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INTRODUCTION

The neutron deficient nuclei with 50 < Z, N < 80 nucleon numbers 
have been already investigated theoretically [1,2] but the last development 
of the laser measurement techniques [3,4] as well as the new possibilities of 
the microscopic analysis enable now the better explanation of the diversing 
sizes and shapes mechanisms in this region. The Te-Gd isotopes far from 
the ß stability line show some interesting features. They are well deformed, 
with the deformation energy up to ~ 10 MeV. Their potential energy reaches 
minimal values not only for the prolate shapes but also for the oblate ones, 
especially for isotopes with N > 74. They have also some hexadecapole 
deformation at the equilibrium point [5].

For a long time there was a shortage of the single-particle levels scheme 
parameters here. The extrapolated from the rare earth and actinide regions, 
Nilsson potential parameters, were not sufficient to describe the subtle effects 
in the neutron deficient nuclei. Now we have used the universal set of 
parameters [6] depending only on the average mass number of the whole 
region: A ~ 126 in our case.

We have performed the dynamical calculation on the basis of the 
collective hamiltonian, obtained in the generator coordinate method (GCM). 
This hamiltonian consists of the GCM mass parameters and the potential

1 Paper supported by the Polish Ministry of Education, project CPBP 01.09.
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energy improved by the zero point correction term. The many-body 
hamiltonian used here contains in spite of the Nilsson type single particle 
hamiltonian the pairing interaction and the long range two-body forces in 
the local approximation [7]. The quadrupole (e) and hexadecapole (€4) 
deformation parameters are taken as generator coordinates, and BCS ground 
state as the generator function. The BCS wave function was approximately 
projected on a good particle number [8] and the average strength of pairing 
forces was taken from ref. [9].

We have calculated the potential energy surfaces, equilibrium deforma
tions, mass parameters and dynamical multipole moments Qx(X = 0,2,4) 
for all the even-even nuclei with nucleon numbers 50 < Z < 80, Z < N < 80. 
The chief points of the theory are presented in chapter 1. The numerical re
sults of the calculation are illustrated in section 2. As the isotopic shifts of 
the mean square radius do not agree with the experimental data the more 
accurate investigation of their pairing and deformation parameters depen
dence is presented in chapter 3. The conclusions and proposals of further 
investigations are drawn in the last part of the paper.

THEORETICAL MODEL

The calculation was done on the two dimensional grid of deformation 
parameters —0.4 < €2 = € < 0.5, —0.12 < c4 < 0.Г2.

The single particle (hamiltonian Hsp) eigen problem was solved with the 
Nilsson potential with the new correction term parameters proposed by Seo 
in [6] kq = 0.021, Ki — 0.90,70 = 0.062

= en|rç). (1)

The many body hamiltonian H consists of the mean field hamiltonian 
Hq of Nilsson type taken in the given grid points {c^} = {c, c4], the pairing 
forces and the long range two body correlations in local approximation [10]

Я + Яо({«а})-| E fc(A>A-G((S+)S + (Ś)Ś+), (2)

where
Я» = £е,С?С, (3)

ч

with the Cr),C+ fermion annihilation and creation operators.
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The strength of the long range forces is obtained from the selfconsi
stency condition

(4)

The F„ operators are taken in the form

= (5)

The operator S is
S=Ecjc+

The pairing strengths for protons (Gp) and neutrons (Gn) are equal

GPZ2'3 = GnN2'3 = 0.29 h Zo . (6)

The eigen-function of the hamiltonian (2) is approximated by the BCS wave 
function depending on the single particle coordinates {z} and parametrically 
on the collective ones a:

I«) = !«,{*)> = 1Ж + v,c+ct,|0), (7)
u

where V2 is the pair occupation probability, U2 = 1 — |0) is the particle
vacuum state. The function |a) will be used as a generator function and the 
deformation parameters are taken as the collective generator coordinates 
«1 = c,a2 = f4-

The collective hamiltonian 7/соц is given in the generator ^coordinate 
method as

«011 = 7 + 9. (8)

The kinetic term T is
Т=-2^^2'/5Й7(В'1)^’ (9)

where the mass parameters are

(«•) 

jk
The tensor overlap width is

♦— —*
™=(o1 hh|o> (11)
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and jhk is a linked matrix element of the many-body hamiltonian
4— —♦

jhk = {a^êiïTk |a) ■ <alÊla>™ -

The potential term of the collective hamiltonian V consists of the two parts

V = (а|Я|а) - Eo (13)

where Eo, so called zero point correction is equal here

& = (u)

The expectation value of the many body effective hamiltonian (2) is 
evaluated within the Strutinsky [11] prescription (Estrut)

(а|Я|а) « Estrut (15)

The Strutinsky energy reproduces well the nuclear masses and consists of the 
macroscopic liquid droplet Eld [12] part and the shell correction AEshell 
describing the shell and pairing effects on the potential energy

Estrut = Eld = AEshell (16)

The eigen problem of the collective hamiltonian 7YCO// (7) is solved by 
diagonalisation in the two dimensional harmonic oscillator wave functions 
base

Kollier = (17)
The full many-body wave function фа describing a nucleus in a state a is 
given within the GCM approximation by the integral:

j fQ(a)\a,{x})da (18)

This function will serve to calculate the dynamical values of the multipole 
moments. The weight function /Q(a) in (18) is directly connected [13] with 
the collective wave function Фа from eq. (17).

The multipole moments operators are defined as follows

Qo = г2,Qi = r2P2(cosi?),Q4 = r4P4(costf), (19)

where r, i? are the single particle coordinates, Рд — the Legendre polyno
mials.
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It was proved in [13] that the expectation value of Q\ operator between 
the ground state functions V’o is equal to

Qx = j $5(a|QA|a)$oda, (20)

where the integral is evaluated in the collective space only.
In order to compare the theoretical estimates of the quadrupole moments 

to the experimental data, obtained from the reduced quadrupole transition 
probabilities B(E2,2+ 0+) [14] should use the sum rule

^B(E2,2? $oQhoda (21)
. 1О7Г Jt

where the sum goes over all the possible 2* states and is model independent. 
There is usually one transition B2 favoured in this sum [15] so it is reasonable 
to compare the available experimental data obtained from B(£2) transitions 
[14] with the quadrupole moments calculated as follows

г f -11/2
(<2г)1/2 = [/ Whode] (22)

The mean square radii of nuclei (r2) are usually not given in experiment 
straighty, we deal rather with the isotopic shifts of (r2) between various 
mass numbers [3,4]

a(r’) = (>V - (rV (23)

They are related to the electric monopole moments Qq by

(r2)z+N = Qo/Z (24)

If the mean square radius for the magic spherical nucleus was unmeasured 
we took its liquid drop estimate, designing the experimental Q^p up to this 
constant.

2. THE EQUILIBRIUM DEFORMATIONS, 
POTENTIAL ENERGIES AND MOMENTS

In the table 1 are listed: the equilibrium values of the deformation 
parameters c0,^, potential energies V and deformation energies

E(le/ = V(€O,^)-V(0,0), (25)
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Then the electric monopole moments Qo and the isotopic shifts of mean 
square radius

d(r2) = (r2)N+z - (T2)N+Z~2 (26)

are compared with their available [3,4] experimental values d(r2)exp. The 
electric quadrupole moments are calculated as {Q2} and (Q^)1^2 The second 
ones are closer to experimental data [14] Q^- The corresponding reduced 
quadrupole transitions

B2=^Qtf (27)
107Г

5 -
B2 = wIbT

and the experimental values B2eip are also presented. The hexadecapole 
moments can be seen in the last column of the Table 1.

The results are printed for all the even-even combinations of 50 < Z < 80 
and Z < N < 80.

For the most isotopes the prolate equilibrium shapes are favoured. Only 
the Те nuclei and the heaviest isotopes of other elements have a chance 
to be oblate. The deformation energies, thanks the influence of zero point 
vibration to became larger by up to 1.5 MeV in our calculation, and the far 
from magic numbers nuclei are usually very well deformed. It means that 
the nonaxial 7 instability in this region would be not so important as it was 
suggested in ref. [1].

Presented in Fig. 1 the mean square radius (points) calculated in fact 
up to the value of the spherical lightest isotopes radius do not reproduce 
well the data (crosses) in our calculation, specially their isotopic shifts show 
sometimes quite opposite behaviour to the experimental data. For example 
the theoretical shifts of the heaviest Те, Xe, Ba isotopes grow with A while 
their experimental values decrease. The more detailed analysis of our model 
is needed and will be presented in the next chapter.

In Fig. 2 [16] the quadrupole moments are drawn. The agreement 
with experimental data (crosses) of the (Q2)172 values (circules) is in 
general better than {Q2) (points) specially for Те and heavy Xe, Ba, Ce 
isotopes. The negative moments (Q2) яге obtained for the heaviest Ce-Gd 
isotopes.

The hexadecapole moments are shown in Fig. 3. The systematic smaller 
values are obtained for N = 70, because of the shell effects.

In general the shapes of the nuclei are well described but their sizes 
demand the more careful description.
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Fig. 1. The microscopic electric mean square radii (r2) in b (points) compared with 
the experimental data [4] (crosses) for even-even Te-Gd isotopes

-4 -4

111111111111U111111111IJ1111111IJ1111 l-LLlJ_i_LI i lI i.1A
106 108 130 112 120 132 118 134 126 136 130 138 136 138

Fig. 2. The electric quadrupole moments Q2 in b calculated as {Q2) (points) and 
(circles) compared with experimental data [14] (crosses) for even-even Te-Gd 

isotopes
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Те Хе Ba Ce Nd Sm Gd

0.8 Q8

106 118 130 112 120 132 118 134 126 136 130138 136 138142

Fig. 3. The microscopic electric hexadecapole moments Q« in b2 for even-even Te-Gd 
isotopes

3. THE DEPENDENCE OF MEAN SQUARE CHARGE RADII 
ON THE MODEL PARAMETERS

In order to improve the reproduction of the mean square radius we 
analyse their dependence on the diversing parameters [17].

The presented in Fig. 1 experimental data [4] are obtained assuming 
the radius of the magic isotope 132Ba and 140Xe from spherical liquid drop 
model. It is seen that the microscopic (r2) grow quicker with A then 
the experimental ones, even when their average values are close to each 
other.

The mean square radii depend mostly on the quadrupole deformation c. 
In Figs. 4 a,b we can see this dependence around equilibrium deformation 
e° marked by the arrows for Xe and Ba isotopes. Also the hexadecapole 
deformation influences the (r2) much as one can see on Figs. 5 a,b for Xe, 
Ba isotopes. Note the almost one order of magnitude difference in the 
(r2) scale of Figs. 4 and 5, 6. Because these collective variables are not 
sufficient to give a good behaviour of i{r2) we should take next the pairing 
— gap parameter A as a dynamical (collective) parameter. As it is shown 
in Figs. 6 a,b the (r2) value of stable 130Xe or 126Ba nuclei grows strongly 
with △.

It is almost impossible to get the values of (r2) and Q2 — close to the 
experimental data including the €,€4 parameters only. We have evaluated
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Fig. 4. The dependence of the microscopic (r2) in fm2 on the quadrupole deformation t 
for the I30Xe (a) and 126Ba (b) nuclei. The equilibrium deformations t° are signed by 

arrows

Fig. 5. The dependence of the microscopic (r2) in fm2 on the hexadecapole deformation 
<4 for the 130Xe (a) and 126 Ba (b) nuclei. The equilibrium deformations e° are signed by

arrows
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Fig. 6. The dependence of the microscopic (r2) in fm2 on the pairing energy gap △ (in 
MeV) for the 130Xe (a) and 126 Ba (b)

within the liquid drop model the values of (cLD€4D) (squares in Fig. 7 a,h) 
which would reproduce the experimental data

(<r2)exp,QD-(«LD,àD)#(e0,^)

We have assumed the favored by the microscopic calculation prolate 
deformation of the nucleus when solving the above equation. The solutions 
are far from the microscopic (c0,^) (stars in Figs. 7 a,b) equilibrium 
deformations both for Xe and Ba isotopes, as it is seen in Figs. 7 a,b 
respectively.

Let us try to reproduce the experimental data (r2)eTp, Q?xp with the 
quadrupole deformation c and the energy gap A varying them free within 
the microscopic BCS model

(<r2)~₽, Q~p) -S (<>) * (A A0) / (ЛАт)

As you can see in Figs. 8 a,b the extracted from experimental ((r2)exp, 
(fLD, △) values (squares) do not agree either with the microscopic 

(e°,A°) (stars) equilibrium points, nor even with the values (c°, Am) 
obtained from the experimental masses [18] of nuclei (circles). The values
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Fig. 7. The microscopic equilibrium points (e°,cj) (stars) and their estimates deduced 
from the experimental values of ({r2)e,₽,QjXp) [3,4,14] within the liquid drop model 

(cLD,c}*D) (squares) for the Xe (a) and Ba (b) isotopes

of A which reproduce the experimental (r2)exp and Q|rp are almost half 
of their estimates from masses Am It is necessary to use the dynamical 
pairing model [19] which would give the most probable A values smaller 
than the equilibrium value corresponding to the minimal potential energy. 
Such calculation is prepared now.

CONCLUSION

The following conclusions can be drawn from our calculations:
1. The dynamical treatment should be used in order to describe the 

nuclear shapes.
2. The quadrupole moments should be calculated as rather than 

as (Q2) in order to compare them with the data experimental transition 
probabilities.

3. The nuclear radius description for the far from the ß stability line 
nuclei demands the dynamical treatment of pairing forces, especially the 
inclusion of the energy gap as a dynamical variable.



104 В. Nerlo-Pomorska, В. Skorupska

Fig. 8. The microscopic values of (e°, Д°) (stars) compared with the evaluated from exper
imental masses (c°,ùm) (circles) and the (eLD, △) (squares) reproducing in microscopic 

model the experimental ((r2)'xp, Qjlp) for Xe (a) and Ba (b) isotopes
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STRESZCZENIE

Przeprowadzono mikroskopowe dynamiczne rachunki elektrycznych momentów o po- 
lowości A = 0,2,4 parzysto-parzystych jąder neutrono-deficytowych. Zaproponowano 
nową interpretację teoretyczną doświadczalnych momentów kwadrupolowych otrzymywa
nych ze zredukowanych prawdopodobieństw przejść B(E2,2+ —» 0+). Przeprowadzono 
dokładniejsze badania zależności kwadratów średnich promieni jąder od parametrów de
formacji wyższych multipolowości i oddziaływania „pairing”.




