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Abstract. In real life applications not all signals are obtained by uniform
shifts; so there is a natural question regarding analysis and decompositions of
these types of signals by a stable mathematical tool. Gabardo and Nashed,
and Gabardo and Yu filled this gap by the concept of nonuniform multireso-
lution analysis and nonuniform wavelets based on the theory of spectral pairs
for which the associated translation set Λ = {0, r/N}+ 2Z is no longer a dis-
crete subgroup of R but a spectrum associated with a certain one-dimensional
spectral pair and the associated dilation is an even positive integer related to
the given spectral pair. In this paper, we introduce a notion of nonuniform pe-
riodic wavelet frame on non-Archimedean field. Using the Fourier transform
technique and the unitary extension principle, we propose an approach for
the construction of nonuniform periodic wavelet frames on non-Archimedean
fields.

1. Introduction. The notion of frames was first introduced by Duffin and
Shaeffer [10] in connection with some deep problems in nonharmonic Fourier
series and more particularly, with the question of determining when a family
of exponentials

{
eiαnt : n ∈ Z

}
is complete for L2[a, b]. Frames did not

generate much interest outside nonharmonic Fourier series until the seminal
work by Daubechies et al. [9]. After their pioneer work, the theory of frames
began to be studied widely and deeply, particularly in the more specialized
context of wavelet frames and Gabor frames. Frames provide a useful model
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to obtain signal decompositions in cases where redundancy, robustness, over-
sampling and irregular sampling occur.

Today, the theory of frames has become an interesting and fruitful field
of mathematics with abundant applications in signal processing, image pro-
cessing, harmonic analysis, Banach space theory, sampling theory, wireless
sensor networks, optics, filter banks, quantum computing, and medicine.
An important example of frames is a wavelet frame, which is obtained by
translating and dilating a finite family of functions. One of the most useful
methods to construct wavelet frames is through the concept of unitary ex-
tension principle (UEP) introduced by Ron and Shen [17] and subsequently
extended by Daubechies et al. [8] in the form of the Oblique Extension Prin-
ciple (OEP). They gave sufficient conditions for constructing tight and dual
wavelet frames for any given refinable function φ(x) which generates a mul-
tiresolution analysis. Gabardo and Nashed [11], and Gabardo and Yu [12]
introduced the notion of nonuniform multiresolution analysis and nonuni-
form wavelets based on the theory of spectral pairs for which the associated
translation set Λ = {0, r/N}+ 2Z is no longer a discrete subgroup of R but
a spectrum associated with a certain one-dimensional spectral pair and the
associated dilation is an even positive integer related to the given spectral
pair.

In recent years, there has been a considerable interest in the problem of
constructing periodic wavelet bases and frames in Hilbert spaces as most
of the signals of practical interest are periodic in nature. Apart from sig-
nals that are inherently periodic, all signals resulting from experiments with
a finite duration can in principle be modeled as periodic signals [14]. The
setup of tight wavelet frames provides great flexibility in approximating and
representing periodic functions. Using periodization techniques, Zhang [25]
constructed a dual pair of periodic wavelet frames for L2[0, 1] under the
assumption that the support of the wavelet function ψ in the frequency
domain is contained in [−π,−ε] ∪ [ε, π], ε > 0. Zhang and Saito [26] have
constructed general periodic wavelet frames for L2[0, 1] using extension prin-
ciples. Later on, Lu and Li [15] constructed periodic wavelet frames with
dilation matrix.

On the other hand, the past decade has also witnessed a tremendous
interest in the problem of constructing wavelet bases and frames on various
spaces other than R. For example, R. L. Benedetto and J. J. Benedetto
[6] developed a wavelet theory for local fields and related groups. They did
not develop the multiresolution analysis (MRA) approach, their method
is based on the theory of wavelet sets and only allows the construction of
wavelet functions whose Fourier transforms are characteristic functions of
some sets. Jiang et al. [13] pointed out a method for constructing orthogonal
wavelets on a local field K with a constant generating sequence and derived
necessary and sufficient conditions for a solution of the refinement equation
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to generate a multiresolution analysis of L2(K). Subsequently, tight wavelet
frames on local fields of the positive characteristic were constructed by Shah
and Debnath [23] using extension principles. In the series of papers [1, 2, 3,
4, 5, 19, 20, 21, 22], we have obtained various results related to wavelet and
Gabor frames on non-Archimedean local fields.

Drawing inspiration from the above work, our aim is to extend the notion
of wavelet frames to nonuniform periodic wavelet frames on non-Archime-
dean fields via extension principles. More precisely, we prove that under
some mild conditions, the periodization of any nonuniform wavelet frame
constructed by the unitary extension principle is a nonuniform periodic
wavelet frame on non-Archimedean fields.

The layout of this paper is as follows. In Section 2, we discuss some
preliminary facts about non-Archimedean fields and also some results which
are required in the subsequent sections. Sections 3 is devoted to our main
results about nonuniform periodic wavelet frames.

2. Preliminaries and nonuniform periodic wavelet system on non-
Archimedean fields. A non-Archimedean field K is a locally compact,
nondiscrete and totally disconnected field. If it is of the characteristic zero,
then it is a field of p-adic numbers Qp or its finite extension. If K is of the
positive characteristic, then K is a field of formal Laurent series over a finite
field GF (pc). If c = 1, it is a p-series field, while for c 6= 1, it is an algebraic
extension of degree c of a p-series field. Let K be a fixed non-Archimedean
field with the ring of integers D = {x ∈ K : |x| ≤ 1}. Since K+ is a locally
compact Abelian group, we choose a Haar measure dx for K+. The field K is
a locally compact, nontrivial, totally disconnected and complete topological
field endowed with non-Archimedean norm | · | : K→ R+ satisfying

(a) |x| = 0 if and only if x = 0;

(b) |x y| = |x||y| for all x, y ∈ K;

(c) |x+ y| ≤ max {|x|, |y|} for all x, y ∈ K.

Property (c) is called the ultrametric inequality. Let B = {x ∈ K : |x| < 1}
be the prime ideal of the ring of integers D in K. Then, the residue space
D/B is isomorphic to a finite field GF (q), where q = pc for some prime p
and c ∈ N. Since K is totally disconnected and B is both prime and prin-
cipal ideal, there exists a prime element p of K such that B = 〈p〉 = pD.
Let D∗ = D \ B = {x ∈ K : |x| = 1}. Clearly, D∗ is a group of units
in K∗ and if x 6= 0, then we can write x = pny, y ∈ D∗. Moreover, if
U = {am : m = 0, 1, . . . , q − 1} denotes the fixed full set of coset represen-
tatives of B in D, then every element x ∈ K can be expressed uniquely as
x =

∑∞
`=k c` p

` with c` ∈ U . Recall that B is compact and open, so each
fractional ideal Bk = pkD =

{
x ∈ K : |x| < q−k

}
is also compact and open
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and is a subgroup of K+. We use the notation from Taibleson’s book [13].
In the rest of this paper, we use the symbols N, N0 and Z to denote the sets
of natural, nonnegative integers and integers, respectively.

Let χ be a fixed character on K+ that is trivial on D but nontrivial
on B−1. Therefore, χ is constant on cosets of D, so if y ∈ Bk, then
χy(x) = χ(y, x), x ∈ K. Suppose that χu is any character on K+, then
the restriction χu|D is a character on D. Moreover, as characters on D,
χu = χv if and only if u − v ∈ D. Hence, if {u(n) : n ∈ N0} is a com-
plete list of distinct coset representative of D in K+, then, as it was proved
in [13], the set

{
χu(n) : n ∈ N0

}
of distinct characters on D is a complete

orthonormal system on D.
We now impose a natural order on the sequence {u(n)}∞n=0. We have

D/B ∼= GF (q) where GF (q) is a c-dimensional vector space over the
field GF (p). We choose a set {1 = ζ0, ζ1, ζ2, . . . , ζc−1} ⊂ D∗ such that
span{ζj}c−1

j=0
∼= GF (q). For n ∈ N0 satisfying

0 ≤ n < q, n = a0 +a1p+· · ·+ac−1p
c−1, 0 ≤ ak < p, and k = 0, 1, . . . , c−1,

we define

u(n) = (a0 + a1ζ1 + · · ·+ ac−1ζc−1) p−1.

Also, for n = b0 + b1q + b2q
2 + · · · + bsq

s, n ∈ N0, 0 ≤ bk < q, k =
0, 1, 2, . . . , s, we set

u(n) = u(b0) + u(b1)p−1 + · · ·+ u(bs)p
−s.

This defines u(n) for all n∈ N0. In general, it is not true that u(m+n) =
u(m) + u(n). But, if r, k ∈ N0 and 0 ≤ s < qk, then u(rqk + s) = u(r)p−k +
u(s). Further, it is also easy to verify that u(n) = 0 if and only if n = 0 and
{u(`) + u(k) : k ∈ N0} = {u(k) : k ∈ N0} for a fixed ` ∈ N0. Hereafter we
use the notation χn = χu(n), n ≥ 0.

Let the local field K be of the characteristic p > 0 and ζ0, ζ1, ζ2, . . . , ζc−1

be as above. We define a character χ on K as follows:

(2.1) χ(ζµp
−j) =

{
exp(2πi/p), µ = 0 and j = 1,

1, µ = 1, . . . , c− 1 or j 6= 1.

The Fourier transform of f ∈ L1(K) is denoted by f̂(ξ) and defined by

(2.2) F
{
f(x)

}
= f̂(ξ) =

∫
K
f(x)χξ(x) dx.

It is noted that

(2.3) f̂(ξ) =

∫
K
f(x)χξ(x)dx =

∫
K
f(x)χ(−ξx) dx.



Construction of nonuniform periodic wavelet frames... 5

The properties of Fourier transforms on non-Archimedean field K are
much similar to those of on the classical field R. In fact, the Fourier trans-
form on non-Archimedean fields of the positive characteristic have the fol-
lowing properties:

• The map f 7→ f̂ is a bounded linear transformation of L1(K) into
L∞(K) and

∥∥f̂∥∥∞ ≤ ∥∥f∥∥1
.

• If f ∈ L1(K), then f̂ is uniformly continuous.
• If f ∈ L1(K) ∩ L2(K), then

∥∥f̂∥∥
2

=
∥∥f∥∥

2
.

The Fourier transform of a function f ∈ L2(K) is defined by

(2.4) f̂(ξ) = lim
k→∞

f̂k(ξ) = lim
k→∞

∫
|x|≤qk

f(x)χξ(x) dx,

where fk = f Φ−k and Φk is the characteristic function of Bk. Furthermore,
if f ∈ L2(D), then we define the Fourier coefficients of f as

(2.5) f̂
(
u(n)

)
=

∫
D
f(x)χu(n)(x) dx.

The series
∑

n∈N0
f̂
(
u(n)

)
χu(n)(x) is called the Fourier series of f . From

the standard L2-theory for compact Abelian groups, we conclude that the
Fourier series of f converges to f in L2(D) and Parseval’s identity holds:

(2.6)
∥∥f∥∥2

2
=

∫
D

∣∣f(x)
∣∣2dx =

∑
n∈N0

∣∣∣f̂(u(n)
)∣∣∣2 .

We also denote the test function space on K by Ω(K), that is, each
function f in Ω(K) is a finite linear combination of functions of the form
1k(x−h), h ∈ K, k ∈ Z, where 1k is the characteristic function of Bk. This
class of functions can also be described in the following way. A function
g ∈ Ω(K) if and only if there exist integers k, ` such that g is constant on
cosets of Bk and is supported on B`. It follows that Ω is closed under the
Fourier transform and is an algebra of continuous functions with compact
supports, which is dense in C0(K) as well as in Lp(K), 1 ≤ p <∞. For more
details we refer to [16, 24].

For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ qN − 1 such
that r and N are relatively prime, we define

Λ =

{
0,
u(r)

N

}
+ Z.

where Z = {u(n) : n ∈ N0}. It is easy to verify that Λ is not a group on
non-Archimedean field K, but is the union of Z and a translate of Z.

As in the standard scheme, one expects existence of qN − 1 functions so
that their translation by elements of Λ and dilations by the integral powers
of p−1N form an orthonormal basis for L2(K).
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For j ∈ N0 let Nj denote a full collection of coset representatives of
Λ/(qN)jΛ, i.e.,

Nj =
{

0, 1, 2, . . . , (qN)j − 1
}
, j ≥ 0.

Then, Λ =
⋃
n∈Nj

(
n+ (qN)jΛ

)
and for any distinct n1, n2 ∈ Nj , we have(

n1 + (qN)jΛ
)
∩
(
n2 + (qN)jΛ

)
= ∅. Thus, every nonnegative integer k

can uniquely be written as k = r(qN)j + s, where r ∈ Λ, s ∈ Nj . Further,
a bounded function W : K→ K is said to be a radial decreasing L1-majorant
of f(x) ∈ L2(K) if |f(x)| ≤W (x), W ∈ L1(K) and W (0) <∞.

Let a and b be any two fixed elements in K. Then, for any prime p and
m,n ∈ N0, let Dp, Tu(n)a and Eu(m)b be the unitary operators acting on
f ∈ L2(K) defined by:

Tu(n)af(x) = f
(
x− u(n)a

)
(translation),

Eu(m)bf(x) = χ
(
u(m)bx

)
f(x) (modulation),

Dpf(x) =
√
qNf

(
p−1Nx

)
(dilation).

For given Ψ := {ψ1, . . . , ψqN−1} ⊂ L2(K), define the nonuniform wavelet
system:

(2.7)
W(Ψ, λ)

=
{
ψ`,j,λ :=(qN)j/2ψ`

(
(p−1N)jx−λ

)
, j ∈ Z, λ ∈ Λ, 1≤`≤qN−1

}
.

The nonuniform wavelet system W(Ψ, λ) is called a nonuniform wavelet
frame, if there exist positive numbers 0 < A ≤ B < ∞ such that for all
f ∈ L2(K)

(2.8) A
∥∥f∥∥2

2
≤

qN−1∑
`=1

∑
j∈Z

∑
λ∈Λ

∣∣〈f, ψ`,j,λ〉∣∣2 ≤ B∥∥f∥∥2

2
.

The largest A and the smallest B for which (2.8) holds are called nonuni-
form wavelet frame bounds. A wavelet frame is a tight non uniform wavelet
frame if A and B are chosen such that A = B and then the generators
{ψ1, ψ2, . . . , ψqN−1} are often referred to as tight nonuniform framelets. If
only the right-hand inequality in (2.8) holds, thenW(Ψ, λ) is called a Bessel
sequence.

Next, we give a brief account of the MRA-based wavelet frames generated
by the wavelet masks on non-Archimedean local fields. Following the unitary
extension principle, one often starts with a refinable function or even with
a refinement mask to construct desired wavelet frames. A function ϕ ∈
L2(K) is called a nonuniform refinable function, if it satisfies an equation of
the type

(2.9) ϕ(x) =
√
qN

∑
λ∈Λ

aλ ϕ
(
(p−1N)x− λ

)
,
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where
{
aλ : λ ∈ Λ

}
∈ l2(N0). In the frequency domain, equation (2.9) can

be written as

(2.10) ϕ̂
(
ξ
)

= m0

(
pξ

N

)
ϕ̂

(
pξ

N

)
,

where

(2.11) m0(ξ) =
1√
qN

∑
λ∈Λ

aλ χλ(ξ)

is an integral periodic function in L2(D) and is often called the refinement
mask of ϕ. Observe that χk(0) = φ̂(0) = 1. By letting ξ = 0 in equations
(2.10) and (2.11), we obtain

∑
λ∈Λ aλ = 1. Further, it is proved in [23] that

a function ϕ ∈ L2(K) generates an MRA in L2(K) if and only if

(2.12)
∑
λ∈Λ

∣∣ϕ̂(ξ + λ
)∣∣2 = 1, for a.e. ξ ∈ D and ϕ̂(0)= lim

ξ→0
ϕ̂(ξ) = 1, ξ ∈ K.

Suppose Ψ = {ψ1, . . . , ψqN−1} is a set of MRA functions derived from

(2.13) ψ̂`(ξ) = m`

(
pξ

N

)
ϕ̂

(
pξ

N

)
,

where

(2.14) m`(ξ) =
1√
qN

∑
λ∈Λ

a`λ χλ(ξ), 1 ≤ ` ≤ qN − 1

are the integral periodic functions in L2(D) and are called the nonuniform
framelet symbols or nonuniform wavelet masks. With m`(ξ), 0 ≤ ` ≤ qN−1
as the wavelet masks, we formulate the matrix M(ξ) as

(2.15) M(ξ)=


m0(ξ) m0

(
ξ + pu(1)

)
. . . m0

(
ξ + pu(s− 1)

)
m1(ξ) m1

(
ξ + pu(1)

)
. . . m1

(
ξ + pu(s− 1)

)
...

...
. . .

...
mqN−1(ξ) mqN−1

(
ξ + pu(1)

)
. . . mqN−1

(
ξ + pu(s− 1)

)
.

The so-called unitary extension principle (UEP) provides a sufficient condi-
tion on Ψ = {ψ1, ψ2. . . . , ψqN−1} such that the nonuniform wavelet system
W(Ψ, λ) given by (2.7) constitutes a tight frame for L2(K). It is well known
that in order to apply the UEP to derive wavelet tight frame from a given
refinable function, the corresponding refinement mask must satisfy

(2.16)
qN−1∑
λ=0

∣∣m0

(
ξ + qNλ

)∣∣2 ≤ 1, ξ ∈ K.

In this connection, Shah and Debnath [23] gave an explicit construction
scheme for the construction of tight wavelet frames on local fields of the
positive characteristic using unitary extension principles. The following is
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the fundamental tool they gave to construct tight wavelet frames on local
fields.

Theorem 2.1. Let ϕ(x) be a compactly supported refinable function and
φ̂(0) = 1. Then, the nonuniform wavelet system W(Ψ, λ) given by (2.7)
constitutes a normalized tight wavelet frame in L2(K) provided the matrix
M(ξ) defined in (2.15) satisfies

(2.17) M(ξ)M∗(ξ) = Iq for a.e. ξ ∈ σ(V0)

where σ(V0) :=
{
ξ ∈ D :

∑
λ∈Λ |ϕ̂

(
ξ + λ

)
|2 6= 0

}
.

3. Nonuniform periodic wavelet frames on non-Archimedean
fields. In this section, we present an approach for constructing nonuni-
form periodic wavelet frames on non-Archimedean fields by virtue of the
unitary extension principle (UEP).

For any f ∈ L1(K), we define the periodic version of f as

fper =
∑
λ∈Λ

f
(
x+ λu(N)

)
.

It is easy to see that fper is well defined and it is an N-periodic local inte-
grable function. With same dilation and translation operators as defined in
Section 2, we define the nonuniform periodic wavelet system as

(3.1) Wper(Ψ, λ) :=
{
ϕper, ψper`,j,λ : 1 ≤ ` ≤ qN − 1, j ∈ N0, λ ∈ Nj

}
.

In order to establish the main result of this section, we first state and prove
the following lemmas.

Lemma 3.1. Suppose that the nonuniform periodic wavelet system
Wper(Ψ, λ) is defined by (3.1). Then, for any periodic function f and given
ε > 0, there exists a positive integer J ∈ N such that

(3.2) (1− ε)
∥∥f∥∥2

2
≤

(qN)j−1∑
λ=0

∣∣〈f, ϕperj,λ〉∣∣2 ≤ (1 + ε)
∥∥f∥∥2

2
for all j ≥ J.

Proof. Let Γ denote the support of the Fourier coefficients
{
f̂
(
u
(
r
N

))}
r∈N0

.
Then, we have

f(x) =
∑
r∈Γ

f̂
(
u
( r
N

))
χr/N (x).

Assume that

(3.3) ϕperj,λ (x) =
∑
r∈N0

ϕ̂perj,λ

(
u
( r
N

))
χr/N (x).

The Fourier coefficients in the above expression can be written as

(3.4) ϕ̂perj,λ

(
u
( r
N

))
=(qN)j/2ϕ̂

(
(p−1N)−ju

( r
N

))
χλ

(
(p−1N)−ju

( r
N

))
.
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Parseval’s formula of the above Fourier series gives

(qN)j−1∑
λ=0

∣∣〈f, ϕperj,λ 〉∣∣2 =

(qN)j−1∑
λ=0

∣∣∣∣∣∑
r∈Γ

f̂
(
u(r)

)
ϕ̂perj,λ

(
u(r)

)∣∣∣∣∣
2

=

(qN)j−1∑
λ=0

∣∣∣∣∣∑
r∈Γ

f̂
(
u(r)

)
(qN)j/2ϕ̂

(
(p−1N)−ju(r)

)
χλ
(
(p−1N)−ju(r)

)∣∣∣∣∣
2

=

(qN)j−1∑
λ=0

∣∣∣∣∣∑
r∈Γ

dr

(
f̂ , ϕ̂

)
χλ
(
(p−1N)−ju(r)

)∣∣∣∣∣
2

where dr
(
f̂ , ϕ̂

)
= (qN)j/2f̂

(
u(r)

)
ϕ̂
(
(p−1N)−ju(r)

)
. Since Γ is a finite set,

there exists a positive number N such that E ⊆ D(N) :=
{
λ ∈ Λ : |λ| ≤ N

}
.

Hence, there exists J1 ≥ 0 such that for all j ≥ J1, the elements of D(N) lie
in different cosets of Λ/(qN)jΛ. Thus, the cardinality of Γ ∩ (λ+ (qN)jΛ)
is at most one for each j ≥ J1, λ ∈ Nj . Consequently, we have

(qN)j−1∑
λ=0

∣∣〈f, ϕperj,λ 〉∣∣2
=

(qN)j−1∑
λ=0

∑
r∈Γ

dr

(
f̂ , ϕ̂

)
χλ
(
(p−1N)−ju(r)

)∑
s∈Γ

ds

(
f̂ , ϕ̂

)
χλ
(
(p−1N)−ju(s)

)
=
∑
r∈Γ

∑
s∈Γ

dr

(
f̂ , ϕ̂

)
dr

(
f̂ , ϕ̂

) (qN)j−1∑
λ=0

χλ
(
(p−1N)−ju(r − s)

)
= (qN)j

∑
s∈Γ

∣∣∣ds (f̂ , ϕ̂) ∣∣∣2
=
∑
s∈Γ

∣∣∣(qN)j/2f̂
(
u(s)

)
ϕ̂
(
(p−1N)−ju(s)

)∣∣∣2.
Since ϕ̂(0) = limξ→0 ϕ̂(ξ) = 1, therefore there exists a nonnegative integer
J2 such that

(1− ε) ≤
∣∣ϕ̂((p−1N)−ju(s)

)∣∣2 ≤ (1 + ε) for all j ≥ J2.

Let J = max {J1, J2}, then with this choice of j ≥ J , we obtain

(1− ε)
∑
s∈Γ

∣∣f̂(u(s)
)∣∣2 ≤ (qN)j−1∑

λ=0

∣∣〈f, ϕperj,λ 〉∣∣2 ≤ (1 + ε)
∑
s∈Γ

∣∣f̂(u(s)
)∣∣2,
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which implies that

(1− ε)
∥∥f∥∥2

2
≤

(qN)j−1∑
λ=0

∣∣〈f, ϕperj,λ 〉∣∣2 ≤ (1 + ε)
∥∥f∥∥2

2
.

This completes the proof of Lemma 3.1. �

Lemma 3.2. Let ϕ defined by (2.11) be the nonuniform refinable function
with m0(ξ) as its refinement mask and let m`(ξ), 1 ≤ ` ≤ qN − 1, be the
wavelet masks. The nonuniform wavelet systemW(Ψ, λ) given by (2.7) form
a normalized tight frame for L2(K). Then, for any function f ∈ L2(K) we
have

(3.5)
∑
λ∈Λ

∣∣〈f, ϕj+1,λ

〉∣∣2 =
∑
λ∈Λ

∣∣〈f, ϕj,λ〉∣∣2 +

qN−1∑
`=1

∑
λ∈Λ

∣∣〈f, ψ`,j,λ〉∣∣2 .
Proof. For any f ∈ L2(K) and j ∈ N0, define the linear operators Pj and
Qj as:

(3.6) Pjf(x) =
∑
λ∈Λ

〈
f, ϕj,λ

〉
ϕj,λ(x), Qjf(x) =

qN−1∑
`=1

∑
λ∈Λ

〈
f, ψ`,j,λ

〉
ψ`,j,λ(x).

Since Ω(K) is dense in L2(K) and closed under the Fourier transform, it is
sufficient to prove that

(3.7)
〈
Pjf, f

〉
+
〈
Qjf, f

〉
=
〈
Pj+1f, f

〉
holds for all the functions f in Ω(K). Therefore, for all f ∈ Ω(K) and j ∈ Z,
k ∈ N0, using Parseval’s identity, we obtain

(3.8)

〈
Pjf, f

〉
= (qN)j

∫
D

∣∣∣∣∣∑
r∈N0

f̂
(

(p−1N)−j
(
ξ + u(r)

))
ϕ̂
(
ξ + u(r)

)∣∣∣∣∣
2

dξ

=

∫
(p−1N)−jD

∣∣∣∣∣∑
r∈N0

f̂
(
ξ + (p−1N)−ju(r)

)
ϕ̂
(
(p−1N)jξ + u(r)

)∣∣∣∣∣
2

dξ.

Since m0(ξ) is an integral-periodic function, equation (3.8) yields〈
Pjf, f

〉
=

∫
(p−1N)−jD

∣∣∣∣∣∑
r∈N0

f̂
(
ξ + (p−1N)−ju(r)

)
ϕ̂
(
(p−1N)j+1ξ + (p−1N)u(r)

)
× m0

(
(p−1N)j+1ξ + (p−1N)u(r)

)∣∣∣∣∣
2

dξ
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=

∫
(p−1N)−jD

∣∣∣∣∣∑
r∈N0

qN−1∑
s=0

f̂
(
ξ + (p−1N)−j

(
(p−1N)u(r) + u(s)

))
× ϕ̂

(
(p−1N)j+1ξ + (p−1N)

(
(p−1N)u(r) + u(s)

))
× m0

(
(p−1N)j+1ξ + (p−1N)

(
(p−1N)u(r) + u(s)

))∣∣∣∣∣
2

dξ

=

∫
(p−1N)−jD

∣∣∣∣∣∑
r∈N0

qN−1∑
s=0

f̂
(
ξ + (p−1N)−j

(
(p−1N)u(r) + u(s)

))
× ϕ̂

(
(p−1N)j+1ξ + (p−1N)

(
(p−1N)u(r) + u(s)

))
× m0

(
(p−1N)j+1ξ + (p−1N)u(s)

)∣∣∣∣∣
2

dξ

=

∫
(p−1N)−jD

∣∣∣∣∣
qN−1∑
s=0

Rjf,ϕ
(
u(s), ξ

)
m0

(
pj+1ξ + pu(s)

)∣∣∣∣∣
2

dξ,

where

Rjf,ϕ
(
u(s), ξ

)
=
∑
r∈N0

f̂
(
ξ + (p−1N)−j

(
(p−1N)u(r) + u(s)

))
× ϕ̂

(
(p−1N)j+1ξ + (p−1N)

(
(p−1N)u(r) + u(s)

))
.

Proceeding in the similar manner as above, we can obtain〈
Qjf, f

〉
=

qN−1∑
`=1

∫
(p−1N)−jD

∣∣∣∣∣
qN−1∑
s=0

Rjf,ϕ
(
u(s), ξ

)
m`

(
(p−1N)j+1ξ + (p−1N)u(s)

)∣∣∣∣∣
2

dξ.

Therefore, we have〈
Pjf, f

〉
+
〈
Qjf, f

〉
=

∫
(p−1N)−jD

{
qN−1∑
s=0

Rjf,ϕ
(
u(s), ξ

)
m0

(
(p−1N)j+1ξ + (p−1N)u(s)

)}

×

{
qN−1∑
s′=0

Rjf,ϕ
(
u(s′), ξ

)
m0

(
(p−1N)j+1ξ + (p−1N)u(s′)

)}
dξ
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+

qN−1∑
`=1

∫
(p−1N)−jD

{
qN−1∑
s=0

Rjf,ϕ
(
u(s), ξ

)
m`

(
(p−1N)j+1ξ + (p−1N)u(s)

)}

×

{
qN−1∑
s′=0

Rjf,ϕ
(
u(s′), ξ

)
m`

(
(p−1N)j+1ξ + (p−1N)u(s′)

)}
dξ

=

∫
(p−1N)−jD

{
qN−1∑
s=0

qN−1∑
s′=0

Rjf,ϕ
(
u(s), ξ

)
Rjf,ϕ

(
u(s′), ξ

)}

×

{
qN−1∑
`=0

m`

(
(p−1N)j+1ξ+(p−1N)u(s′)

)
m`

(
(p−1N)j+1ξ+(p−1N)u(s)

)}
dξ.

The unitary extension principle condition (2.17) is equivalent to

qN−1∑
`=0

m`

(
(p−1N)j+1ξ+(p−1N)u(s′)

)
m`

(
(p−1N)j+1ξ+(p−1N)u(s)

)
= δs,s′ .

Therefore, we have〈
Pjf, f

〉
+
〈
Qjf, f

〉
=

∫
(p−1)−jD

qN−1∑
s=0

∣∣∣Rjf,ϕ(u(s), ξ
)∣∣∣2dξ

=

∫
(p−1)−jD

qN−1∑
s=0

∣∣∣∣∣∑
r∈N0

f̂
(
ξ + (p−1N)−j

(
(p−1N)u(r) + u(s)

))

× ϕ̂
(

(p−1N)j+1ξ + (p−1N)
(
(p−1N)u(r) + u(s)

))∣∣∣∣∣
2

dξ

=

qN−1∑
s=0

∫
(p−1N)−jD+(p−1N)−ju(s)

∣∣∣∣∣∑
r∈N0

f̂
(
ξ + (p−1N)−j−1u(r)

)
× ϕ̂

(
(p−1N)j+1ξ + u(r)

)∣∣∣∣∣
2

dξ

=

∫
(p−1N)−j−1D

∣∣∣∣∣∑
r∈N0

f̂
(
ξ + (p−1N)−j−1u(r)

)
ϕ̂
(
(p−1N)j+1ξ + u(r)

)∣∣∣∣∣
2

dξ

=
〈
Pj+1f, f

〉
,

and hence, we get the desired result (3.5). �
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Lemma 3.3. Let ϕ ∈ L2(K) be a nonuniform refinable function with refine-
ment mask m0(ξ) and let the wavelet system W(Ψ, λ) given by (2.7) con-
stitutes a normalized tight frame for L2(K). If {ϕ,ψ1, . . . , ψL} ⊂ L1(K) ∩
L2(K) and ϕ,ψ1, . . . , ψqN−1 have a common radial decreasing L1-majorant,
then we have

(3.9)

(qN)j+1−1∑
λ=0

∣∣〈f, ϕperj+1,λ

〉∣∣2
=

(qN)j−1∑
λ=0

∣∣〈f, ϕperj,λ〉∣∣2 +

qN−1∑
`=1

(qN)j−1∑
λ=0

∣∣〈f, ψper`,j,λ〉∣∣2.
Proof. For any f ∈ Ω(K) and j ∈ N0, we have

(qN)j−1∑
λ=0

∣∣〈f, ϕperj,λ 〉∣∣2 =

(qN)j−1∑
λ=0

∣∣∣∣∣〈f,∑
r∈N0

ϕj,λ
(
x+ u(r)

)〉∣∣∣∣∣
2

=

(qN)j−1∑
λ=0

∣∣∣∣∣∑
r∈N0

〈
f, ϕj,λ

(
x+ u(r)

)〉∣∣∣∣∣
2

.

Furthermore, we have∑
r∈N0

∫
D

∣∣∣f(x)ϕj,λ
(
x+ u(r)

)∣∣∣ dx ≤ ‖f‖L∞(D)

∫
K

∣∣ϕj,λ(x)
∣∣dx

=
∣∣∣∣f ∣∣∣∣

L∞(D)
(qN)j/2

∫
K

∣∣ϕ(x)
∣∣dx <∞.

This implies that the series
(qNj−1∑
λ=0

∑
r∈N0

∑
s∈N0

〈
f, ϕj,λ

(
x+ u(r)

)〉〈
f, ϕj,λ

(
x+ u(s)

)〉
is absolutely convergent. Therefore, the series can be rearranged as follows:

(qN)j−1∑
λ=0

∣∣〈f, ϕperj,λ 〉∣∣2
=

(qN)j−1∑
λ=0

∑
r∈N0

∑
s∈N0

〈
f, ϕj,λ

(
x+ u(r)

)〉〈
f, ϕj,λ

(
x+ u(s)

)〉

=

(qN)j−1∑
λ=0

∑
r∈N0

∑
s∈N0

〈
f, ϕj,λ

(
x+ u(r)

)〉〈
f, ϕj,λ

(
x+ u(r) + u(s)

)〉
.

For s ∈ N0, we define

Fs(x) = f(x)1D+u(s)(x),
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where 1D+u(s)(x) is the characteristic function of the set D + u(s). Using
the fact that ϕj,λ

(
x+ u(s)

)
= ϕj,λ−(p−1N)−ju(s)(x), we have

(qN)j−1∑
λ=0

∣∣〈f, ϕperj,λ 〉∣∣2
=

(qN)j−1∑
λ=0

∑
r∈N0

∑
s∈N0

{∫
D
f(x)ϕj,λ

(
x+ u(r)

)
dx

}

×
{∫

D
f(x)ϕj,λ

(
x+ u(r) + u(s)

)
dx

}

=

(qN)j−1∑
λ=0

∑
r∈N0

∑
s∈N0

{∫
D
f(x)ϕj,λ

(
x+ u(r)

)
dx

}

×

{∫
D+u(s)

f(x)ϕj,λ
(
x+ u(r)

)
dx

}

=

(qN)j−1∑
λ=0

∑
r∈N0

∑
s∈N0

{∫
K
F0(x)ϕj,λ

(
x+ u(r)

)
dx

}

×
{∫

K
Fs(x)ϕj,λ

(
x+ u(r)

)
dx

}

=

(qN)j−1∑
λ=0

∑
r∈N0

∑
s∈N0

〈
F0, ϕj,λ−(p−1N)−ju(r)

〉 〈
Fs, ϕj,λ−(p−1N)−ju(r)

〉
=
∑
λ∈Λ

∑
s∈N0

〈F0, ϕj,λ〉 〈Fs, ϕj,λ〉.

Similarly, for each 1 ≤ ` ≤ qN − 1, we have

(qN)j−1∑
λ=0

∣∣〈f, ψper`,j,λ〉∣∣2 =
∑
λ∈Λ

∑
s∈N0

〈F0, ψ`,j,λ〉 〈Fs, ψ`,j,λ〉.

By Lemma 3.2, we have

(qN)j−1∑
λ=0

∣∣〈f, ϕperj,λ 〉∣∣2 +

qN−1∑
`=1

(qN)j−1∑
λ=0

∣∣〈f, ψper`,j,λ〉∣∣2
=
∑
λ∈Λ

∑
s∈N0

〈F0, ϕj,λ〉 〈Fs, ϕj,λ〉+

qN−1∑
`=1

∑
λ∈Λ

∑
s∈N0

〈F0, ψ`,j,λ〉 〈Fs, ψ`,j,λ〉
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=
∑
λ∈Λ

∑
s∈N0

〈F0, ϕj+1,λ〉 〈Fs, ϕj+1,λ〉 =

(qN)j−1∑
λ=0

∣∣〈f, ϕperj+1,λ

〉∣∣2.
This completes the proof of Lemma 3.2. �

Now we state and prove the main result of this section.

Theorem 3.1. Let m0(ξ) be the refinement mask of a refinable function
ϕ(x) and let m`(ξ), 1 ≤ ` ≤ qN−1, be the wavelet masks associated with the
basic wavelets given by (2.13). Furthermore, let the wavelet system W(Ψ, λ)
given by (2.7) form a normalized tight frame generated by the refinable func-
tion φ. If {ϕ,ψ1, ψ2, . . . , ψqN−1} ⊂ L1(K)∩L2(K) and ϕ,ψ1, ψ2, . . . , ψqN−1

have a common radial decreasing L1-majorant, then the periodic wavelet
system Wper(Ψ, λ) given by (3.1) generates a normalized tight frame for
L2(D).

Proof. For any periodic function f ∈ Ω(D) and ε > 0, we can choose J > 0
by Lemma 3.1 such that for all j > J , we have

(1− ε)
∥∥f∥∥2

2
≤

(qN)j−1∑
λ=0

∣∣〈f, ϕperj,k 〉∣∣2 ≤ (1 + ε)
∥∥f∥∥2

2
.

Also for any j ∈ Z, Lemma 3.3 implies that

(qN)j−1∑
λ=0

∣∣〈f, ϕperj,λ 〉∣∣2 =

(qN)j−1−1∑
λ=0

∣∣〈f, ϕperj−1,λ

〉∣∣2
+

qN−1∑
`=1

(qN)j−1−1∑
λ=0

∣∣〈f, ψper`,j−1,λ

〉∣∣2.
Repeating the above argument on

∑(qN)j−1−1
λ=0

∣∣〈f, ϕperj−1,λ

〉∣∣2, we obtain

(qN)j−1∑
λ=0

∣∣〈f, ϕperj,λ 〉∣∣2 =
∣∣〈f, ϕper〉∣∣2 +

qN−1∑
`=1

j−1∑
r=0

(qN)r−1∑
λ=0

∣∣〈f, ψper`,r,λ〉∣∣2.
Therefore, we have

(1− ε)
∥∥f∥∥2

2
≤
∣∣〈f, ϕper〉∣∣2 +

qN−1∑
`=1

j−1∑
r=0

(qN)r−1∑
λ=0

∣∣〈f, ψper`,r,λ〉∣∣2 ≤ (1 + ε)
∥∥f∥∥2

2
.

Letting j →∞, we obtain

(1− ε)
∥∥f∥∥2

2
≤
∣∣〈f, ϕper〉∣∣2 +

qN−1∑
`=1

∑
r∈N0

(qN)r−1∑
λ=0

∣∣〈f, ψper`,r,λ〉∣∣2 ≤ (1 + ε)
∥∥f∥∥2

2
.
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Since ε > 0 was arbitrary, it follows that

∣∣〈f, ϕper〉∣∣2 +

qN−1∑
`=1

∑
r∈N0

(qN)r−1∑
λ=0

∣∣〈f, ψper`,r,λ〉∣∣2 = ‖f
∥∥2

2
.

This completes the proof of Theorem 3.1. �

References

[1] Ahmad, O., Sheikh, N. A., Ali, M. A., Nonuniform nonhomogeneous dual wavelet
frames in Sobolev spaces in L2(K), Afrika Math. 31 (2020), 1145–1156.

[2] Ahmad, O., Sheikh, N. A., On Characterization of nonuniform tight wavelet frames
on local fields, Anal. Theory Appl. 34 (2018), 135–146.

[3] Ahmad, O., Shah, F. A., Sheikh, N. A., Gabor frames on non-Archimedean fields,
Int. J. Geom. Methods Mod. Phys. 15 (5) (2018), 1850079, 17 pp.

[4] Ahmad, O., Ahmad, N., Explicit construction of tight nonuniform framelet packets
on local fields, Oper. Matrices (to appear).

[5] Ahmad, O., Ahmad, N., Construction of nonuniform wavelet frames on non-
Archimedean fields, Math. Phy. Anal. Geom. (to appear).

[6] Benedetto, J. J., Benedetto, R. L., A wavelet theory for local fields and related groups,
J. Geom. Anal. 14 (2004), 423–456.

[7] Christensen, O., An Introduction to Frames and Riesz Bases, Second Edition,
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