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On Solution of the Fokker-Planck Equation 
for Fissioning Hot Nuclei1

Rozwiązanie równania Fokkera-Plancka do rozszczepiających się gorących jąder

1. INTRODUCTION

The description of the fission process by a transport equation goes back 
to a fundamental paper by K. K r a m e r s [1] and has been taken up again by 
several authors (see e.g. [2-4]) in recent time, especially when one discovered 
that the transport theory was a useful tool to describe heavy-ions reactions.

It was shown in [3] that within the linear response theory the fission 
dynamics is governed by a generalized Fokker-Planck equation (FPE) for 
the distribution function f(q,p,t):

df(q,P,t) _ _ P df(q,p,t) dU(q) df(q,p,t)
dt m(q) dq dq dp

Here m and 7 are the inertia and friction parameters respectively. U is the 
deformation potential which can be identified with the free energy in an 
adiabatic theory.

The FPE can be solved analytically in the simplest cases only. It is 
the case for example when the transport coefficient is constant and the

1 This work is supported partially by CPBP 0*.,».
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potential U has a parabolic form. More complicated cases have to be solved 
numerically. We present in the next section some most frequently used 
numerical method of solving FPE. We shall also try to combine the Monte- 
-Carlo random numbers procedure with the propagator method. In the next 
section we present the numerical results for the probability that system does 
not fission.

2. METHOD OF SOLVING OF FPE

The approximate solution of the FPE with the variable transport 
coefficient for the fission dynamics was presented in [5]. It was assumed 
there that the form of the distribution function can be described
by its first and second moments:

X [ ~5"(ł - °>г - OX? - p) - ) (2)

where Q and P are the average coordinate and momentum respectively:

<?(*) = / <lf(q,P,t)dqdp (3)

S44 = j (9 - Q)2f(q,p,t)dqdp

S4P - JQ)(P~ P)f^P^)dqdp

Spp = /(P - PŸf(q.P4)dqdp

Л0 = У pf(q,p,t)dqdp (4)

and S is the matrix of the quadratic deviation from the average values Q 
and P:

(5)

(6)

(7)

The expression (2) is accurate for the gaussian form of the distribution 
function. Inserting eq. (2) into the FPE (1) one can get the coupled set of 
the differential equations [6] for the first:

dQ P 
dt m (8)
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dt dQ m (9)

and the second moments:

UJ44__ f. Ç
dt ~ m4P (10)

dt ~ mäpp dQ2 44 mpp (U)

^-2D-2™1S _*LS
dt ~ dQï 4P m pp (12)

This method is very convenient especially for the multidimensional case. 
The generalization of eqs (8-12) for that case is obvious [6]. But on the 
other side this gaussian approximation of the distribution function cannot be 
applied in the case of a large potential anharmonicity and variable transport 

a coefficients.
A better, more accurate method of solving of the FPE was proposed in 

[7] where the propagator method was applied. Namely it was assumed there 
t that the density probability after a small time interval is done by the 

folding integral from the density at the time t and the propagator function 
K:

f(q,p,t + △/) = Ę(q,p,t +^t;^,p',t)f(q',p',t)dqdp (13)

The propagator К was assumed to be of the gaussian form:

K(q,p,t + &t;J,p',t) =

1 rvn( Spp(q - q'Y - 2S4P{g - q'\p - p') - Sqq(p - p'f 
27rdetS P1 . det S 1 1 ’

where its widths Sqq,Sqp and Spp are equal to zero at the initial time t (it 
means that К is equal to the Dirac ó-function) and they grow with increasing 
time according to the same equations as those for the moments of the whole 
distribution, eqs (8-12).

One has to repeat the process of evaluating of the folding integral (13) 
n times in order to get the final distribution at the time tn = to + пД/. 
The propagator method is accurate when the time step At is small enough. 
The numerical effort to proceed this recursive folding is very large and 
the calculation can be effectively done on large computers only. The 
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problem becomes even more complicated when we are dealing with the 
multidimensional collective space. This folding procedure becomes more 
difficult when one assumes the Gauss form of the distribution function in 
the moment direction. The validity of this approximation was discussed 
in [8].

In the present paper we propose a simplified version of the propagator 
method which nevertheless leads to the exact solution of FPE. Following the 
idea of [9] we adopt the Monte-Carlo method of generating random points 
on (ę,p) plane to evaluate the folding integral (13).

Fig. 1. The schematic illustration of the Monte-Carlo method of solving of FPE

The method of the calculation is illustrated in the graph in Fig. 1. and 
it is following:

1. At the initial time to = 0 one has to generate N random points: 
(qotPo)’ where v — 1,2,... N. The distribution of these points is obtained 
from the initial shape of the function f(q,p, to) — 0.

2. The position (<7i,PÏ) of each random point and its smearing width 
Sjjfti) at the time ti = to + At is given by the solution of the coupled 
differential equations (8-12). The initial conditions for the widths are: 
W) = S^(to) = S^to) = 0

3. In the next step, at the time t = ti only one random point (q%,p?) 
for each trajectory v is generated. The random number generator with the 
normal (gaussian) distribution described by the moments -^(hh-S^Gi) 
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and ) has to be used here. Then one repeats the procedure like in the 
point (2).

4. The final distribution f(q,p,tn) at the time tn — to + nAt is given by 
the end positions of the N randomly distributed points (<j£,p£).

The statistical distribution will be more and more smooth with the 
growing number N of random points (ç",p1').

When the time interval At between the sequential toss is small enough 
one can solve the set of eqs (8-12) approximately. Namely, it is possible to 
assume that locally around the point q" the potential U is parabolic and the 
transport coefficients m,7 and D are constant. These approximations allow 
to find the analytical solutions of eqs (8-9) and eqs (10-12) which become 
uncoupled. The solutions of eqs (8-9) after the i-th iteration reads:

FA Я
+ (IS)

гГ+i = Ле"“1" + Be"“2" (16)

where

dq

-«гРГ + F D = --------------
ai - a2

The coupled system of eqs (10-12) for the second moments has now the 
following solution:



К. Pomorski, Е. Strumberger

For the small time interval At the right hand sides of equations (15-19) can 
be expanded in the Taylor series:

cv _ ________ 1_________________ 1 Г 1 -2aiAt i
44 m2 ^O!iO!2(<*l + 02) («1 - O2)2 «1

_|_ _J_e-2a2At______ c-bi+aaiAtn

«2 al + a2
(17)

CjV _ _________ re-2aiAt 1 e~2or2A« _ 2C_(“1 +aj)Atl
4P m{a\- a2)1

cv — T)[__ -________Q1Q2___ rJ_e-2oriAt 1
pp aj 4- a2 (“i - a2)2 «2

_|_ J_e-2aaAt _ c-(oi+ora)Atn

«1 01-1-02

(18)

(19)

The terms of the order higher than 3 in At are neglected here.
The Fokker-Planck equation solved by the Monte-Carlo method is 

essentially equivalent to the Langevin equation with the normally distributed 
random force [10], when one omits in the equations (20-24) the terms of the 
order higher than 1 in At.

= X + ^, + l(£_X^ +

41т(й""2)"^г1д?+"~
(20)

Pi+i = рГ + (Г-^рГ)Д< + |[рГ(^-ог2)-^Г]Д«2- 
m2 m4 m

-hżtó - - "V|A<3 + -
0 m mx mx (21)

— — (-At3 + )0?<ł m24 +""J (22)

= -(At2 - —At3 + ....)4Pm m (23)

Spp = 2P[At - ~A<2 + (2^ - w2)At3 + ....] 
m m* (24)
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3. RESULTS OF THE CALCULATIONS

The calculation was performed for the hot, fast rotating 187Ir nucleus, 
which was experimentally investigated in [11]. We have taken the following 
Ansätze for the transport parameters when solving the FPE. The fission 
barrier of 187Ir was evaluated with the temperature dependent liquid drop 
parameters estimated in [12] The relative distance between fission fragments 
was taken as the collective coordinate and the fission barrier was minimized 
versus the neck parameter. We have got e.g. the fission barrier of the height 
Ub — 1-41 MeV for the nucleus temperature T = 2.5 MeV and the angular 
momentum I = 55fi. The collective inertia m(ç) in eq. (1) was assumed to 
be equal to reduced mass for relative motion of fission fragments and the 
friction parameter 7 was taken constant and it is given by the equation

ß= — = MOV1.m

The diffusion parameter D is related to the friction function by the Einstein 
relation: D = 7T.

It is not easy to compare the whole distribution functions f(q,p,t) 
obtained by different method of solving of the FPE (1). So we have chosen 
a global factor related to f(q,p,t)

= [ dq dp f(q,p,t), (25)
J—00

which gives the probability that the deformation of the nucleus is smaller 
than that at the scission point qsc. The number of nuclei which do not fission 
up to the given time t is proportional to 77ac(f):

W) = Nq Лс(0, (26)

where No is the initial number of nuclei at the time t = 0.
We have solved the FPE within the local harmonic approximation (eqs. 

15—19) and using the Monte-Carlo method. The 10 000 random points were 
generated. The initial shape of the distribution function /(g,p,t) was taken 
in the form of the probability distribution of the harmonic oscillator [13] 
which approximates the potential H(g) and mass m(g) around equilibrium 
deformation. The probability Fsc (eq. 25) that a nucleus does not fission 
is plotted in Fig. 2 as a function of time. The different curves in the plot 
correspond to various time intervals Af, between the sequential toss of the 
random points. Here, we have taken At, = (0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
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Fig. 2. The Monte-Carlo estimate of the probability 7ac (eq. 25) that a nucleus do not 
fission, = (0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6)10-21 s

Fig. 3. The same as in Fig. 2. but for the first order in At expansion when solving the 
FPE, At, = (0.03, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4)-10-21 s
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0.6)-10-21 s. As it is seen from the figure we have got the convergence for 
At, < IO’22 s.

Similar Monte-Carlo results as in Fig. 2 but for the expansion of eqs. 
(15-19) up to the first order terms in time are plotted in Fig. 3. Note that 
in this case the FPE is equivalent to the corresponding Langevin equation. 
We have chosen the following time intervals At, = (0.03, 0.05, 0.1, 0.15, 
0.2, 0;3, 0.4)-10-21 s. The convergence was reached for At, < 0.5 • 10-22 
s. The results of the Monte-Carlo calculation of Tac are compared in Fig. 4 
with the exact solution (solid line) of the FPE obtained by the propagator 
method (eq. 13-14). The dashed line represents the results from Fig. 3 
while the dotted line that from the Fig. 2. The both Monte-Carlo curves 
were evaluated for the time interval ATj = 0.5 -10-22 s, while in the case of 
the propagator method Atj was four times longer.

Fig. 4. The results of the Monte-Carlo calculation of T,c compared with the exact solution 
(solid line) of the FPE obtained by the propagator method. The dashed line represents 

the results from Fig. 3 while the dotted line that from the Fig. 2

We can conclude that the the results obtained with these three methods 
are close to each other and that the numerical effort by the propagator 
method is the largest one. Additionally, we have found that this effort 
grows significantly with the .dimension of the collective coordinates space 
while it is not the case for the Monte-Carlo method based on the first order 
expansion in At.
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STRESZCZENIE

Przedstawiono sposób rozwiązania równania Fokkera-Plancka dla jednej współrzędnej 
i sprzężonego z nią momentu pędu. Rozwiązanie otrzymane metodą propagatorów 
porównano z rozwiązaniem uzyskanym metodą Monte-Carlo. Pokazano, że obie metody 
dają zbliżone rozwiązania. Wykazano również, że równanie Fokkera-Plancka jest równo­
ważne równaniu Langevina.


