 and φ ∈ Cψ(X). Naturally, in (3.19)
φt stands for the solution of (3.12), see Lemma 3.2.2. Furthermore,
by (3.16) and (3.17) it follows that the map t 7→ LF φt ∈ Cb(Γψ)
is continuous and absolutely e−λtdt-integrable for all λ > 1. This
observation leads us to the following fact.

Lemma 3.2.9. For each φ ∈ Cψ(X) and λ > 1, the following holds

LF φ
λ =

∫ +∞

0

e−λtLF φtdt = −F φ + λF φ
λ . (3.20)

Proof. The first equality in (3.20) follows by the absolute integrability
of t 7→ LF φt ∈ Cb(Γψ) as just discussed. The second one is obtained
by integrating by parts.

Set
D0(L) = l.s.{F φ

λ : λ > .1, φ ∈ Cψ(X)}. (3.21)



42

As has just discussed, we know that

D0(L) ⊂ E(Γψ) and L : D0(L)→ E(Γψ),

where the latter follows by (3.20). In view of this, we can introduce

‖F‖L = ‖F‖+ ‖LF‖, F ∈ D0(L), (3.22)

i.e., ‖ · ‖L is the corresponding graph-norm. Thereby, we define

D(L) = D0(L)
L
, (3.23)

where the closure is taken in the norm set in (3.22).

Lemma 3.2.10. It follows that E0(Γψ) ⊂ D(L). Therefore, D(L) has
all the properties mentioned in Proposition 1.1.7.

Corollary 3.2.11. The operator (L,D(L)) is closed and densely de-
fined in the Banach space E(Γψ). Its resolvent set contains (0,+∞).

3.3 The Result

3.3.1 Solving the Kolmogorov equation

Now we are prepared to solve the Kolmogorov equation (1.33), which
we define as a Cauchy problem in the Banach space E(Γψ), see (3.18).
For a given F ∈ D(L), by its solution we understand a map [0,+∞) 3
t 7→ Ft ∈ D(L), continuously differentiable in E(Γψ), such that both
equalities in (1.33) hold true. That is, we are going to deal with clas-
sical solutions of (1.33), cf. [3, page 108].

Theorem 3.3.1. For each F0 ∈ D(L), the Cauchy problem (1.33) has
a unique classical solution t 7→ Ft ∈ D(L). For n∗ < 1, this solution
satisfies Ft(γ) → F∞(γ), where F∞(γ) ≡ 1 and the convergence is to
hold for each γ ∈ Γψ.

Since F φ ∈ D(L), see Lemma 3.2.10, it might be quite natural to
expect that the map t 7→ F φt is a solution of the Kolmogorov equation
with the initial condition F φ. It is indeed the case. To show this, we
write

λF φt
λ = S(t)λF φ

λ ,
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and pass here to the limit λ→ +∞. Since S(t) is a bounded operator
and ‖λF φ

λ − F φ‖L → 0 as λ → +∞, we can do this and obtain the
conclusion in question, i.e.,

F φt = S(t)F φ, t ≥ 0, φ ∈ Cψ(X). (3.24)

3.3.2 Solving the Fokker-Planck equation

Now we may turn to the probabilistic part of the topic. Here it would
be reasonable to recall that we use probability measures on Γψ as states
of the studied branching system.

Definition 3.3.2. By a solution of the Fokker-Planck equation (1.34)
we understand a map R+ 3 t 7→ µt ∈ P(Γψ) possessing the following
properties: (a) for each F ∈ Bb(Γψ), the map R+ 3 t 7→ µt(F ) ∈ R is
measurable; (b) the equality in (1.34) holds for all F ∈ D(L), where
the latter is defined in (3.23).

Theorem 3.3.3. For each µ0 ∈ P(Γψ), the Fokker-Planck equation
(1.34) has a unique solution in the sense of the definition given above.
Moreover, this solution is weakly continuous, i.e., µt ⇒ µs as t →
s ∈ R+. In the subcritical case, µt ⇒ µ∞ as t → +∞, where µ∞ is
the measure supported on the singleton subset of Γψ consisting of the
empty configuration, i.e., µ∞(Γ0) = 1

The proof of this theorem is based, in particular, on the following
fact.

Lemma 3.3.4. Let a map t 7→ µt satisfy condition (b) of Definition
3.3.2. Then it also satisfies (a), and hence is a solution of (1.34).

The proof of this statement in turn is based on the following result,
which has its own value.

Proposition 3.3.5. Let t 7→ µt ∈ P(Γψ) satisfy (1.34) for all t1, t2
and F ∈ D(L). Then, for each F ∈ D0(L), the map t 7→ µt(F ) ∈ R
is Lipschitz-continuous. The same is true also for F ∈ E0(Γψ), see
(3.18).

A direct consequence of Theorem 3.3.3 is the existence of a Markov
process with values in Γψ, that may be constructed by means of the
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Markov transition function ptγ, see [24, pages 156, 157], determined by
its values on {F φ : φ ∈ Cψ(X)}, cf. Remark 3.2.8. These values are
given by the following formula

pγt (F
θ) = F φt(γ), γ ∈ Γψ, φt = S(t)φ,

see (4.134). Then the uniqueness stated in Theorem 3.3.3 can be used
to prove that such a process is unique up to modifications. Another
observation is that, in our model, branching is the only evolution-
ary act, whereas papers on branching in finite particle systems, e.g.,
[5, 14, 22,23], assume more such acts, e.g., diffusion in X. Such gener-
alizations can also be done in our setting.



Chapter 4

Proofs

In this chapter, we present the proofs of the most important theorems
that have appeared in previous chapters.

4.1 Proofs regarding the fission - death

model

4.1.1 Proof of Proposition 2.2.1

To prove that operator Lµ can be written down as (2.17) we use the rule
(1.35) which transform operator L in (2.1) into operator in question.
Hence, the first summand in (2.1), using properties of Dirac measure,
is convert into the following.∫

Γ0

∑
x∈γ

m(x) +
∑
y∈γ\x

a(x− y)

 [F (γ \ x)− F (γ)]µ(dγ)

=

∫
Γ0

∑
x∈γ

m(x) +
∑
y∈γ\x

a(x− y)

F (γ \ x)µ(dγ)

−
∫

Γ0

∑
x∈γ

m(x) +
∑
y∈γ\x

a(x− y)

F (γ)µ(dγ)

=

∫
Γ0

∫
Γ0

∑
x∈γ

m(x) +
∑
y∈γ\x

a(x− y)

F (η)δγ\x(dη)µ(dγ)

45
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−
∫

Γ0

∑
x∈γ

m(x) +
∑
y∈γ\x

a(x− y)

F (γ)µ(dγ).

Then the first part of operator Lµ has the form

(Lµ1µ)(dη) =

∫
Γ0

∑
x∈γ

m(x) +
∑
y∈γ\x

a(x− y)

 Idη(γ \ x)µ(dγ)

−
∫

Γ0

∑
x∈η

m(x) +
∑
y∈η\x

a(x− y)

µ(dη) (4.1)

We calculate the second part of the operator in the similar way, and
hence, the second part of Lµ is

(Lµ2µ)(dη) =

∫
Γ0

∑
x∈γ

∫
(Rd)2

b(x|y1, y2)Idη(γ \ x ∪ {y1, y2})dy1dy2µ(dγ)

−
∫

Γ0

∑
x∈η

∫
(Rd)2

b(x|y1, y2)dy1dy2µ(dη) (4.2)

By (4.1) and (4.2) we get Lµ = Lµ1 + Lµ2 = A+B, where A and B are
given in (2.17). �

4.1.2 Proof of Theorem 2.2.2

To prove Theorem 2.2.2 we use the Thieme-Voigt perturbation tech-
nique [50], the basic elements of which we present in Section 1.5 in the
form adapted to our purposes.

Proof of Theorem 2.2.2. Along with Lµ = A+B defined in (2.15),
(2.17) and (2.18) we consider the corresponding operator in R, defined
accordingly to the rule (1.38). Then L† = A† +B† with

(A†R)(η) = −Ψ(η)R(η), (4.3)

(B†R)(η) =

∫
Rd

(m(x) + Ea(x, η))R(η ∪ x)dx

+

∫
Rd

∑
y1∈η

∑
y2∈η\y1

b(x|y1, y2)R(η ∪ x \ {y1, y2})dx,
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the domain of which is, cf. (2.16),

D† =

{
R ∈ R :

∫
Γ0

Ψ(η)|R(η)|λ(dη) <∞
}
. (4.4)

For R ∈ D† ∩R+, by (1.32) and (2.15) we obtain from (4.3)

ϕR(B†R) =

∫
Γ0

(∑
x∈η

[m(x) + Ea(x, η \ x)]

)
R(η)λ(dη) (4.5)

+

∫
Γ0

(∑
x∈η

∫
(Rd)2

b(x|y1, y2)dy1dy2

)
R(η)λ(dη)

=

∫
Γ0

Ψ(η)R(η)λ(dη) = −ϕR(A†R).

By (4.4) and (4.5) we then get that: (a) B† : D† → R and B† :
R+ ∩ D† → R+; (b) ϕR((A† + B†)R) = 0 for each R ∈ R+ ∩ D†. In
the same way, we prove that the operators defined in (2.16) and (2.17)
satisfy: (a) B : D →M and B : D+ →M+; (b) ϕM((A+B)µ) = 0 for
each µ ∈ D+. Thus, both pairs (A,D), (B,D) and (A†,D†), (B†,D†)
satisfy item (i) of Proposition 1.5.2.

We proceed further by setting

(S(t)µ)(dη) = exp (−tΨ(η))µ(dη), µ ∈M, t > 0, (4.6)

(S†(t)R)(η) = exp (−tΨ(η))R(η), R ∈ R.

Obviously, S = {S(t)}t≥0 and S† = {S†(t)}t≥0 are sub-stochastic semi-
groups onM and R, respectively. They are generated respectively by
(A,D) and (A†,D†). LetMχ be eitherMχκ orMχm and Rχ be either
Rχκ orRχm , as in Theorem 2.2.2. Clearly, the restrictions S(t)|Mχ and
S†(t)|Rχ constitute positive C0-semigroups. Likewise, B : Dχ → Mχ

and B† : D†χ → Rχ. Thus, the conditions in items (ii) and (iii) of
Proposition 1.5.2 are satisfied in both cases.

Now we turn to item (iv) of Proposition 1.5.2. By the definitions
of functionals introduced in Section 1.4, we have

ϕMχ((A+B)µ) = ϕMχ(Lµµ) =

∫
Γ0

(LFχ)(η)µ(dη),

ϕRχ((A† +B†)R) = ϕRχ(L†R) =

∫
Γ0

(LFχ)(η)R(η)λ(dη),
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where Fχ(η) is either equal to Fχκ(η) = eκ|η| or Fχm(η) = (1 + |η|)m.
Then the condition in item (iv) of Proposition 1.5.2 is satisfied if, for
some positive c and ε and all η, the following holds

(LFχ)(η) + εΨ(η) ≤ cχ(|η|). (4.7)

For Fχ(η) = Fχm(η), m ∈ N, by (2.1) we have, cf. (2.15),

(LFχm)(η) = − (M(η) + Ea(η)) εm(|η|) + 〈b〉|η|εm(|η|+ 1),(4.8)

εm(n) := (n+ 1)m − nm = (n+ 1)m−1 + (n+ 1)m−2n

+ · · ·+ nm−1 ≤ m(n+ 1)m−1.

For Fχ(η) = Fχκ(η), we have

(LFχκ)(η) = − (M(η) + Ea(η)) eκ|η|(1− e−1) + 〈b〉|η|eκ|η|(e− 1).

By (4.8) the condition in (4.7) takes the form

− (M(η) + Ea(η)) (εm(|η|)− ε)+〈b〉|η| (εm(|η|+ 1) + ε) ≤ c (|η|+ 1)m .
(4.9)

since εm(|η|) ≥ 1. For ε < 1, the validity of (4.9) will follow whenever
c satisfies

c ≥ m〈b〉
(
2m−1 + 1

)
.

Hence, for χ = χm, all the conditions of Proposition 1.5.2 are met
for both choices of E and the corresponding operators. Therefore, we
have two semigroups: SM and SR, with the properties described in
the mentioned statement. Then µt = SM(t)µ0 is the unique solution
of the Fokker-Planck equation with µ0 ∈ D, which proves claim (a)
of Theorem 2.2.2. At the same time, Rt = SR(t)R0(η) is the unique
solution of

Ṙt = L†Rt, Rt|t=0 = Rµ0 ∈ D†. (4.10)

By (4.4) we have that Rµ0 ∈ D† and µ0 ∈ D are equivalent. By
direct inspection one checks that µt(dη) = Rt(η)λ(dη) solves (1.34) if
Rt solves (4.10). Then the unique solution µt = SM(t)µ0 of (1.34) has
the mentioned form, which proves claim (c).

To complete the proof we fix κ > 0 and consider the trace of A in
Mχκ , cf. (2.17), defined on the domain

Dκ :=

{
µ ∈Mχκ :

∫
Γ0

Ψ(η)eκ|η|µ±(dη) <∞
}
.
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First, we split B into the sum B1 + B2, where for A ∈ B(Γ0) we set,
cf. (2.18),

(B1µ)(A) =

∫
Γ0

(∑
x∈η

[m(x) + Ea(x, η \ x)]IA(η \ x)

)
µ(dη), (4.11)

and

(B2µ)(A) =

∫
Γ0

(∑
x∈η

∫
(Rd)2

b(x|y1, y2)IA(η \ x ∪ {y1, y2})dy1dy2

)
µ(dη).

(4.12)
For µ ∈ D+

κ := Dκ ∩M+, from (4.11) we have

ϕκ(B1µ) =

∫
Γ0

eκ|ξ|
∫

Γ0

∑
x∈η

[m(x) + Ea(x, η \ x)]δη\x(dξ)µ(dη)

=

∫
Γ0

eκ(|η|−1) (M(η) + Ea(η))µ(dη) (4.13)

≤ −e−κϕκ(Aµ).

For r = e−κ, by (4.13) we have that ϕκ(A + r−1B1µ) ≤ 0 for each
µ ∈ D+

κ . Then by Proposition 1.5.1 we obtain that (A + B1,Dκ)
generates a sub-stochastic semigroup Sκ on Mχκ . For κ′ ∈ (0, κ), let
us show now that B2 acts as a bounded linear operator from Mχκ

to Mχκ′ . In view of the Hahn-Jordan decomposition, it is enough to
consider the action of B2 on positive elements of Mχκ . Since B2 is
positive, cf. (4.12), for µ ∈M+

χκ , we have

‖B2µ‖M
χκ
′ =

∫
Γ0

eκ
′|ξ|
∫

Γ0

∑
x∈η

∫
(Rd)2

b(x|y1, y2)δη\x∪{y1,y2}(dξ)dy1dy2µ(dη)

= eκ
′
∫

Γ0

eκ
′|η|
∑
x∈η

∫
(Rd)2

b(x|y1, y2)dy1dy2µ(dη)

= eκ
′〈b〉

∫
Γ0

|η|e−(κ−κ′)|η|eκ|η|µ(dη) (4.14)

≤ eκ
′〈b〉

e(κ− κ′)
‖µ‖Mχκ

.
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Let (B2)κ′κ : M+
χκ → M+

χκ′
be the bounded linear operator as just

described. For fixed κ > 0, κ′ ∈ (0, κ) and n ∈ N, we set

κl = κ− (κ− κ′)l/n, l = 0, 1, . . . , n. (4.15)

By means of (4.14) and (4.15) we then have the following estimate of
the operator norm of (B2)κl+1κl

‖(B2)κl+1κl‖ ≤
eκn〈b〉
e(κ− κ′)

. (4.16)

Next, for t > 0 and 0 ≤ tn ≤ · · · ≤ t0 = t, we consider the following
bounded linear operator acting from Mχκ to Mχκ′

T
(n)
κ′κ (t, t1, t2, . . . , tn) = Sκn(t−t1)(B2)κnκn−1Sκn−1(t1−t2) · · · (B2)κ1κSκ(tn),

where Sκl is the sub-stochastic semigroup in Mχκl generated by (A+

B1,Dκl). By the latter fact we have that T
(n)
κ′κ (t, t1, t2, . . . , tn) :Mχκ →

Dκ′ and

d

dt
T

(n)
κ′κ (t, t1, t2, . . . , tn) = (A+B1)T

(n)
κ′κ (t, t1, t2, . . . , tn), (4.17)

T
(n)
κ′κ (t, t, t2, . . . , tn) = (B2)κ′κn−1T

(n−1)
κn−1κ

(t, t2, . . . , tn).

As (B2)κ′κn−1 is the restriction of (B2,Dκ′) to Mχκn−1 ⊂ Dκ′ and

T
(n−1)
κ′κ (t, t2, t2, . . . , tn) : Mχκ → Dκ′ , the second line in (4.17) can be

rewritten as

T
(n)
κ′κ (t, t, t2, . . . , tn) = B2T

(n−1)
κ′κ (t, t2, . . . , tn). (4.18)

On the other hand, since all the semigroups Sκl are sub-stochastic
and (B2)κ′κ are positive, by (4.16) we get the following estimate of its
operator norm

‖T (n)
κ′κ (t, t1, t2, . . . , tn)‖ ≤

(
eκn〈b〉
e(κ− κ′)

)n
. (4.19)

We also set T
(0)
κ′κ(t) = Sκ′(t)|Mχκ

, and then consider

Qκ′κ(t) :=
∞∑
n=0

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

T
(n)
κ′κ (t, t1, t2, . . . , tn)dtndtn−1 · · · dt1.

(4.20)
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By (4.19) we conclude that the series in (4.20) converges uniformly on
compact subsets of [0, T (κ, κ′)), see (2.19), to a continuously differen-
tiable function

(0, T (κ, κ′)) 3 t 7→ Qκ′κ(t) ∈ L(Mχκ ,Mχκ′ ),

where the latter is the Banach space of all bounded linear operators
acting from Mχκ to Mχκ′ . By (4.17) and (4.18) we obtain

d

dt
Qκ′κ(t) = (A+B1 +B2)Qκ′κ(t) = LµQκ′κ(t). (4.21)

Thus, assuming that µ0 ∈ Mχκ we get that µ̃t := Qκ′κ(t)µ0, for t ∈
[0, T (κ, κ′)), lies in Mχκ′ and solves (1.34). Therefore, µ̃t coincides
with µt = SM(t)µ0, which completes the proof. �

4.1.3 Proof of Proposition 2.3.1

Our aim here is to transform the Kolmogorov equation (1.33) with L
given by (2.1) into the problem (1.36). Recall, that generators L and
L∆ are related to each other by the formula (1.37). The observable F
is given by the expression, cf. (1.14),

F (γ) =
∏
x∈γ

(1 + θ(x)), θ ∈ Θ.

Let (LF )(γ) = (L1F )(γ) + (L2F )(γ), where

(L1F )(γ) =
∑
x∈γ

m(x) +
∑
y∈γ\x

a(x− y)

 [F (γ \ x)− F (γ)] ,

(L2F )(γ) =
∑
x∈γ

∫
(Rd)2

b(x|y1, y2) [F (γ \ x ∪ {y1, y2})− F (γ)] dy1dy2.

Then∫
Γ

(L2F )(γ)µ(dγ) =

∫
Γ

∑
x∈γ

∫
(Rd)2

b(x|y1, y2)

×

 ∏
z∈γ\x∪{y1,y2}

(1 + θ(z))−
∏
z∈γ

(1 + θ(z))

 dy1dy2µ(dγ)
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=

∫
Γ

∑
x∈γ

∫
(Rd)2

b(x|y1, y2)τ(γ, x, y1, y2)dy1dy2µ(dγ),

where

τ(γ, x, y1, y2) = (1 + θ(y1))(1 + θ(y2))
∏
z∈γ\x

(1 + θ(z))

−(1 + θ(x))
∏
z∈γ\x

(1 + θ(z))

=
∏
z∈γ\x

(1 + θ(z)) [θ(y1) + θ(y2) + θ(y1)θ(y2)− θ(x)] .

Then we may write (L2F )(γ) = 2(L2,1F )(γ)+(L2,2F )(γ)− (L2,3F )(γ),
where

(L2,1F )(γ) =
∑
x∈γ

∫
(Rd)2

b(x|y1, y2)
∏
z∈γ\x

(1 + θ(z))θ(y1)dy1dy2

(L2,2F )(γ) =
∑
x∈γ

∫
(Rd)2

b(x|y1, y2)
∏
z∈γ\x

(1 + θ(z))θ(y1)θ(y2)dy1dy2

(L2,3F )(γ) =
∑
x∈γ

∫
(Rd)2

b(x|y1, y2)
∏
z∈γ\x

(1 + θ(z))θ(x)dy1dy2

Hence, by direct calculations based on the definition of Lebesque-
Poisson measure and formulas (1.24), (1.31) and (1.32) we get the
following.∫

Γ

(L2,1F )(γ)µ(dγ) =

=

∫
Γ

∑
x∈γ

∫
(Rd)2

b(x|y1, y2)
∏
z∈γ\x

(1 + θ(z))θ(y1)dy1dy2µ(dγ)

=

∫
Γ

∑
x∈γ

∫
(Rd)2

b(x|y1, y2)
∑
η∈⊂

∏
z∈γ\x

θ(z)θ(y1)dy1dy2µ(dγ)

=

∫
Γ

∑
x∈γ

∫
(Rd)2

b(x|y1, y2)
∑
η⊂γ

∏
z∈γ\x∪y1

θ(z)dy1dy2µ(dγ)

=

∫
Γ

∑
η⊂γ

∑
x∈η

∫
(Rd)2

b(x|y1, y2)
∏

z∈η\x∪y1

θ(z)dy1dy2µ(dγ)
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=

∫
Γ0

∑
x∈η

∫
(Rd)2

b(x|y1, y2)
∏

z∈η\x∪y1

θ(z)dy1dy2 kµ(η)λ(dγ)

=

∫
Γ0

∑
y1∈η

∫
(Rd)2

b(x|y1, y2)
∏
z∈η

θ(z)kµ(η \ y1 ∪ x)dy2dxλ(dγ)

=

∫
Γ0

(L∆
2,1k)(η)λ(dη),

where

(L∆
2,1k)(η) =

∑
y1∈η

∫
(Rd)2

b(x|y1, y2)
∏
z∈η

θ(z)kµ(η \ y1 ∪ x)dy2dx.

In analogical way, we may obtain parts L∆
2,2, L∆

2,3 and L∆
1 , which yields

(2.20).

4.1.4 Proof of Proposition 2.3.2

For α′ < α, by means of (1.30) and the inequality (2.21), we obtain
from (2.20) the following estimates

‖A∆
1 k‖α ≤ ess sup

η∈Γ0

e−α|η|Ψ(η)|k(η)|

≤
(

(m∗ + 〈b〉+ a∗) ess sup
η∈Γ0

[
|η|2e−(α−α′)|η|

])
‖k‖α′

=
4(m∗ + 〈b〉+ a∗)

e2(α− α′)2
‖k‖α′ ,

‖A∆
2 k‖α ≤ ess sup

η∈Γ0

e−α|η|
∫

Γ0

∑
y1∈η

∑
y2∈η\y1

b(x|y1, y2)|k(η ∪ x \ {y1, y2})|dx

≤
(
β∗ ess sup

η∈Γ0

[
|η|2eα′(|η|−1)e−α|η|

])
‖k‖α′

=
4β∗e−α

′

e2(α− α′)2
‖k‖α′ ,
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‖B∆
1 k‖α ≤ ess sup

η∈Γ0

e−α|η|
∫
Rd
Ea(x, η)|k(η ∪ x)|dx

≤
(
〈a〉 ess sup

η∈Γ0

[
|η|e−α′(|η|+1)e−α|η|

])
‖k‖α′

=
〈a〉eα′

e(α− α′)
‖k‖α′ ,

‖B∆
2 k‖α ≤ 2 ess sup

η∈Γ0

e−α|η|
∫

(Rd)2

∑
y1∈η

b(x|y1, y2)|k(η ∪ x \ y1)|dy2dx

≤
(
〈a〉 ess sup

η∈Γ0

[
|η|e−(α−α′)|η|

])
‖k‖α′ =

2〈b〉
e(α− α′)

‖k‖α′ ,

The above estimations yield

‖L∆k‖α ≤
(

4
m∗ + 〈b〉+ a∗ + β∗e−α

′

e2(α− α′)2
+
〈a〉eα′ + 2〈b〉
e(α− α′)

)
‖k‖α′ . (4.22)

Then we may define a bounded operator L∆
αα′ : Kα′ → Kα with the

norm (2.24) which can be estimated by means of (4.22).

4.1.5 Proof Lemma 2.3.3

We begin by constructing a semigroup, predual to that mentioned in
item (i) in the sketch of the proof of Lemma 2.3.3.

The predual semigroup. For α ∈ R, the space predual to Kα is

Gα := L1(Γ0, e
α|·|dλ), (4.23)

which for α > 0 coincides with Rχ defined in (1.41) with χ(n) = eαn.
Here, however, we allow α to be any real number. The norm in Gα is

|G|α =

∫
Γ0

|G(η)|eα|η|λ(dη). (4.24)
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Clearly, |G|α′ ≤ |G|α whenever α′ < α. Then Gα ↪→ Gα′ , and this
embedding is also dense. In order to use Proposition 2.1.2 we mod-
ify the operators introduced in (2.20) by adding and subtracting the
term υ|η|. This will lead also to the corresponding modification of the
predual operators. Thus, for an appropriate G : Γ0 → R we set, cf.
(2.15),

(A1,υG)(η) = −Ψυ(η)G(η) = − (υ|η|+ Ea(η) +M(η) + 〈b〉|η|)G(η),

(A2G)(η) =
∑
x∈η

∫
(R)2

G(η \ x ∪ y1 ∪ y2)b(x|y1, y2)dy1dy2, (4.25)

Dα = {G :∈ Gα : ΨυG ∈ Gα}.

By Proposition 2.1.2 we have that

Ψυ(η) ≥ ωEb(η). (4.26)

The operator (A1,υ,Dα) is the generator of the semigroup S0,α =
{S0,α}t≥0 of multiplication operators which act in Gα as follows, cf.
(4.6),

(S0,α(t)G)(η) = exp (−tΨυ(η))G(η). (4.27)

Let G+
α be the cone of positive elements of Gα The semigroup defined

in (4.27) is obviously sub-stochastic. Set D+
α = Dα ∩ G+

α . By (1.32),
(4.24) and (4.25) we get

|A2G|α =

∫
Γ0

eα|η||(A2G)(η)|λ(dη) (4.28)

≤
∫

Γ0

eα|η|
∫

(Rd)2

∑
x∈η

|G(η \ x ∪ y1 ∪ y2)|b(x|y1, y2)dy1dy2λ(dη)

=

∫
Γ0

∫
Rd

∑
y1∈η

∑
y2∈η\y1

eα(|η|−1)|G(η)|b(x|y1, y2)dxλ(dη)

= e−α
∫

Γ0

eα|η|Eb(η)|G(η)|λ(dη)

≤ (e−α/ω)|A1,υG|α.

The latter was obtained by (4.26), see also (2.3). The next statement
summarizes the construction of the predual semigroup in question.
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Lemma 4.1.1. Let υ and ω be as in Proposition 2.1.2 and A1,υ, A2

and Dα be as in (4.25). Then for each α > − logω, the operator
(Aυ,Dα) := (A1,υ + A2,Dα) is the generator of a sub-stochastic semi-
group Sα = {Sα(t)}t≥0 on Gα.

Proof. We apply Proposition 1.5.1 with E = Gα, D = Dα and A = A1,υ.
For some r ∈ (0, 1) (which will be chosen below), we set B = r−1A2,
which is clearly positive. By (4.28) B is defined on Dα. To show that
(1.46) holds we take G ∈ D+

α and proceed as in (4.28). That is,∫
Γ0

(
(A1,υ + r−1A2)G

)
(η)eα|η|λ(dη) = −

∫
Γ0

Ψυ(η)G(η)eα|η|λ(dη)

+ r−1

∫
Γ0

∑
x∈η

∫
(Rd)2

G(η \ x ∪ {y1, y2})b(x|y1, y2)eα|η|dy1dy2λ(dη)

≤ −
∫

Γ0

(
υ|η|+ Ea(η)− r−1e−αEb(η)

)
G(η)eα|η|λ(dη).

Now, for α > − logω, we can pick r ∈ (0, 1) in such a way that
r−1e−α ≤ ω, which by Proposition 2.1.2 implies that (1.46) holds for
this choice. Then the operator A1,υ + r(r−1A2) satisfies Proposition
1.5.1 by which the proof follows.

By the very definition of the sub-stochasticity of Sα we have that
|Sα(t)G|α ≤ |G|α whenever G ∈ G+

α . Let us show now that the same
estimate holds also for all G ∈ Gα. Each such G in a unique way can
be decomposed G = G+ −G− with G± ∈ G+

α . Moreover, by (4.24) we
have that

|G|α =

∫
Γ0

eα|η|
(
G+(η) +G−(η)

)
λ(dη) = |G+|α + |G−|α.

Then

|Sα(t)G|α = |Sα(t)(G+ −G−)|α ≤ |Sα(t)G+|α + |Sα(t)G−|α

≤ |G+|α + |G−|α = |G|α. (4.29)

The sun-dual semigroup. Let Sα(t) be an element of the semigroup
as in Lemma 4.1.1. Then its adjoint S∗α(t) is a bounded linear op-
erator in Kα. Clearly, {S∗α(t)}t≥0 is a semigroup. However, it is not
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strongly continuous and hence cannot be directly used to construct
(classical) solutions of differential equations. This obstacle is usually
circumvented as follows, see [46]. Set, cf. (1.27),

D∗α = {k ∈ Kα : ∃k̂ ∈ Kα ∀G ∈ Dα 〈〈AυG, k〉〉 = 〈〈G, k̂〉〉}.

Then the operator (A∗υ,D∗α) is adjoint to (Aυ,Dα). It acts as follows

(A∗υk)(η) = −Ψυ(η)k(η)

+

∫
Rd

∑
y1∈η

∑
y2∈η\y1

k(η ∪ x \ {y1, y2})b(x|y1, y2)dx.

By direct inspection one obtains that Kα′ ⊂ D∗α whenever α′ < α. Let
Qα be the closure of D∗α in Kα. Then we have

Kα′ ⊂ D∗α ⊂ Qα ( Kα, α′ < α. (4.30)

Now we set

D�α = {k ∈ D∗α : A∗υk ∈ Qα},

and denote by A�υ the restriction of A∗υ to D�α . Then (A�υ ,D�α ) is the
generator of a C0-semigroup, which we denote by S�α = {S�α (t)}t≥0.
This is the semigroup which we have aimed to construct. It has the
following property, see [46, Lemma 10.1].

Proposition 4.1.2. for each k ∈ Qα and t ≥ 0, it follows that
‖S�α (t)k‖α = ‖S∗α(t)k‖α ≤ ‖k‖α. Moreover, for each α′ < α and
k ∈ Kα′, the map [0,+∞) 3 t 7→ S�α (t)k ∈ Qα is continuous.

The estimate ‖S∗α(t)k‖α ≤ ‖k‖α is obtained by means of (4.29). The
continuity follows by (4.30) and the fact that S�α is a C0-semigroup.

The resolving operators. Now we construct the family of operators
{Qαα′(t)} such that the solution of (2.26) is obtained in the form kt =
Qα2α1(t)k0. This construction, in which we employ S�, resembles the
one used to get (4.20). We begin by rearranging the operators in (2.20)
as follows

L∆ = A∆ +B∆ = A∆
υ +B∆

υ , (4.31)
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where A∆
υ = A∆

1,υ + A∆
2 , see (4.25), and

B∆
υ = B∆

1 +B∆
2,υ, (4.32)

(B∆
2,υk)(η) = (B∆

2 k)(η) + υ|η|k(η)

= 2

∫
(Rd)2

∑
y1∈η

b(x|y1, y2)k(η ∪ x \ y1)dxdy2 + υ|η|k(η),

whereas B∆
1 is as in (2.20). By means of (4.32), for α ∈ R and α′ < α,

we define (B∆
υ )αα′ ∈ L(Kα′ ,Kα) the norm of which can be estimated

similarly as in (2.24), which yields

‖(B∆
υ )αα′‖ ≤

2〈b〉+ υ + 〈a〉eα′

e(α− α′)
. (4.33)

Now let B be either B∆
υ or B∆

2,υ, and Bαα′ be the corresponding
bounded operator. Then, cf. (4.33),

‖Bαα′‖ ≤
$(α; B)

e(α− α′)
, (4.34)

where

$(α;B∆
υ ) = 2〈b〉+ υ + 〈a〉eα, $(α;B∆

2,υ) = 2〈b〉+ υ. (4.35)

For some α1, α2 such that α1 < α2, we then set Σα2α1(t) = S�α2
(t)|Kα1

,
t > 0, where S�α is the sub-stochastic semigroup as in Proposition
4.1.2. We also set Σα2α1(0) to be the embedding operator Kα1 → Kα2 .
Hence, see Proposition 4.1.2, the operator norm satisfies

‖Σα2α1(t)‖ ≤ 1, t ≥ 0. (4.36)

We also have

Σα2α1(t) = Σα2α1(0)S�α1
(t), (4.37)

Σα3α1(t+ s) = Σα3α2(t)Σα2α1(s), α3 > α2,

holding for all t, s ≥ 0. Moreover,

d

dt
Σα2α1(t) = A∆

υ Σα2α1(t),
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which follows by Lemma 4.1.1 and the construction of the semigroup
S�α . Now we set

T (α2, α1; B) =
α2 − α1

$(α2; B)
, (4.38)

see (4.34), (4.35), and also

A(B) = {(α1, α2, t) : − logω < α1 < α2, t ∈ [0, T (α2, α1; B))}.
(4.39)

Note that T (α2, α1;B∆
υ ) coincides with T (α2, α1) defined in (2.27).

Lemma 4.1.3. For both choices of B, there exist the corresponding
families {Qα2α1(t; B) : (α1, α2, t) ∈ A(B)}, each element of which has
the following properties:

(a) Qα2α1(t; B) ∈ L(Kα1 ,Kα2);

(b) the map [0, T (α2, α1; B)) 3 t 7→ Qα2α1(t; B) ∈ L(Kα1 ,Kα2) is
continuous;

(c) the operator norm of Qα2α1(t; B) ∈ L(Kα1 ,Kα2) satisfies

‖Qα2α1(t; B)‖ ≤ T (α2, α1; B)

T (α2, α1; B)− t
,

(d) for each α3 ∈ (α1, α2) and t < T (α3, α1; B), the following holds

d

dt
Qα2α1(t; B) = ((A∆

υ )α2α3 + Bα2α3)Qα3α1(t; B), (4.40)

which yields, in turn, that

d

dt
Qα2α1(t;B∆

υ ) = L∆
α2
Qα2α1(t;B∆

υ ) (4.41)

d

dt
Qα2α1(t;B∆

2,υ) = ((A∆
υ )α2 + (B∆

2,υ)α2)Qα2α1(t;B∆
2,υ),

where L∆
α2

is as in (2.26), see also (4.31), and (B∆
2,υ)α2 denotes

(B∆
2,υ,D∆

α2
), see (2.22).
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Proof. Fix some T < T (α2, α1; B) and then take α ∈ (α1, α2] and
positive δ < α− α1 such that

T < Tδ :=
α− α1 − δ
β(α2; B)

.

Then take some l ∈ N and divide the interval [α1, α] into 2l+ 1 subin-
tervals in the following way α1 = α0, α = α2l+1 and

α2s = α1 +
s

l + 1
δ + sε, α2s+1 = α1 +

s+ 1

l + 1
δ + sε, (4.42)

where ε = (α−α1− δ)/l and s = 0, 1, ..., l. Now for 0 ≤ tl ≤ tl−1 · · · ≤
t1 ≤ t0 := t, define

Π(l)
αα1

(t, t1, t2, ..., tl; B) = Σαα2l(t− t1)Bα2lα2l−1 · · ·Σα2s+1α2s(tl−s − tl−s+1)

×Bα2sα2s−1Σα3α2(tl−1 − tl)Bα2α1Σα1α1
(tl).

(4.43)

By the very construction we have that Π
(l)
αα1(t, t1, t2, ..., tl; B) ∈ L(Kα,Kα1),

and the map

(t, t1, ..., tl) 7→ Π(l)
αα1

(t, t1, t2, ..., tl; B)

is continuous (Proposition 4.1.2 and the fact that each Bα2sα2s−1 is
bounded). Moreover, by (4.36) and (4.34) we have

‖Π(l)
αα1

(t, t1, t2, ..., tl; B)‖ ≤
l∏

s=1

‖Bα2sα2s−1‖ ≤
l∏

s=1

$(α2s; B)

e(α2s − α2s−1)

≤
(

lυ(α2; B)

e(α− α1 − δ)

)l
≤
(

l

eTδ

)l
. (4.44)

By (4.37) we have that

Σα2s+1α2s(tl−s − tl−s+1) = Σα2s+1α2s(0)S�α2s(tl−s − tl−s+1).

Taking the derivative of both sides of the latter we obtain

d

dt
Σα2s+1α2s(t) = (A∆

υ )α2s+1α′′Σα′′α2s(t) = (A∆
υ )α2s+1Σα2s+1α2s(t),
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holing for each α′′ ∈ (α2s, α2s+1). Here (A∆
υ )α stands for the unbounded

operator defined in (4.25). Then we obtain from (4.43) the following

d

dt
Π(l)
αα1

(t, t1, t2, ..., tl; B) = (A∆
υ )αα′Π

(l)
α′α1

(t, t1, t2, ..., tl; B) (4.45)

= (A∆
υ )αΠ(l)

αα1
(t, t1, t2, ..., tl; B).

Now we set

Qαα1(t; B) = Σαα1(t)+
∞∑
l=1

∫ t

0

∫ t1

0

...

∫ tl−1

0

Π(l)
αα1

(t, t1, t2, ..., tl; B)dtl...dt1.

(4.46)
By (4.44) the series in (4.46) converges uniformly of compact subsets
of [0, Tδ), which proves claims (a) and (b). The estimate in (c) follows
directly from (4.44). Finally, (4.41) follows by (4.45), cf. (4.21).

By solving (4.40) with the initial condition Qα2α1(t + s; B)|t=0 =
Qα2α1(s; B) we obtain the following ‘semigroup’ property of the family
{Qα2α1(t; B) : (α1, α2, t) ∈ A(B)}.

Corollary 4.1.4. For each α ∈ (α1, α2) and t, s > 0 such that

s < T (α, α1; B), t < T (α2, α; B), t+ s < T (α2, α1; B),

the following holds

Qα2α1(t+ s; B) = Qα2α(t; B)Qαα1(s; B).

Remark 4.1.5. Since B∆
2,υ is positive, by (4.43) we obtain that

Qα2α1(t;B∆
2,υ) : K+

α1
→ K+

α2
. This positivity will be used to make

the continuation of kt to all t > 0. It is the only reason for us to
use Qα2α1(t;B∆

2,υ) since B∆
υ is not positive, and hence the positivity of

Qα2α1(t;B∆
υ ) cannot be secured.

Proof of Lemma 2.3.3. Set

Qα2α1(t) = Qα2α1(t;B∆
υ ), t < T (α2, α1;B∆

υ ) = T (α2, α1) (4.47)

Then the solution of equation (2.26) is obtained by setting
kt = Qα2α1(t)k0, which definitely satisfies (2.26) by (4.41) and (4.37).
To prove its uniqueness we proceed as follows (cf. the proof of Lemma
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4.8 in [34]). Assume that kt and k̂t are two different solutions of (1.36)
with the same initial conditions and k̂t ∈ D∆

α2
. Then wt := kt − k̂t

with zero initial condition is a solution in Kα3 for each α3 > α2 and
t < T (α3, α1). Therefore, it takes the form

wt =

∫ t

0

Σα3α(t− s)(B∆
b )αα1wsds, α ∈ (α2, α3). (4.48)

Now for a given n > 1, we split interval [α2, α3] into 2n+1 subintervals
[αl, αl+1], where

αl = α2 − lε, where ε =
α3 − α2

2n
and l = 0, 1, ..., 2n.

Then we reintegrate formula (4.48) n times and obtain

wt =

∫ t

0

∫ t1

0

...

∫ tn−1

0

Σα3α2n−1(t− t1)(B∆
b )α2n−1α2n−2 × ...×

×Σα2α1(tn−1 − tn)(B∆
b )α1α2

wtndtn...dt1.

Since wt is considered as an element of Kα3 , we get that, see (4.35),

‖wt‖α3 ≤
1

n!

(n
e

)n(
2t
$(α;B∆

υ )

α3 − α2

)n
sup
s∈[0,t]

‖wt‖α2 ,

which yields that wt = 0 for

t <
α3 − α2

2$(α;B∆
υ )
.

To prove that wt = 0 for all t, we need to repeat this construction due
times.

�
Before proceed further, we prove some corollary of Lemma 4.1.3

related to the predual evolution in Gα, see (4.23). Let Sα be the semi-
group as in Lemma 4.1.1. For α′ > α, let Sαα′(t) be the restriction
of Sα(t) to Gα′ ↪→ Gα. Along with the operators defined in (4.25) we
consider the predual operators to B∆

υ , see (2.20) and (4.32). That is,
they act

(B1G)(η) = −
∑
x∈η

G(η \ x)Ea(x, η \ x),

(B2,υG)(η) = 2

∫
(Rd)2

∑
x∈η

G(η \ x ∪ y1)b(x|y1, y2)dy1dy2 + υ|η|G(η).
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By means of these expressions we can define bounded operators acting
from Gα to Gα′ for α′ < α. It turns out that the estimate is exactly as
in (4.33), that is,

‖(Bυ)α′α‖ =
2〈β〉+ υ + 〈a〉eα′

e(α− α′)
.

Recall that A(B∆
υ ) is defined in (4.39). For (α2, α1, t) ∈ A(B∆

υ ), let
T < T (α2, α1) be fixed. Then we pick α ∈ [α1, α2) and δ < α2 − α
such that T < T (α2, α + δ). Then, for some l ∈ N, set, cf. (4.42),

α2s = α2 −
s

l + 1
δ − sε, α2s+1 = α2 −

s+ 1

l + 1
δ − sε,

where ε = (α2 − α − δ)/l. Then for 0 ≤ tl ≤ · · · ≤ t1 ≤ t0 := t we
define, cf. (4.43),

Ω(l)
αα2

(t, t1, . . . , tn) = Sαα2l(t− t1)(Bυ)α2lα2l−1Sα2l−1α2l−2(t1 − t2)×

× Sα3α2(tl−1 − tl)(Bυ)α2α1Sα1α2
(tl).

Thereafter, we set

Hαα2(t) = Sαα2(t)+
∞∑
l=1

∫ t

0

∫ t1

0

· · ·
∫ tl−1

0

Ω(l)
αα2

(t, t1, . . . , tn)dtldtl−1 · · · dt1.

(4.49)
Then exactly as in the case of Lemma 4.1.3 we prove the following
statement.

Proposition 4.1.6. Each member of the family of operators {Hαα2(t) :
(α2, α, t) ∈ A(B∆

υ )} defined in (4.49) has the following properties:

(a) Hαα2(t) ∈ L(Gα2 ,Gα), the operator norm of which satisfies

‖Hαα2(t)‖ ≤ T (α2, α)

T (α2, α)− t
;

(b) For each k ∈ Kα and G ∈ Gα2, it follows that

〈〈G,Qα2α(t)k〉〉 = 〈〈Hαα2(t)G, k〉〉. (4.50)
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4.1.6 Proof of the Identification Lemma 2.3.4

In the proof of the Identification Lemma, we follow the steps given in
the sketch of the proof below the Lemma itself.
Auxiliary evolutions. For σ > 0 and x ∈ Rd, we set

φσ(x) = exp
(
−σ|x|2

)
, 〈φσ〉 =

∫
Rd
φσ(x)dx. (4.51)

bσ(x|y1, y2) = b(x|y1, y2)φσ(y1)φσ(y2).

Then we consider

L∆,σ = A∆,σ +B∆,σ = A∆,σ
υ +B∆,σ

υ , (4.52)

which we obtain from the corresponding operators in (2.20) and (4.31),
(4.32) by replacing b by bσ given in (4.51). Since this substitution does
not affect D∆

α , see (2.22), we will use the latter as the domain of the
corresponding unbounded operators. Then we repeat the construc-
tion as in the proof of Lemma 4.1.3 and obtain the family {Qσ

α2α1
(t) :

(α1, α2, t) ∈ A(B∆
υ )} corresponding to the choice B = B∆,σ

υ . Along
with the evolution t 7→ Qσ

α2α1
(t)k0 we will consider two more evolutions

in L∞- and L1-like spaces. The latter one is positive in the sense of
Proposition 1.2.5 by the very construction and is related somehow with
the L∞-like evolution, which, in turn, coincides with t 7→ Qσ

α2α1
(t)k0.

L∞-like evolution. For u : Γ0 → R, we define the norm

‖u‖σ,α = ess sup
η∈Γ0

|u(η)| exp(−α|η|)
e(φσ; η)

, (4.53)

where

e(φσ; η) =
∏
x∈η

φσ(x) = exp

(
−σ
∑
x∈η

|x|2
)
,

cf. (1.24). Then we consider the Banach space Uσ,α = {u : Γ0 → R :
‖u‖σ,α <∞}. Clearly,

Uσ,α ↪→ Kα, α ∈ R. (4.54)

The space predual to Uσ,α is the L1-space equipped with the norm, cf.
(4.23), (4.24),

|G|σ,α =

∫
Γ0

|G(η)| exp(α|η|)e(φσ; η)λ(dη). (4.55)
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In this space, we define Aσ1,υ which acts exactly as in (4.25), and Aσ2
which acts as in (4.25) with b replaced by bσ. Their domain is the same
Dα. Then like in (4.28) by means of (1.32) and (4.55) we obtain

|Aσ2G|σ,α =

∫
Γ0

(∑
x∈η

∫
(Rd)2

|G(η \ x ∪ {y1, y2})|bσ(x|y1, y2)dy1dy2

)

× exp(α|η|)e(φσ; η)λ(dη)

=eα
∫

Γ0

(∫
(Rd)3

|G(η ∪ {y1, y2})|bσ(x|y1, y2)φσ(x)dxdy1dy2

)
× exp(α|η|)e(φσ; η)λ(dη)

≤eα
∫

Γ0

(∫
(Rd)2

|G(η ∪ {y1, y2})|β(y2 − y1)e(φσ; η ∪ {y1, y2})dy1dy2

)
× exp(α|η|)λ(dη)

=e−α
∫

Γ0

Eb(η)|G(η)|eα|η|e(φσ; η)λ(dη)

≤(e−α/ω)

∫
Γ0

eα|η|Ψυ(η)|G(η)|e(φ; η)λ(dη)

=(e−α/ω)|Aσ1,υG|σ,α.

This allows us to prove the following analog of Lemma 4.1.1.

Proposition 4.1.7. Let υ and ω be as in Proposition 2.1.2 and Aσ1,υ,
Aσ2 and Dα be as just described. Then for each α > − logω, the oper-
ator (Aσυ ,Dα) := (Aσ1,υ + Aσ2 ,Dα) is the generator of a sub-stochastic
semigroup Sσ,α = {Sσ,α(t)}t≥0 on Gσ,α.

Let S�σ,α be the sun-dual semigroup, the definition of which is pretty
analogous to that of S�α , see Proposition 4.1.2. Then, for α′ < α, we
define Σσ

αα′(t) = S�σ,α(t)|Uσ.α′ . As in Proposition 4.1.2 we then get that
the map

[0,+∞) 3 t 7→ Σσ
αα′(t) ∈ L(Uσ,α′ ,Uσ,α)

is continuous and

‖Σσ
α,α′(t)‖ ≤ 1, for all t ≥ 0.
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The operators B∆,σ
υ = B∆,σ

1 +B∆,σ
2,υ act as in (4.32) with b replaced by

bσ. Then we define the corresponding bounded operators and obtain,
cf. (4.33),

‖(B∆,σ
υ )αα′‖ ≤

2〈b〉+ υ + 〈a〉eα′

e(α− α′)
.

Thereafter, we take δ > 0 as in Lemma 4.1.3 and the division as in
(4.42), and then define

Πl,σ
αα′(t, t1, t2, ..., tl) = Σσ

αα2l(t− t1)(B∆,σ
υ )α2lα2l−1 · · ·Σσ

α2s+1α2s(tl−s − tl−s+1)

×(B∆,σ
υ )α2sα2s−1 · · ·Σσ

α3α2(tl−1 − tl)(B∆,σ
υ )α2α1Σσ

α1α′(tl),

As in the proof of Lemma 4.1.3 we obtain the family {Uσ
α2α1

(t) :
(α1, α2, t) ∈ A(B∆

υ )}, see (4.39), with members defined by

Uσ
α2α1

(t) = Σσ
α2α1

(t) +
∞∑
l=1

∫ t

0

∫ t1

0

...

∫ tl−1

0

Πl,σ
α2α1

(t, t1, t2, ..., tl)dtl...dt1,

where the series converges for t < T (α2, α1) defined in (2.27), cf. (4.38)
and (4.47). For this family, the following holds, cf. (4.41),

d

dt
Uσ
α2α1

(t) = L∆,σ
α2,u

Uσ
α2α1

(t), (4.56)

where the action of of L∆,σ
α2,u

is as in (4.52) and the domain is

D∆,σ
α2,u

= {u ∈ Uσ,α2 : Ψυu ∈ Uσ,α2} ⊂ D∆
α2
, (4.57)

where the latter inclusion follows by (4.54) and (2.22). Then by (4.57)
we have that

(L∆,σ
α,u ,D∆,σ

α,u ) ⊂ (L∆,σ
α ,D∆

α ). (4.58)

Now by (4.56) we prove the following statement.

Proposition 4.1.8. For each α2 > α1 > − logω, the problem

u̇t = L∆,σ
α2,u

ut, ut|t=0 = u0 ∈ Uσ,α1 (4.59)

has a unique solution ut ∈ Uσ,α2 on the time interval [0, T (α2, α1)).
This solution is given by ut = Uσ

α2α1
(t)u0.
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Corollary 4.1.9. Let α2 > α1 > − logω be as in Proposition 4.1.8
and Qσ

α2α1
(t) be as described at the beginning of this subsection. Then

for each t < T (α2, α1) and u0 ∈ Uσ,α1 ⊂ Kα1, it follows that

Uσ
α2α1

(t)u0 = Qσ
α2α1

(t)u0. (4.60)

Proof. By (4.58) we get that the solution of (4.59) is also the unique
solution of the following “σ-analog” of (2.26)

u̇t = L∆,σ
α2
ut, ut|t=0 = u0,

and hence is given by the right-hand side of (4.60). Then the equality
in (4.60) follows by the uniqueness just mentioned.

L1-like evolution. Now we take L∆,σ as given in (4.52) and define
the corresponding operator L∆,σ

ϑ in Gϑ, ϑ ∈ R, introduced in (4.23),
(4.24), with domain Dϑ given in (4.25). By (4.52) and (2.20) we have
that A∆

1 : Dϑ → Gϑ. Next, for q ∈ Dϑ, we have

|A∆,σ
2 q|ϑ

≤
∫

Γ0

eϑ|η|

∫
Rd

∑
y1∈η

∑
y2∈η\y1

|q(η ∪ x \ {y1, y2})|bσ(x|y1.y2)dx

λ(dη)

≤
∫

Γ0

eϑ|η|+2ϑ

∫
Rd
|q(η ∪ x)|

(∫
(Rd)2

b(x|y1, y2)dy1dy2

)
dxλ(dη)

= 〈b〉eϑ
∫

Γ0

|η|eϑ|η||q(η)|λ(dη)

≤ eϑ
∫

Γ0

Ψ(η)eϑ|η||q(η)|λ(dη), (4.61)

see item (iii) of Assumption 1 and (2.15). Hence, A∆,σ
2 : Dϑ → Gϑ.

Next, for the same q, we have

|B∆
1 q|ϑ ≤

∫
Γ0

eϑ|η|
(∫

Rd
|q(η ∪ x)|Ea(x, η)dx

)
λ(dη) (4.62)

= e−ϑ
∫

Γ0

eϑ|η|Ea(η)|q(η)|λ(dη) ≤ e−ϑ
∫

Γ0

Ψ(η)eϑ|η||q(η)|λ(dη).
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Hence, B∆
1 : Dϑ → Gϑ. Finally,

|B∆,σ
2 q|ϑ ≤ 2

∫
Γ0

eϑ|η|

(∫
(Rd)2

∑
y1∈η

|q(η ∪ x \ y1)|bσ(x|y1, y2)dy2dx

)
λ(dη)

≤ 2

∫
Γ0

eϑ|η|+ϑ
(∫

(Rd)3

|q(η ∪ x)|b(x|y1, y2)dxdy1dy2

)
λ(dη)

= 2〈b〉
∫

Γ0

eϑ|η||η||q(η)|λ(dη) ≤
∫

Γ0

Ψ(η)eϑ|η||q(η)|λ(dη).

(4.63)

Then by (4.61), (4.62) and (4.63) we conclude that, for an arbitrary
ϑ ∈ R, L∆,σ = A∆

1 +A∆,σ
2 +B∆

1 +B∆,σ
2 maps Dϑ to Gϑ and hence can

be used to define the corresponding unbounded operator (L∆,σ
ϑ ,Dϑ).

Let us then consider the corresponding Cauchy problem

q̇t = L∆,σ
ϑ qt, qt|t=0 = q0 ∈ Dϑ. (4.64)

Recall that Gϑ′ ⊂ Dϑ for each ϑ′ > ϑ.

Lemma 4.1.10. For a given ϑ > 0 and ϑ′ > ϑ, assume that the
problem in (4.64) with q0 ∈ Gϑ′ has a solution qt ∈ Gϑ on a time
interval [0, τq). Then this solution is unique.

Proof. Set

wt(η) = (−1)|η|qt(η).

Then |wt|ϑ = |qt|ϑ and qt solves (4.64) if and only if wt solves the
following equation

ẇt =
(
A∆

1 − A
∆,σ
2 −B∆

1 +B∆,σ
2

)
wt. (4.65)

By Proposition 1.5.1 we prove that (A∆
1 − B∆

1 ,Dϑ) generates a sub-
stochastic semigroup on Gϑ. Indeed, (A∆

1 ,Dϑ) generates a sub-stochastic
semigroup defined in (4.27) with υ = 0, and −B∆

1 is positive and de-
fined on Dϑ, see (4.62). Also by (4.62), for w ∈ G+

ϑ and r ∈ (0, 1), we
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get∫
Γ0

eϑ|η|
((
A∆

1 − r−1B∆
1

)
w
)

(η)λ(dη) = −
∫

Γ0

eϑ|η|Ψ(η)w(η)λ(dη)

+ r−1

∫
Γ0

eϑ|η|
(∫

Rd
w(η ∪ x)Ea(x, η)dx

)
λ(dη)

=−
∫

Γ0

eϑ|η|Ψ(η)w(η)λ(dη) + r−1e−ϑ
∫

Γ0

eϑ|η|Ea(η)w(η)λ(dη)

≤−
(
1− r−1e−ϑ

) ∫
Γ0

Ψ(η)eϑ|η|w(η)λ(dη) ≤ 0,

where the latter inequality holds for r ∈ (e−ϑ, 1). Therefore, (A∆
1 −

B∆
1 ,Dϑ) = (A∆

1 − rr−1B∆
1 ,Dϑ) generates a sub-stochastic semigroup

Vϑ = {Vϑ(t)}t≥0 on Gϑ. For each ϑ′′ ∈ (0, ϑ), we have that Gϑ ↪→ Gϑ′′ .
By the estimates in (4.61) and (4.63), similarly as in (4.33) we obtain
that

|(A∆,σ
2 w|ϑ′′ ≤

〈b〉
e(ϑ− ϑ′′)

|w|ϑ,

|(B∆,σ
2 w|ϑ′′ ≤

2〈b〉
e(ϑ− ϑ′′)

|w|ϑ,

which we then use to define a bounded operator C∆,σ
ϑ′′ϑ : Gϑ → Gϑ′′ . It

acts as −A∆,σ
2 +B∆,σ

2 and its norm satisfies

‖C∆,σ
ϑ′′ϑ‖ ≤

3〈b〉
e(ϑ− ϑ′′)

. (4.66)

Assume now that (4.65) has two solutions corresponding to the same
initial condition w0. Let vt be their difference. Then it solves (4.65)
with the zero initial condition and hence satisfies

vt =

∫ t

0

Vϑ′′(t− s)C∆,σ
ϑ′′ϑvsds (4.67)

where vt in the left-hand side is considered as an element of Gϑ′′ and
t > 0 will be chosen later. Now for a given n ∈ N, we set ε = (ϑ−ϑ′′)/n
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and ϑl = ϑ − lε, l = 0, . . . , n. Next, we iterate (4.67) due times and
get

vt =

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

Vϑ′′(t− t1)C∆,σ
ϑ′′ϑn−1Vϑn−1(t1 − t2)C∆,σ

ϑn−1ϑn−2

× · · · × Vϑ1(tn−1 − tn)C∆,σ
ϑn−1ϑvtndtn · · · dt1.

Then we take into account that Vϑ is sub-stochastic, C∆,σ
ϑlϑl−1 are positive

and satisfy (4.66), and thus obtain from the latter that vt satisfies

|vt|ϑ′′ ≤
1

n!

(n
e

)n( 3t〈b〉
ϑ− ϑ′′

)n
sup
s∈[0,t]

|vs|ϑ.

Then, since n is an arbitrary positive integer, for all t < (ϑ− ϑ′′)/3〈b〉
it follows that vt = 0. To prove that vt = 0 for all t of interest one has
to repeat the above procedure appropriate number of times.

Let us now take u ∈ Uσ,α with some α ∈ R, for which by (4.53) we
have

|u(η)| ≤ ‖u‖σ,αeα|η|e(φσ, η).

Then the norm of this u in Gϑ can be estimated as follows, see (4.51),

|u|ϑ ≤ ‖u‖σ,α
∫

Γ0

exp ((α + ϑ)|η|) e(φσ, η)λ(dη) (4.68)

= ‖u‖σ,α exp ((α + ϑ)〈φ〉) .

This means that Uσ,α ↪→ Gϑ for each pair of real α and ϑ. Moreover,
for the operators discussed above this implies, cf. (4.58),

(L∆,σ
α,u ,D∆,σ

α,u ) ⊂ (L∆,σ
ϑ ,Dϑ). (4.69)

Corollary 4.1.11. Let α1 and α2 be as in Proposition 4.1.8. Then for
each q0 ∈ Uσ,α1, the problem in (4.64) has a unique solution qt ∈ Uσ,α2,
t < T (α2, α1), which coincides with the unique solution of (4.59).

Proof. By (4.69) we have that the unique solution of (4.59) ut solves
also (4.64), and this is a unique solution in view of Lemma 4.1.10.
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Local approximations. Our aim now is to prove that, cf. Proposi-
tion 1.2.5, the following holds

〈〈G,Qσ
α2α1

(t)k0〉〉 ≥ 0, G ∈ B?
bs(Γ0), (4.70)

for some t > 0. By Corollaries 4.1.9 and 4.1.11 to this end it is enough
to prove (4.70) with Qσ

α2α1
(t)k0 replaced by qt. To get the latter we

use local approximations of this qt.
Let µ0 ∈ Pexp(Γ) be the initial state of our model. For a compact

Λ, let µΛ
0 ∈ P(ΓΛ) be its projection to ΓΛ defined in (1.16). Finally,

let RΛ
0 be its Radon-Nikodym derivative, see (1.25). For N ∈ N and

η ∈ Γ0, we set

RΛ,N
0 (η) =

{
RΛ

0 (η), if η ∈ ΓΛ and |η| ≤ N ;

0, otherwise.
(4.71)

Let us stress here that RΛ
0 whereas RΛ,N

0 is defined on Γ0. Until the
end of this subsection, Λ and N are fixed.

Having in mind (1.26) we introduce the following function q0 : Γ0 →
R+

qΛ,N
0 (η) =

∫
Γ0

RΛ,N
0 (η ∪ ξ)λ(dξ). (4.72)

For G ∈ B?
bs(Γ0), by (1.28), (1.32) and (4.72) we have

〈〈G, qΛ,N
0 〉〉 = 〈〈KG,RΛ,N

0 〉〉 ≥ 0. (4.73)

By (4.71) it follows that RΛ,N
0 ∈ R+ and ‖RΛ,N

0 ‖R ≤ 1. Moreover, for
each κ > 0, we have, see (1.22),

‖RΛ,N
0 ‖Rχκ =

∫
ΓΛ

eκ|η|RΛ,N
0 (η)λ(dη) ≤ eκN‖RΛ,N

0 ‖R ≤ eκN . (4.74)

Let SσR be the stochastic semigroup on R constructed in the proof of
Theorem 2.2.2 with b replaced by bσ. Recall that the solution of (4.10)
is obtained in the form Rt = SR(t)R0. For t > 0 and σ as in (4.70),
we set

RΛ,N
t = SσR(t)RΛ,N

0 , (4.75)

qΛ,N
t (η) =

∫
Γ0

RΛ,N
t (η ∪ ξ)λ(dξ), η ∈ Γ0.
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Proposition 4.1.12. For each ϑ ∈ R and t < τϑ := [e〈b〉(1 + eϑ)]−1,
it follows that qΛ,N

t ∈ G+
ϑ . Moreover,

〈〈G, qΛ,N
t 〉〉 ≥ 0 (4.76)

holding for each G ∈ B?
bs(Γ0) and all t > 0.

Proof. Since SσR is stochastic and RΛ,N
0 is as in (4.71), then RΛ,N

t ∈ R+

for all t > 0. Hence, qΛ,N
t (η) ≥ 0 for all those t > 0 for which the

integral in the second line in (4.75) makes sense. By (2.19) we have that
T (κ, κ′), as a function of κ, attains its maximum value Tκ′ = e−κ

′
/e〈b〉

at κ = κ′+1. By (4.74) we have that RΛ,N
0 ∈ Rχκ for any κ > 0. Then

by Proposition 1.5.2 it follows that, for each κ > 0, RΛ,N
0 ∈ Rχκ for

t < Tκ. Taking all these fact into account we then get

|qΛ,N
t |ϑ =

∫
Γ0

eϑ|η|qΛ,N
t (η)λ(dη) (4.77)

=

∫
Γ0

∫
Γ0

eϑ|η|RΛ,N
t (η ∪ ξ)λ(dη)λ(dξ)

=

∫
Γ0

(
1 + eϑ

)|η|
RΛ,N
t (η)λ(dη) = ‖RΛ,N

t ‖Rχκ

with κ = log(1 + eϑ). For these κ and ϑ, we have that Tκ = τϑ. Then
by (4.77) we have qΛ,N

t ∈ Gϑ for t < τϑ. The existence of the integral
and the validity of the inequality in (4.76) follows analogously to that
in (4.73).

Corollary 4.1.13. For each α ∈ R, it follows that qΛ,N
0 ∈ U+

σ,α.

Proof. Set IN(η) = 1 whenever |η| ≤ N and IN(η) = 0 otherwise. By
(4.71), (4.72) and (1.26) we have that

qΛ,N
0 (η) ≤ IN(η)1ΓΛ

(η)

∫
ΓΛ

R0(η ∪ ξ)λ(dξ) ≤ k0(η)IN(η)1ΓΛ
(η).

Since k0 = kµ0 for some µ0 ∈ Pexp(Γ), by Definition 1.2.3 and then
by (1.21) we have that k0(η) ≤ ‖k‖α exp(α0|η|) for some α0 ∈ R.
We apply this in the latter estimate to check by means of (4.53) that
‖qΛ,N

0 ‖σ,α <∞. The stated positivity i immediate.

By (4.68) and Corollary 4.1.13 we obtain that qΛ,N
0 ∈ G+

ϑ for each
ϑ ∈ R. Now we relate qΛ,N

t with solutions of (4.64).
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Lemma 4.1.14. For each ϑ ∈ R, the map [0, τϑ) 3 t 7→ qΛ,N
t ∈ Gϑ is

continuous and continuously differentiable on (0, τϑ). Moreover, qΛ,N
t ∈

Dϑ, see (4.25), and solves the problem in (4.64) on the time interval
[0, τϑ) with qΛ,N

0 as the initial condition.

Proof. Fix an arbitrary ϑ ∈ R. The stated continuity of t 7→ qΛ,N
t

follows by (4.75). Let us prove that qΛ,N
t be differentiable in Gϑ on

(0, τϑ) and the following holds

q̇Λ,N
t (η) =

∫
Γ0

RΛ,N
t (η ∪ ξ)λ(dξ). (4.78)

For small enough τ , we have

1

τ

(
qΛ,N
t+τ (η)− qΛ,N

t (η)
)
−
∫

Γ0

ṘΛ,N
t (η ∪ ξ)λ(dξ) (4.79)

=

∫
Γ0

[
1

τ

(
RΛ,N
t+τ (η ∪ ξ)−RΛ,N

t (η ∪ ξ)
)
− ṘΛ,N

t (η ∪ ξ)
]
λ(dξ).

Then by (1.32) we get

|LHS(4.79)|θ ≤
∫

Γ0

(
1 + eϑ

)|η| ∣∣∣∣1τ (RΛ,N
t+τ (η)− RΛ,N

t (η)
)
− ṘΛ,N

t (η)

∣∣∣∣λ(dη),

that proves (4.78), cf. (4.77). The continuity of t ∈ q̇Λ,N
t follows by

(4.78) and the fact that RΛ,N
t = SσR(t)RΛ,N

0 , which also yields that

q̇Λ,N
t (η) =

∫
Γ0

(
L†,σϑ RΛ,N

t

)
(η ∪ ξ)λ(dξ), (4.80)

where L†,σϑ is the trace of L†,σ (the generator of SσR) in Rχκ with κ =
log(1 + eϑ). By (4.25) it follows that Ψυ(η) ≤ Cεe

ε|η| holding for
arbitrary ε > 0 and the corresponding Cε > 0. For each t < Tκ = τϑ,
one can pick κ′ > κ such that RΛ,N

t ∈ Rχκ′ . For these t and κ′, we

thus pick ε > 0 such that 1 + eϑ+ε = eκ
′
, and then obtain, cf. (1.30),

|Ψυq
Λ,N
t |ϑ ≤ Cε‖RΛ,N

t ‖R
χκ
′ . (4.81)

Hence, qΛ,N
t ∈ Dϑ for this t. Let us now prove that qΛ,N

t solves (4.64).
In view of (4.80), (4.3) and (4.81), to this end it is enough to prove
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that(
L∆qΛ,N

t

)
(η) = −

∫
Γ0

Ψ(η ∪ ξ)RΛ,N
t (η ∪ ξ)λ(dξ) (4.82)

+

∫
Rd

∫
Γ0

(m(x) + Ea(x, η ∪ ξ))RΛ,N
t (η ∪ ξ ∪ x)λ(dξ)dx

+

∫
Rd

∫
Γ0

∑
y1∈η∪ξ

∑
y1∈η∪ξ\y1

b(x|y1, y2)×

×RΛ,N
t (η ∪ ξ ∪ x \ {y1, y2})λ(dξ)dx

holding point-wise in η ∈ Γ0. By (2.15) and (2.2) we get

Ψ(η ∪ ξ) = Ψ(η) + Ψ(ξ) + 2
∑
x∈η

∑
x∈ξ

a(x− y). (4.83)

Let I1(η) denote the first summand in the right-hand side of (4.82).
By (1.32) and (4.83) we then write it as follows

I1(η) = −Ψ(η)qΛ,N
t − 2

∫
Rd
Ea(xη)qΛ,N

t (η ∪ x)dx (4.84)

−
∫

Γ0

Ψ(ξ)RΛ,N
t (η ∪ ξ)λ(dξ).

To calculate the latter summand in (4.84) we again use (2.15) and
(1.32) to obtain the following:∫

Γ0

(∑
x∈ξ

m(x)

)
RΛ,N
t (η ∪ ξ)λ(dξ) (4.85)

=

∫
Γ0

∫
Rd
m(x)RΛ,N

t (η ∪ ξ ∪ x)λ(dξ)dx

=

∫
Rd
m(x)qΛ,N

t (η ∪ x)dx.

∫
Γ0

∑
x∈ξ

∑
y∈ξ\x

a(x− y)

RΛ,N
t (η ∪ ξ)λ(dξ) (4.86)

=

∫
Γ0

∫
(Rd)2

a(x− y)RΛ,N
t (η ∪ ξ ∪ {x, y})λ(dξ)dxdy

=

∫
(Rd)2

a(x− y)qΛ,N
t (η ∪ {x, y}).dxdy
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∫
Γ0

(
〈b〉
∑
x∈ξ

1

)
RΛ,N
t (η ∪ ξ)λ(dξ) = 〈b〉

∫
Rd
qΛ,N
t (η ∪ x)dx. (4.87)

In a similar way, we get the second I2 (resp. the third I3) summands
of the right-hand side of (4.82) as follows

I2(η) =

∫
Rd

(m(x) + Ea(x, η))qΛ,N
t (η ∪ x)dx (4.88)

+

∫
(Rd)2

a(x− y)qΛ,N
t (η ∪ {x, y})dxdy,

I3(η) =

∫
Rd

∑
y1∈η

∑
y2∈η\y1

b(x|y1y2)qΛ,N
t (η ∪ x \ {y1, y2})dx (4.89)

+2

∫
(Rd)2

∑
y1∈η

b(x|y1y2)qΛ,N
t (η ∪ x \ y1)dxdy2

+〈b〉
∫
Rd
qΛ,N
t (η ∪ x)dx.

Now we plug (4.85), (4.86) and (4.87) into (4.84), and then use
it together with (4.88) and (4.89) in the right-hand side of (4.82) to
get its equality with the left-hand side, see (2.20). This completes the
proof.

Corollary 4.1.15. Let α1 > − logω and α2 > α1 be chosen. Then
kΛ,N
t = Qσ

α2α1
(t)qΛ,N

0 has the property

〈〈G, kΛ,N
t 〉〉 ≥ 0, (4.90)

holding for all G ∈ B?
bs(Γ0) and t < T (α2, α1).

Proof. The proof of (4.90) will be done by showing that kΛ,N
t = qΛ,N

t ,
for t < T (α2, α1) and then by employing (4.76), which holds for all
t > 0.

By Corollary 4.1.13 it follows that qΛ,N
0 ∈ Uσ,α1 , and hence ut =

Uσ
α2α1

(t)qΛ,N
0 is a unique solution of (4.59), see Proposition 4.1.8. By

Lemma 4.1.14 qΛ,N
t solves (4.64) in on [0, τϑ), which by Corollary 4.1.11

yields ut = qΛ,N
t for t < min{τϑ;T (α2, α1)}. If τϑ < T (α2, α1, we can
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continue qΛ,N
t beyond τϑ by means of the following arguments. Since

ut = qΛ,N
t lies in Uσ,α2 for all t < min{τϑ;T (α2, α1)} by (4.68) this

yields that qΛ,N
t lies in the initial space Gϑ′ and hence can further by

continued. This yields that ut = qΛ,N
t for all t < T (α2, α1). Now we

make use of (4.60) and obtain that qΛ,N
t = ut = kΛ,N

t , that completes
the proof.

Taking the limits. The aim of this part is to prove that (4.90) holds
when the approximation is removed. Recall that kΛ,N

t in (4.90) depends
on σ > 0, Λ and N . We first take the limits Λ → Rd and N → +∞.
Below, by an exhausting sequence {Λn}n∈N we mean a sequence of
compact Λn such that: (a) Λn ⊂ Λn+1 for all n; (b) for each x ∈ Rd,
there exits n such that x ∈ Λn.

Proposition 4.1.16. Let α1 > − logω and α2 > α1 be fixed and
k0 ∈ Kα1 be the correlation function of the initial state µ0 ∈ Pexp(Γ)
the local density of which was used in (4.71). For these α1, α2 and
t < T (α2, α1), let Qσ

α2α1
(t) be the same as in (4.70). Then, for each

G ∈ Bbs(Γ0) and any t < T (α2, α1), the following holds

lim
n→+∞

lim
l→+∞

〈〈G, kΛn,Nl
t 〉〉 = 〈〈G,Qσ

α2α1
(t)k0〉〉,

for arbitrary exhausting {Λn}n∈N and increasing {Nl}l∈N sequences of
sets and positive integers, respectively.

The proof of this statement can be performed by the literal repeti-
tion of the proof given in Appendix of [11].

Recall that, for α2 > α1, T (α2, α1) was defined in (2.27). For these
α1 and α2 we set

α =
1

3
α2 +

2

3
α1, α′ =

2

3
α2 +

1

4
α1. (4.91)

Clearly,

τ(α2, α1) :=
1

3
T (α2, α1) < min{T (α2, α

′);T (α, α1)}. (4.92)

Lemma 4.1.17. Let α1, α2 and k0 be as in Proposition 4.1.16, and
let kt be the solution of (2.26). Then for each G ∈ Bbs(Γ0) and t ∈
[0, τ(α2, α1)], the following holds

lim
σ→0+

〈〈G,Qσ
α2α1

(t)k0〉〉 = 〈〈G, kt〉〉. (4.93)
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Proof. We recall that the solution of (1.36)is in the form kt = Qα2α1(t)k0

with Qα2α1(t) given in (4.47) and t ≤ T (α2, α1), see Lemma 2.3.3. For
α and α′ as in (4.92) and t ≤ τ(α2, α1), write

Qα2α1(t)k0 = Qσ
α2α1

(t)k0 + Υ1(t, σ) + Υ2(t, σ), (4.94)

Υ1(t, σ) =

∫ t

0

Qα2α′(t− s)
[
(A∆

2 )α′α − (A∆.σ
2 )α′α

]
Qσ
αα1

(s)k0ds, ,

Υ2(t, σ) =

∫ t

0

Qα2α′(t− s)
[
(B∆

2 )α′α − (B∆,σ
2 )α′α

]
Qσ
αα1

(s)k0ds,

Recall that the norms of the bounded operators (A∆
2 )α′α. (B∆

2 )α′α,
(A∆,σ

2 )α′α, (B∆.σ
2 )α′α can be estimated as in (4.34). The validity of

(4.94) can be checked by taking the t-derivatives from both sides and
then by using e.g., (4.40). For G as in (4.93), we then have

〈〈G,Qα2α1(t)k0〉〉 − 〈〈G,Qσ
α2α1

(t)k0〉〉 = 〈〈G,Υ1(t, σ)〉〉+ 〈〈G,Υ2(t, σ)〉〉.
(4.95)

By (4.50) and (4.94) it follows that

〈〈G,Υ1(t, σ)〉〉

=

∫ t

0

〈〈G,Qα2α′(t− s)
[
(A∆

2 )α′α − (A∆.σ
2 )α′α

]
Qσ
αα1

(s)k0〉〉ds

=

∫ t

0

〈〈Hα′α2(t− s)G, vσs 〉〉ds =

∫ t

0

〈〈Gt−s, v
σ
s 〉〉ds, (4.96)

where

vσs =
[
(A∆

2 )α′α − (A∆.σ
2 )α′α

]
kσs (4.97)

:=
[
(A∆

2 )α′α − (A∆.σ
2 )α′α

]
Qσ
αα1

(s)k0 ∈ Kα′ ,

and

Gt−s = Hα′α2(t− s)G ∈ Gα′ , (4.98)

since obviously G ∈ Gα2 . We apply (2.20) in (4.97) and transform
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(4.96) into the following expression∫ t

0

〈〈Gt−s, v
σ
s 〉〉ds =

∫
Γ0

Gt−s(η)

(∫
Rd

∑
y1∈η

∑
y2∈η\y1

kσs (η ∪ x \ {y1, y2})

× [1− φσ(y1)φσ(y2)] b(x|y1, y2)dx

)
λ(dη) (4.99)

=

∫
Γ0

(∫
(Rd)3

Gt−s(η ∪ {y1, y2})kσs (η ∪ x)

× [1− φσ(y1)φσ(y2)] b(x|y1, y2)dxdy1dy2

)
λ(dη)

Since kσ = Qσ
αα1

(s)k0 is in Kα we have that

|kσs (η ∪ x)| ≤ ‖kσs ‖αeα|η|+α ≤ eα|η|+α
T (α, α1)‖k0‖α1

T (α, α1)− τ(α2, α1)
, (4.100)

where α is as in (4.91) and s ≤ t ≤ τ(α2, α1). Now for s ≤ t, we set

gs(y1, y2) =

∫
Γ0

eα|η||Gs(η ∪ {y1, y2})|λ(dη). (4.101)

Let us show that gs ∈ L1((Rd)2). By (4.98) we have∫
(Rd)2

gs(y1, y2)dy1dy2 (4.102)

= e−2α

∫
Γ0

|η|(|η| − 1)e−(α′−α)|η||Gs(η)|eα′|η|λ(dη)

≤ 4e−2α−2

(α′ − α)2
|Gs|α′

≤ 4e−2α−2T (α2, α
′)|G|α2

(α′ − α)2[T (α2, α′)− τ(α2, α1)]

Turn now to (4.99). By means of item (iv) of Assumption 1 and by
(4.100) and (4.101) we get∫ t

0

|〈〈Gt−s, v
σ
s 〉〉| ds ≤ β∗C(α2, α1)‖k0‖α1

×
∫ t

0

∫
(Rd)2

gs(y1, y2) [1− φσ(y1)φσ(y2)] dsdy1dy2,
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where we have taken into account that α and α′ are expressed through
α2 and α1, see (4.91). Then the function under the latter integral is
bounded from above by gs(y1, y2) which by (4.102) is integrable on
[0, t]× (Rd)2. Since this function converges point-wise to 0 as σ → 0+,
by Lebesgue’s dominated convergence theorem we get that

〈〈G,Υ1(t, σ)〉〉 → 0, as σ → 0+.

The proof that the second summand in the right-hand side of (4.95)
vanishes in the limit σ → 0+ is pretty analogous.

Proof of Lemma 2.3.4. By (1.44) and Proposition 1.2.5 we have
that each k0 ∈ K?α1

is the correlation function of some µ0 ∈ Pexp(Γ0).
By (2.20) we readily conclude that

k̇t(∅) = (L∆
α2
kt)(∅) = 0.

Hence, kt(∅) = k0(∅) = 1. At the same time, for t ≤ τ(α2, α1) given
in (4.92), we have that

〈〈G, kt〉〉 = lim
σ→0+

lim
n→+∞

lim
l→+∞

〈〈G, kΛn,Nl
t 〉〉,

that follows by Lemma 4.1.17 and Proposition 4.1.16. Then 〈〈G, kt〉〉 ≥
0 by (4.90) which completes the proof. �

4.1.7 Proofs of Theorem 2.3.5 and Corollary 2.3.6

The main peculiarity of the solution obtained in Lemma 2.3.3 is that
it resides in an ascending scale of Banach spaces and, in general, may
abandon these spaces in finite time. Indeed, for a fixed α1 > − logω,
see, e.g., Lemma 2.3.4, the time bound T (α, α1) defined in (2.27) is a
bounded function of α > α1. To overcome this difficulty we compare
kt with some auxiliary functions.

Lemma 4.1.18. Let α2, α1 and τ(α2, α1) be as in Lemma 2.3.4. Then
for each t ∈ [0, τ(α2, α1)] and arbitrary k0 ∈ K?α1

, the following holds

0 ≤ (Qα2α1(t;B∆
υ )k0)(η) ≤ (Qα2α1(t;B∆

2,υ)k0)(η), η ∈ Γ0. (4.103)



80

Proof. The left-hand side inequality follows by Lemma 2.3.4 and (1.45).
By the second line in (4.41) we conclude that wt = Qα2α1(t;B∆

2,υ)k0 is
the unique solution of the equation

ẇt = ((A∆
υ )α2 + (B∆

2,υ)α2)wt, wt|t=0 = k0,

on the time interval [0, T (α2, α1;B∆
2,υ)) ⊃ [0, T (α2, α1;B∆

υ )) since
T (α2, α1;B∆

υ ) ≤ T (α2, α1;B∆
2,υ). Then we have that wt − kt ∈ Kα2 for

all t < τ(α2, α1). Now we choose α′, α ∈ [α1, α2] according to (4.91) so
that (4.92) holds, and then write

wt − kt = (Qα2α1(t;B∆
2,υ)k0)(η)− (Qα2α1(t;B∆

υ )k0)(η) (4.104)

=

∫ t

0

Qα2α′(t− s;B∆
2,υ)(−B∆

1 )α′αksds, t < τ(α2, α1),

where the operator (−B∆
1 )α′α is positive with respect to the cone K+

α

defined in (1.45). In the integral in (4.104), for all s ∈ [0, τ(α2, α1)], we
have that ks ∈ Kα and Qα2α′(t− s;B∆

2,υ) ∈ L(Kα′ ,Kα2) is positive. We
also have that ks ∈ K?α ⊂ K+

α (by Lemma 2.3.4). Therefore wt − kt ∈
K+
α2

for t ≤ τ(α2, α1), which yields (4.103).

The next step is to compare kt with

rt(η) = ‖k0‖α1 exp ((α1 + ct)|η|) , (4.105)

where α1 is as in Lemma 4.1.18 and

c = 〈b〉+ υ −m∗, m∗ = inf
x∈Rd

m(x). (4.106)

Let us show that rt ∈ Kα for t ≤ τ(α2, α1), where α is given in (4.91).
In view of (1.42), this is the case if the following holds

α1 + cτ(α2, α1) ≤ 1

3
α2 +

2

3
α1, (4.107)

which amounts to c ≤ 〈b〉 + υ + 〈a〉eα2 , see (4.92) and (2.27). The
latter obviously holds by (4.106).

Lemma 4.1.19. Let α1, α2 and kt = Qα2α1k0 be as in Lemma 4.1.18,
and rt be as in (4.105) and (4.106). Then kt(η) ≤ rt(η) for all t ≤
τ(α2, α1) and η ∈ Γ0.
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Proof. The idea is to show that wt(η) ≤ rt(η) and then apply the
estimate obtained in Lemma 4.1.18. Set w̃t = Qα2α1(t;B∆

2,υ)r0. Since
k0 ∈ Kα1 , we have that k0 ≤ r0. Then by the positivity discussed in
Remark 4.1.5 we obtain wt ≤ w̃t, and hence kt ≤ w̃t, holding for all
t ≤ τ(α2, α1). Thus, it remains to prove that wt(η) ≤ rt(η). To this
end we write, cf. (4.104),

w̃t − rt =

∫ t

0

Qα2α′(t− s;B∆
2,υ)Dα′αrsds, (4.108)

where α′ and α are as in (4.91) and the bounded operator Dα′α acts
as follows: D = A∆

υ + B∆
2,υ − Jc1 , where (Jc1k)(η) = c1|η|k(η). The

validity of (4.108) can be established by taking the t-derivative of both
sides and then taking into account (4.105) and (4.41). Note that rs
in (4.108) lies in Kα, as it was shown above. By means of (2.20) the
action of D on rs can be calculated explicitly yielding

(Drt)(η) (4.109)

=−Ψυ(η)rt(η) +

∫
Rd

∑
y1∈η

∑
y2∈η\η1

rt(η ∪ x \ {y1, y2})b(x|y1, y2)dx

+ υ|η|rt(η) + 2

∫
(Rd)2

∑
y1∈η

rt(η ∪ x \ y1)b(x|y1, y2)dxdy2 − c1|η|rt(η)

=
(
−M(η)− Ea(η)− 〈b〉|η|+ e−c0−c1tEb(η) + 2〈β〉|η| − c1|η|

)
rt(η).

Since α1 > − logω, by Proposition 2.1.2 we have that

−Ea(η) + e−α1−ctEb(η) ≤ υ|η|,

by which we obtain from (4.109) the following estimate (Drt)(η) ≤ 0.
We apply this in (4.108) and obtain w̃t ≤ rt which completes the
proof.

Remark 4.1.20. By (4.106) we obtain that c ≤ 0 (and hence kt ∈ Kα1)
whenever

m∗ ≥ 〈b〉+ υ.

In the short dispersal case, see Remark 2.1.1, one can take υ = 0. In
the long dispersal case, by Proposition 2.1.3 one can make υ as small as
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one wants by taking small enough ω and hence big enough α1. Then,
the evolution of kt leaves the initial space invariant if the following
holds

m∗ > 〈b〉. (4.110)

In the short dispersal case, one can allow equality in (4.110).

Continuation. The choice of the initial space should satisfy the
condition α1 > − logω. At the same time, the parameter α2 > α1

can be taken arbitrarily. In view of the dependence of T (α2, α1)
on α2, see (2.27), the function α2 7→ T (α2, α1) attains maximum at
α2 = α1 + δ(α1), where

δ(α) = 1 +W

(
2〈b〉+ υ

〈a〉
e−α−1

)
, (4.111)

Here W is Lambert’s function, see [19]. Then we have

Tmax(α1) = max
α2>α1

T (α2, α1) = exp (−α1 − δ(α1)) /〈a〉. (4.112)

Proof of Theorem 2.3.5. Fix υ and then find small ω (see Proposition
2.1.3) such that the inequality in Proposition 2.1.2 holds true. There-
after takes α0 > − logω such that kµ0 ∈ Kα0 . Then take c as given in
(4.106) with this υ. Next, set T1 = Tmax(α0)/3, see (4.112), and also
α∗1 = α0 + cT1, α1 = α0 + δ(α0), see (4.111). Clearly, α∗1 < α1 that
can be checked similarly as in (4.107). By Lemma 2.3.4 it follows that,
for t ≤ T1, kt = Qα1α0(t)kµ0 lies in K?α1

, whereas by Lemma 4.1.19
we have that kt ∈ K?αt with αt = α0 + ct ≤ α∗1. Clearly, for T ≤ T1,
the map [0, T ) 3 t 7→ kt ∈ KαT is continuous and continuously dif-
ferentiable, and both claims (i) and (j) are satisfied (by construction)
k̇t = L∆

α1
kt = L∆

αT
kt, see (2.25). Now for n ≥ 2, we set

Tn = Tmax(α∗n−1)/3, α∗n = α∗n−1 + cTn, (4.113)

αn = α∗n−1 + δ(α∗n−1).

As for n = 1, we have that α∗n < αn and Tn < T (αn, α
∗
n−1) holding for

all n ≥ 2. Thereafter, set

k
(n)
t = Qαnα∗n−1

(t)k
(n−1)
Tn−1

, t ∈ [0, T (αn, α
∗
n−1)),
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where k
(1)
t = Qα1α0(t)kµ0 . Then for each T < Tn both maps [0, T ) 3

t 7→ k
(n)
t ∈ Kα̃n−1(T ) and [0, T ) 3 t 7→ L∆

α̃n−1(T )k
(n)
t ∈ Kα̃n−1(T ) are

continuous, where α̃n−1(T ) := α∗n−1 + cT . The continuity of the lat-

ter map follows by the fact that k
(n)
t : Kα̃n−1(t) ↪→ Kα̃n−1(T ) and that

L∆
α̃n−1(T )|Kα̃n−1(t)

= L∆
α̃n−1(T )α̃n−1(t), see (2.25). Moreover, k

(n)
0 = k

(n−1)
Tn−1

and L∆
α∗n−1+εk

(n)
0 = L∆

α∗n−1+εk
(n−1)
Tn−1

holding for each ε > 0. Then the map

in question t 7→ kt is

kt+T1+...+Tn−1 = k
(n)
t , t ∈ [0, Tn],

provides that the series
∑

n≥1 Tn is divergent. By (4.112) we have∑
n≥1

Tn =
1

3〈a〉
∑
n≥1

exp
(
−α∗n−1 − δ(α∗n−1)

)
. (4.114)

For the convergence of the series in the right-hand side it is necessary
that α∗n−1 +δ(α∗n−1)→ +∞, and hence α∗n−1 → +∞ as n→ +∞, since
δ(α) is decreasing. By (4.113) we have α∗n = α0 + c(T1 + · · · + Tn).
Then the convergence of

∑
n≥1 Tn would imply that α∗n ≤ α∗ for some

number α∗ > 0 that contradicts the convergence of the right-hand side
of (4.114). �

Proof of Corollary 2.3.6. For a compact Λ, let us show that µΛ
t ∈ D,

that is, RΛ
µt ∈ D

†, see (4.4). For kt = kµt described in Theorem 2.3.5,
by (1.26) we have

RΛ
µt(η) =

∫
ΓΛ

(−1)|ξ|kt(η ∪ ξ)λ(dξ).

Let α > α0 be such that kt ∈ Kα. Then using (1.42), (1.22), (2.15)
and (1.30) we calculate∫

ΓΛ

Ψ(η)RΛ
µt(η)λ(dη)

=

∫
ΓΛ

Ψ(η)

∫
ΓΛ

(−1)|ξ|kt(η ∪ ξ)λ(dξ)λ(dη)

≤
∫

ΓΛ

Ψ(η)‖k‖αeα|η|λ(dη)

∫
ΓΛ

eα|ξ|λ(dξ)
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≤‖k‖α(m∗ + a∗ + 〈b〉)
∫

ΓΛ

|η|2eα|η|λ(dη) exp(|Λ|eα)

=‖k‖α(m∗ + a∗ + 〈b〉)|Λ|eα(2 + |Λ|eα) exp(2|Λ|eα),

where |Λ| is the Euclidean volume of Λ. That yields µΛ
t ∈ D. The

vality of (2.28) follows by (1.24). �

4.1.8 Proof of Theorem 2.4.2

We rescale the interaction in (1.36), see (2.20), by multiplying a by ε
and obtain the evolution equation as (1.36) with L∆ replaced by

(L∆
ε k)(η) = −k(η)

∑
x∈η

(m(x) + εEa(x, η \ x))

− k(η)
∑
x∈η

∫
(Rd)2

b(x|y1, y2)dy1dy2

+

∫
Rd

∑
y1∈η

∑
y2∈η\y1

k(η ∪ x \ {y1, y2})b(x|y1, y2)dx

−
∫
Rd
εEa(y, η)k(η ∪ y)dy

+ 2

∫
(Rd)2

∑
y1∈η

k(η ∪ x \ y1)b(x|y1, y2)dy2dx.

Note that ε = 1 corresponds to the initial microscopic system and by
taking ε→ 0 we obtain the mesoscopic description of the system. Now
we introduce the rescaled correlation functions

k
(ε)
t,ren(η) = ε|η|k

(ε)
t (η),

which is the solution of the following Cauchy problem

d

dt
k

(ε)
t = L∆

ε,renk
(ε)
t , k

(ε)
t |t=0 = k0.

’Operator’ L∆,ren
ε is obtained from L∆

ε by the formula

(L∆
ε,renk)(η) = ε|η|L∆

ε (ε−|η|k(η)),
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and hence, it has the form

(L∆
ε,renk)(η) = −k(η)

∑
x∈η

(
m(x) + εE−(x, η \ x)

)
− k(η)

∑
x∈η

∫
(Rd)2

b(x|y1, y2)dy1dy2

+ ε|η|
∫
Rd

∑
y1∈η

∑
y2∈η\y1

ε−|η∪x\y1\y2|k(η ∪ x \ y1 \ y2)b(x|y1, y2)dx

− ε|η|
∫
Rd
εE−(y, η)ε−|η∪y|k(η ∪ y)dy

+ 2ε|η|
∫

(Rd)2

∑
y1∈η

ε−|η∪x\y1|k(η ∪ x \ y1)b(x|y1, y2)dy2dx

After direct calculation we obtain

(L∆
ε,renk)(η) = −k(η)

∑
x∈η

(
m(x) + εE−(x, η \ x) + 〈b〉

)
+ ε

∫
Rd

∑
y1∈η

∑
y2∈η\y1

k(η ∪ x \ y1 \ y2)b(x|y1, y2)dx

−
∫
Rd
E−(y, η)k(η ∪ y)dy

+ 2

∫
(Rd)2

∑
y1∈η

k(η ∪ x \ y1)b(x|y1, y2)dy2dx.

Note that L∆
ε,ren has the following structure

L∆
ε,ren = V + εC,

where

(V k)(η) = −k(η)
∑
x∈η

(m(x) + 〈b〉)

−
∫
Rd
E−(y, η)k(η ∪ y)dy

+ 2

∫
(Rd)2

∑
y1∈η

k(η ∪ x \ y1)b(x|y1, y2)dy2dx,
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(Ck)(η) = −k(η)
∑
x∈η

E−(x, η \ x)

+

∫
Rd

∑
y1∈η

∑
y2∈η\y1

k(η ∪ x \ y1 \ y2)b(x|y1, y2)dx.

For ε→ 0 we consider problem

d

dt
rt = V rt, rt|t=0 = r0. (4.115)

The main property of the evolution r0 7→ rt is ’preserving chaos’. That
is, if r0 is the correlation function of the Poisson measure π%0 , i.e.

r0(η) =
∏
x∈η

%0(x),

then, for all t > 0 for which we can solve (4.115), the solution of (4.115)
has the form

rt(η) =
∏
x∈η

%t(x).

Then %t is a solution of a kinetic equation.
Now let us consider equation (1.36) as an infinite chain of linked equa-

tion in term of the components k
(n)
t . The first three evolution equations

have the forms
d

dt
k0
t (∅) = 0,

d

dt
k

(1)
t (x) = −k(1)

t (x)(m(x) + 〈b〉)−
∫
Rd
a(x− y)k

(2)
t (x, y)dy

+2

∫
(Rd)2

k
(1)
t (y)b(y|x, y2)dy2dy.

By set k
(2)
t (x, y) = k

(1)
t (x)k

(1)
t (y), we obtain

d

dt
k

(1)
t (x) = −k(1)

t (x)

(
(m(x) + 〈b〉)−

∫
Rd
a(x− y)k

(1)
t (y)dy

)
+2

∫
(Rd)2

k
(1)
t (y)b(y|x, y2)dy2dy. (4.116)
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In view of (4.116), we yield that the kinetic equation has the form

d

dt
%t(x) = −%t(x)

(
(m(x) + 〈b〉)−

∫
Rd
a(x− y)%t(y)dy

)
+2

∫
(Rd)2

%t(y)b(y|x, y2)dy2dy.

Let B be either β or a. For both choice of B let set

(B ∗ %t)(x) =

∫
Rd

B(x− y)%t(y)dy.

Then

2

∫
(Rd)2

%t(y)b(y|x, y2)dy2dy = 〈b〉%t(x) + (b ∗ %t)(x),

which give us problem (2.29).
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4.2 Proofs regarding the free-branching

model

4.2.1 Proof of Proposition 3.2.1

We begin by showing that K : CTψ (φ)→ CTψ (φ) for each T > 0. Clearly,
x 7→ (Kϕ)t(x) is continuous and (Kϕ)0 = φ whenever ϕ ∈ CTψ (φ). The
continuity of t 7→ Φϕt follows by the estimate, see (3.4),

|(Φϕs)(x)− (Φϕu)(x)| ≤
∫

Γ0

∣∣∣∣∣∏
y∈ξ

ϕs(y)−
∏
y∈ξ

ϕu(y)

∣∣∣∣∣ bx(dξ)
≤ sup

y∈X
|ϕs(y)− ϕu(y)|

∫
Γ0

|ξ|bx(dξ) ≤ n∗ sup
y∈X
|ϕs(y)− ϕu(y)|.

(4.117)

This also yields the continuity of t 7→ (Kϕ)t. In obtaining (4.117) we
have used the following evident estimate

|a1a2 · · · an − b1b2 · · · bn| ≤ nmax
i
|ai − bi|, ai, bi ∈ [0, 1].

Furthermore,

0 < (Kϕ)t(x) ≤ φ(x)e−t + (1− e−t) = 1− (1− φ(x))e−t ≤ 1

which yields

1− (Kϕ)t(x) ≥ e−tθ(x) ≥ e−tcφψ(x) = cφ(t)ψ(x), (4.118)

and hence the validity of the lower estimate as in (3.6). To get the
upper bound, we write, see (3.2) and (3.4),

(Φϕs)(x) = bx(Γ
0) +

∞∑
n=1

1

n!

∫
Xn

φ(y1) · · ·φ(yn)b(n)
x (dy1, . . . dyn)

≥ bx(Γ
0) = δ(x) ≥ 1− ψ(x),

where we used also item (iii) of Assumptions 2. By means of this
estimate applied in (3.11) we then get

(Kϕ)t(x) ≥ φ(x)e−t + (1− e−t)δ(x)

≥ (1− ψ(x)) + e−t(φ(x)− δ(x)) ≥ 1− ψ(x),
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as φ ∈ Cψ(X). Thus, K : CTψ (φ) → CTψ (φ). Let us show that it is a
contraction. To this end, similarly as in (4.117) we obtain, see also
(3.10),

‖Kϕ−Kϕ̃‖T ≤ n∗(1− e−T )‖ϕ− ϕ̃‖T ,
holding for each ϕ, ϕ̃ ∈ CTψ (φ). Then the proof follows by Banach’s
contraction principle.

4.2.2 Proof of Lemma 3.2.2

We begin by fixing T > 0 such that the contraction condition n∗(1 −
e−T ) < 1 is satisfied. Then integrating in (3.12) we arrive at the
following integral equation

φt(x) = φ(x)e−t +

∫ t

0

e−(t−s)(Φφs)(x)ds, (4.119)

the set of solutions of which on [0, T ] coincides with the set of fixed
points of K : CT (φ) → CT (φ) established in Proposition 3.2.1. The
continuous differentiability of t 7→ φt ∈ Cb(X) follows by continuity
s 7→ Φψs, which in turn follows by (4.117). Thus, each solution of
(4.119) solves also (3.12), which yields the existence of the solution in
question on the time interval [0, T ]. For n∗ ≤ 1, the contraction con-
dition is satisfied with any T > 0; hence, the aforementioned solution
is global in time. For n∗ > 1, we proceed as follows. For t1 + t2 ≤ T ,
we rewrite (4.119) as follows

φt1+t2(x) = e−t2
(
φ(x)e−t1 +

∫ t1

0

e−(t1−s)(Φφs)(x)ds

)
(4.120)

+

∫ t1+t2

t1

e−(t2+t1−s)(Φφs)(x)ds

= φt1(x)e−t2 +

∫ t2

0

e−(t2−s)(Φφt1+s)(x)ds

Since the contraction condition is independent of the initial condition
in (3.12), by (4.120) one can continue the solution obtained above to
any t > 0. Indeed, let φt be the solution on [0, T ]. Let also φ1

t ∈ CTψ (φ1)
be the solution of (3.12) on the same [0, T ] with the initial condition
φ1
t := φT/2. By the uniqueness established in Lemma 3.2.2 it follows
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that these two solutions satisfy φt+T/2 = φ1
t for t ∈ [0, T/2]. Hence, the

function φtI[0,T/2](t) + φ1
t−T/2I[T/2,3T/2](t) = φtI[0,T ](t) + φ1

t−T I[T,3T/2](t)

is the unique solution of (4.119) (hence of (3.12)) on [0, 3T/2]. The
further continuation goes in analogous way.

For n∗ < 1, we define ϑs = es‖1 − φx‖ = es supx∈X(1 − φs(x)).
Similarly as in (4.117), Then by (4.119) we then get

ϑt ≤ ϑ0 + n∗

∫ t

0

ϑsds.

which by Grönwall’s inequality yields,

‖1− φt‖ ≤ ‖1− φ0‖e−(1−n∗)t,

that yields the convergence in question. Note that φ∞ does not belong
to Cψ(X) as it fails to obey the upper bound φ(x) ≤ 1− cφψ(x) with
cφ > 0, see (3.6). However, it belongs to the closure of this set, and is
a stationary solution of (3.12).

4.2.3 Proof of Lemma 3.2.4

Now by (3.12) we have

|φt+u(x)− φt(x)| ≤
∫ u

0

|φt+s(x)− (Φφt+s)(x)|ds (4.121)

=

∫ u

0

|θt+s(x)− (1− (Φφt+s)(x))|ds ≤ 2ψ(x)u,

where we have used (3.13) and (3.8). To prove (b), we denote

h+(x) = max{gt+u(x)ψ(x); gt(x)ψ(x)},
h−(x) = min{gt+u(x)ψ(x); gt(x)ψ(x)}.

Then, cf. (1.13),

|φt+u(x)− φt(x)| = e−h
+(x)

[
eh

+(x)−h−(x) − 1
]

≥ e−h
−(x)|gt+u(x)− gt(x)|ψ(x)

≥ max{φt+u(x);φt(x)}|gt+u(x)− gt(x)|ψ(x),
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which yields case (b) of (3.14) by (4.121) and (3.7). Next, similarly as
in (4.117) we get

|(Φφt+u)(x)− (Φφt)(x)| ≤
∫

Γ0

(∑
y∈ξ

|φt+u(y)− φt(y)|

)
bx(dξ)

≤ 2u

∫
X

ψ(y)β(1)
x (dy) ≤ 2un∗mψ(x),

where we used (4.121), (3.2) and (3.5), see also item (i) of Assumption
2.

4.2.4 Proof of Proposition 3.2.5

By (3.1), and then by (3.7), (3.8) and (3.6), we have

|LF φ(γ)| ≤
∑
x∈γ

F φ(γ \ x) |(Φφ)(x)− φ(x)| (4.122)

≤ (F φ(γ)/δ∗)
∑
x∈γ

(
|1− (Φφ)(x)|+ |1− φ(x)|

)
≤ 2Ψ(γ)F φ(γ)/δ∗ ≤ 2F φ(γ)ecφΨ(γ)/(eδ∗cφ) ≤ 2/(eδ∗cφ),

where Ψ is as in (1.5). To get the latter two estimates in (4.122), we
proceeded as follows. The first one is obtained with the help of the
estimate α ≤ eα−1, α > 0. Afterwards, we did

F φ(γ) exp(cφΨ(γ)) =
∏
x∈γ

(1− θ(x))ecφψ(x) ≤
∏
x∈γ

(1− cφψ(x))ecφψ(x) ≤ 1,

see (3.6), which was used in the final step. The continuity of the map
γ 7→ LF φ(γ) follows by the very definition of the topology of Γψ.

4.2.5 Proof of Lemma 3.2.6

We fix t and u and then define

Hs(γ) =
∑
x∈γ

gs(x)ψ(x), H+(γ) = max{Ht+u(γ);Ht(γ)},

H−(γ) = min{Ht+u(γ);Ht(γ)}.
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Then

|F φt+u(γ)−F φt(γ)| = e−H
+(γ)

[
eH

+(γ)−H−(γ) − 1
]

(4.123)

≤ max{F φt+u(γ);F φt(γ)}
∑
x∈γ

|gt+u(x)− gt(x)|ψ(x)

≤ 2u

δ∗
Ψ(γ)

∏
x∈γ

(1− cφ(t+ u)ψ(x))

≤ 2u

eδ∗cφ(t+ u)

∏
x∈γ

(1− cφ(t+ u)ψ(x))ecφ(t+u)ψ(x)

≤ 2uet+u

eδ∗cφ
,

which completes the proof, see (3.14), (3.13) and (4.122).

4.2.6 Proof of Lemma 3.2.7

As in (4.122), for fixed t and u we have

|(LF φt+u)(γ)− (LF φt)(γ)| ≤ K1(γ) +K2(γ) +K3(γ), (4.124)

K1(γ) :=
∑
x∈γ

∣∣F φt+u(γ \ x)− F φt(γ \ x)
∣∣ |(Φφt+u)(x)− φt+u(x)| ,

K2(γ) :=
∑
x∈γ

F φt(γ \ x) |(Φφt+u)(x)− (Φφt)(x)| ,

K3(γ) :=
∑
x∈γ

F φt(γ \ x) |φt+u(x)− φt(x)| .

By (3.8) and (4.118) we have

1

1− cφ(t+ u)ψ(x)
≤ 1

1− cφψ(x)
≤ 1

1− ψ(x)
≤ 1

δ∗
.
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Then proceeding as in obtaining the second inequality in (4.123), we
arrive at∣∣F φt+u(γ \ x)− F φt(γ \ x)

∣∣ ≤ 2u

δ∗
Ψ(γ \ x)

∏
y∈γ\x

(1− cφ(t+ u)ψ(x))

≤ 2u

δ2
∗

Ψ(γ)
∏
y∈γ

(1− cφ(t+ u)ψ(x)) (4.125)

Next, by (3.7) and (3.8) we have

|(Φφt+u)(x)− φt+u(x)| ≤ |1− (Φφt+u)(x)|+ |1− φt+u(x)| ≤ 2ψ(x).

We use the latter estimate and (4.125) to obtain

K1(γ) ≤ 4u

δ2
∗

Ψ2(γ)
∏
y∈γ

(1− cφ(t+ u)ψ(x)) (4.126)

≤ 16u

(eδ∗cφ(t+ u))2

∏
y∈γ

(1− cφ(t+ u)ψ(x)) ecφ(t+u)ψ(x)

≤ 16u

(eδ∗cφ)2
e2(t+u).

By (3.14) we have

K2(γ) ≤ 1

δ∗
F φt(γ)

∑
x∈γ

|(Φφt+u)(x)− (Φφt)(x)| (4.127)

≤ 2un∗m

δ∗
Ψ(γ)F φt(γ) ≤ 2un∗m

eδ∗cφ
et.

Similarly,

K3(γ) ≤ 1

δ∗
F φt(γ)

∑
x∈γ

|φt+u(x)− φt(x)| ≤ 2u

eδ∗cφ
et. (4.128)

Now we use (4.126), (4.127), (4.128) in (4.124), and thus obtain (3.17)
with

Cφ =
2u(n∗m+ 1)

eδ∗cφ
+

16u

(eδ∗cφ)2
,

which completes the proof.
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4.2.7 Proof of Lemma 3.2.10

The proof of the stated inclusion will be done by showing that each
F φ, φ ∈ Cψ(X), can be obtained as an ‖ · ‖L-limit of the elements of
D0(L). Namely, we are going to show that

‖λF φ
λ − F

φ‖L → 0, as λ→ +∞. (4.129)

To this end, with the help of the first equality in (3.20) we write∣∣∣λ(LF φ
λ )(γ)− (LF φ)(γ)

∣∣∣ =

∣∣∣∣∫ +∞

0

[
(LF φt)(γ)− (LF φ)(γ)

]
e−λtdt

∣∣∣∣
(4.130)

≤
∫ +∞

0

∣∣(LF φεs)(γ)− (LF φ)(γ)
∣∣ e−sds, ε = 1/λ.

Now we use here (3.17) with t = 0, u = εs and obtain for ε < 1/2 the
following estimate

LHS(4.130) ≤ εCφ

∫ +∞

0

se−s(1−2ε)ds =
ε

(1− 2ε)2
Cφ → 0, as ε→ 0.

(4.131)

Next, by (3.20) – and then by (3.16) – we get

‖λF φ
λ − F

φ‖ = ‖LF φ
λ ‖ ≤

∫ +∞

0

‖LF φt‖e−λtdt (4.132)

≤ 2

eδ∗cφ

∫ +∞

0

e−(λ−1)tdt =
1

λ− 1

(
2

eδ∗cφ

)
,

where we have used the fact that cφt = cφ(t) = cφe
−t, see (4.118). Now

(4.129) readily follows by (4.131) and (4.132). The second part of the
statement follows by Remark 3.2.8.

4.2.8 Proof of Corollary 3.2.11

The stated closedness follows by (3.23), whereas the density of D(L) is
a consequence of Lemma 3.2.10 and (3.18). For φ ∈ Cψ(X) and λ > 0,
define

RλF
φ = F φ

λ =

∫ +∞

0

F φte−λtdt,
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see (3.19). Then
‖RλF

φ‖ ≤ 1/λ, (4.133)

which allows one to continue Rλ to all F ∈ E(Γψ) since E0(Γψ) is
dense therein. At the same time, by (3.20) it follows that

(λ− L)RλF
φ = F φ,

which can be continued to all F ∈ E(Γψ). Thus, Rλ is the resol-
vent of L, whose norm can be estimated by means of (4.133). The
property Rλ : E(Γψ) → D(L) can be proved by taking a Cauchy
sequence {F φn}n∈N ⊂ E0(Γψ), and then showing that the sequence
{(λ−L)F φn

λ }n∈N ⊂ D0(L) is a Cauchy sequence in ‖ · ‖L. This can be
done similarly as in the proof of Lemma 3.2.10.

4.2.9 Proof of Theorem 3.3.1

Corollary 3.2.11 and (4.133) allows one to apply here the celebrated
Hille-Yosida theorem, see [3, page 134], by which it follows that (L,D(L))
is the generator of a C0-semigroup, say S = {S(t)}t≥0, of bounded
linear operators on E(Γψ) such that the operator norm of each S(t)
satisfies ‖S(t)‖ ≤ 1. Then the existence of the solution in question in
the form Ft = S(t)F0 is a standard fact, see [3, Theorem 3.1.12, page
115]. If F0 belongs to the core of D(L), i.e., F0 ∈ D0(L), see (3.21), the
solution can be obtained in an explicit form. In this case, in view of
the linearity of S(t), we take F0 = F φ

λ for some λ > 1 and φ ∈ Cψ(X).
Then the solution is

Ft = S(t)F0 = S(t)F φ
λ = F φt

λ = F
Qt(φ)
λ =

∫ +∞

0

F φt+se−λsds, (4.134)

see Remark 3.2.3. That is, for F0 in the core of D(L), the action of
S on F0 is obtained by applying the semigroup of nonlinear operators
acting in the space of continuous functions defined on the basic space
X. Then, in the subcritical case, the stated convergence follows by the
concluding statement of Lemma 3.2.2.

4.2.10 Proofs of Proposition 3.3.5 and Lemma 3.3.4

Proof of Proposition 3.3.5. First, we rewrite (1.34) in the form

µt2(F ) = µt1(F ) +

∫ t2

t1

µs(LF )ds, 0 ≤ t1 < t2. (4.135)
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For F = F φ
λ , φ ∈ Cψ(X), λ > 1, see (3.21), by (3.15), and then by

(3.19) and (3.20), we have ‖LF φ
λ ‖ ≤ 2. Then by (4.135) we get

|µt2(F φ
λ )− µt1(F φ

λ )| ≤ 2|t2 − t1|.

For F =
∑

n αnF
φn
λn
∈ D0(L), this yields

|µt2(F )− µt1(F )| ≤ 2

(∑
n

|αn|

)
|t2 − t1|.

Now for F = F φ, φ ∈ Cψ(X), by (3.16) we have

|µt2(F φ)− µt1(F φ)| ≤ 2

eδ∗cφ
|t2 − t1|.

The extension of the latter to the linear combinations of F φn can be
done similarly as above. �
Proof of Lemma 3.3.4. By Remark 3.2.8 we know that E0(Γψ) is bp-
dense in Bb(Γψ). Then the measurability of t 7→ µt(F ), F ∈ Bb(Γψ)
follows by the continuity (hence, measurability) just proved. �

4.2.11 Proof of Theorem 3.3.3

In view of Lemma 3.3.4, it remains to establish the existence and
uniqueness of solutions of (1.34) with F ∈ D(L). First we prove ex-
istence. For F ∈ D(L) and t > 0, we have Ft = S(t)F , see (4.134).
Then we set

µt(F ) = µ(Ft) = µ(S(t)F ), µ ∈ P(Γψ).

This, in particular, means µs(Ft) = µs+t(F ), and also

µt(F
φ
λ ) = µ(F φt

λ ), µt(F
φ) = µ(F φt), (4.136)

holding for all λ > 1 and φ ∈ Cψ(X), see also (3.24). To prove that

t 7→ µt solves (4.135), we take F = F φ
λ ∈ D0(L), and then get by (3.20)

the following∫ t2

t1

µs(LF
φ
λ )ds = −

∫ t2

t1

µs(F
φ)ds+

∫ t2

t1

µs(λF
φ
λ )ds (4.137)

= −
∫ t2

t1

µs(F
φ)ds+

∫ t2

t1

∫ +∞

0

λe−λtµs(F
φt)dsdt,
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where we used also Fubini’s theorem. Then by (4.136) and the flow
property we get µs(F

φt) = µs+t(F
φ) and then use this in the second

summand (name it Υ) of the last line of (4.137), then integrate by
parts and obtain

Υ =

∫ t2

t1

µs(F
φ)ds+

∫ t2

t1

d

ds

(∫ +∞

0

e−λtµs+t(F
φ)dt

)
ds

=

∫ t2

t1

µs(F
φ)ds+

∫ t2

t1

d

ds

(∫ +∞

0

e−λtµs(F
φ
t )dt

)
ds

=

∫ t2

t1

µs(F
φ)ds+

∫ t2

t1

d

ds
µs(F

φ
λ )ds

=

∫ t2

t1

µs(F
φ)ds+ µt2(F φ

λ )− µt1(F φ
λ ).

Now we plug this in (4.137) and get that property of t 7→ µt(F ),
F ∈ D0(L), solves (4.135). For F ∈ D(L), let {Fn}n∈N ⊂ D0(L) be
such that ‖F − Fn‖L → 0 as n→ +∞. Then∣∣∣∣µt2(F )− µt1(F )−

∫ t2

t1

µs(LF )ds

∣∣∣∣ ≤ |µt2(F − Fn)|+ |µt1(F − Fn)|

+

∫ t2

t1

|µs(LF − LFn)| ds ≤ (t2 − t1 + 2)‖F − Fn‖L,

which yields that t 7→ µt(F ), F ∈ D(L) also solves (4.135).
Assume now that t 7→ µ̃t is another solution of (1.34), and hence

of (4.135), satisfying µ̃t|t=0 = µ. By Proposition 3.3.5 the map t 7→
µ̃(F ), F ∈ D0(L) is Lipschitz-continuous. Then, for each λ > 1 and
φ ∈ Cψ(X), we have

dµ̃s(F
φ
λ ) = µ̃s(LF

φ
λ )ds,

holding for Lebesgue-almost all s ≥ 0. Then

−λ
∫ t

0

e−λsµ̃s(F
φ
λ )ds =

∫ t

0

µ̃s(F
φ
λ )de−λs

=µ̃t(F
φ
λ )e−λt − µ̃0(F φ

λ )−
∫ t

0

e−λsµ̃s(LF
φ
λ )ds
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=µ̃t(F
φ
λ )e−λt − µ̃0(F φ

λ )− λ
∫ t

0

e−λsµ̃s(F
φ
λ )ds

+

∫ t

0

e−λsµ̃s(F
φ)ds.

This yields

µ(F φ
λ ) = µ̃0(F φ

λ ) = µ̃t(F
φ
λ )e−λt +

∫ t

0

e−λsµ̃s(F
φ)ds, λ > 1,

which after passing to the limit t→ +∞ leads to

µ(F φ
λ ) =

∫ +∞

0

e−λsµ̃s(F
φ)ds, (4.138)

that holds for all λ > 1. By the very definition in (4.136) the map
t 7→ µt(F

φ) is continuous; the continuity of t 7→ µ̃t(F
φ) was estab-

lished in Proposition 3.3.5. Both maps are bounded. By (3.19) and
(4.136), and then by (4.138), the Laplace transforms of both these
maps coincide. Therefore, by Lerch’s theorem µt(F

φ) = µ̃t(F
φ) for

all t > 0 and φ ∈ Cψ(X). As mentioned above, see Proposition
1.1.7, the class of functions {F φ : φ ∈ Cψ(X)} is separating, that
means µt = µ̃t, t > 0 and hence the stated uniqueness. The proof
the weak convergence µt ⇒ µs follows by (4.136) and the fact that
{F φ : φ ∈ Cψ(X)} is also convergence determining, see again Proposi-
tion 1.1.7. It remains to prove that µt ⇒ µ∞ as t→ +∞. Since the set
{F φ : φ ∈ Cψ(X)} is convergence determining, to this end it is enough
to show that µt(F

φ) → µ∞(F φ) = 1, holding for all φ ∈ Cψ(X). By
(4.136) and the concluding statement of Theorem 2.3.5 we have

lim
t→+∞

µt(F
φ) = lim

t→+∞
µ(F φt) = µ(F∞) = 1,

which completes the whole proof.
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