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1. Introduction

The double charge exchange (DCX) reaction with pions is still attracting a good deal 

of attention (see ref. [1] the latest review of the subject). There was hope that special 

information about an affection of one nucleus by another would appear in the reaction. 

Unfortunately, the meson factories were built in the 1970’s, any type of such correlations 

was masked by other complex interactions at highly accessible meson energies at that 

time. Only recently [2-4] as small as 50 MeV meson energies are available and nucleon 

correlations have begun to surface.
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The double charge exchange process necessarily involves two neutrons. The ingoing 

pion jt+ has successive charge-exchange on a neutron. In a second step the produced pion 

7T° exchanges the charge to another neutron to produce a proton and a pion ir~, which then 

leaves the nucleus and is detected. Theorists expect in general that the pions interact in the 

above picture only if the DCX process takes place on valence nucleons which are within 1 fm 

(about nucleon radius ) of each other. In other words the strong short-range correlations to 

nuclear wave functions mut be involved if one wants to reduce a considerable disagreement 

with the experiment [2]. In fact the theories including correlation effects come much closer 

to the data and a fairly satisfactory agreement is reported [3-4]. Another regularity of the 

reaction is the sensitivity to the role played by antisymmetry of nuclear wave functions, 

which allows the nucleons of the core to participate in an active way in the reaction [5]. 

The alleged role played by quarks in the DCX reaction has added elements of interest to 

the field [6].

In all reported calculations the strong limited shefi model or even uncorrelated free 

nucleon wave functions were used. This limitation imposes applications to the light nuclei 

and/or to nuclei with a few nucleons out of the closed shell only. Błeszyński and Glauber’s 

wave function of the 14C nucleus is assumed to separate into a wave function for two 

valence neutrons in the p-shell orbit and a wave function for the core. The authors argue 

that the core plays a passive role and they omit its wave function in derivations. The 

two p-shell nucleons, of the total angular momentum zero, can only be in one of the two 

states, the spin singlet 1S0 or the spin triplet 3Pq state and final nuclear wave function 

is a free combination of these two states. For description of the calcium isotopes the 

same authors have used pure f7/2 wave functions with the parametrized p-configuration 

admixture. More fundamental approach, the seniority scheme was proposed for description 

of the DCX reaction by Auerbach, Gibbs and Ginocchio [4], but in principle the model is 

only valid for nuclei with a few valence particles or holes of one kind, for example, for the 

calcium isotopes.

In the present paper we apply the random phase approximation based on the quasi­

particles formalism (QRPA) to give a consistent approach to the DCX reaction in a wide 

mass region of nuclei. The motivation for doing results from the observation that the 
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QRPA formalism provides a very useful way of description of the beta and double beta 

decay processes [7-9]. Because in the DCX reaction the nuclear structure is as important 

as in the beta decay, one can expect similar usefulness of the QRPA. Moreover, further 

formal analogies between operators cause that both reactions show some similarities and 

have already been discussed in literature [10].

The article is arranged as follows. A form of the DCX operator for the p-wave pion in 

non-static and static limit is studied in Sec. 2. The basic features of the QRPA approach are 

reviewed in Sec. 3. Next section gives formulae for the DCX total amplitude in the ground 

state to ground state transition case. Summary and remarks (Sec. 5) and appendices close 

the paper.

2. The Double Charge Exchange Operator

We will consider the simplest local ttNN interaction Lagrangian linear in the pseudo- 

scalar-isovector pion field ip. The Lagrangian is a scalar-isoscalar quantity, the nucleon 

fields must therefore appear in a pseudoscalar-isovector combination. This leads to the 

well-known pseudoscalar coupling Lagrangian

£ps(x) = -?Ф(х)17,тФ(х) ip . (1)

The experimental value of the coupling constant g has been determined accurately from 

pion-nucleon and nucleon-nucleon scattering g*  « 180. The Lorentz-invariant form of the 

.rNN interaction deduced from the Lagrangian (1) is (e.g. [11])

{N (p') |£ps|W(p),*+ (k)) = igy/Z û ip . (2)

In the above equations a tilde indicates an isovector character of the operators. Since 

we deal with nucleons which are not far off-shell, we use the standard expression for the 

nucleon spinors и to obtain

- r r \ (E + M E1 + M\ ’ . a • p' a • p 1 u(p)l,u(p) Ç 2M 2M j t [р + Л/ - E-i-j/p • (3) 
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Неге £ is the Pauli spinor for the nucleon, M - the nucleon mass and energy transfer 

u> = E' — E. The total energy of nucleon fulfills the usual relativistic relation E = Ep — 

(p1 2 + M2)* . An analogous expression one can write for the quantities E’ and p'. If we 

expand eq. (3) to the lowest order in (p' — p) and (p' + p) we find the result

a ( E1 — E 1^(p')|£pS^(p),w+(k))=i-(-<7. (p'-p)-S—-(p' + p)kf .ÿ) , (4a)
Ш ( 4M )

= ’ (4b)m*  \ ZM z

The second line involves a new interaction constant originated from the second form of the 

trNN interaction, the pseudovector coupling (PV)1. Its experimentally determined value 
is f2 « 1.005. The operator Vu = | — Vjv) acts to the right and left on a single

nucleon and p' — p = к is transfer of pion momentum.

The static non-relativistic reduction of the £ps Lagrangian is easily shown to lead to 

the effective pion-nucleon Hamiltonian

= • (5)гл»

The Hamiltonian (5) is linear in the pion momentum, and therefore it generates p-wave 

pion nucleon interaction only2.

Eqs. (4) and (5) need some comments. At the most fundamental level the whole picture 

of the DCX reaction depends on the current choice of the irNN interaction operator. In 

the earliest calculations and many of the recent ones the simple static .operator (5) has 

been used. This operator was obtained by keeping just the leading term in the non- 

relativistic limit of the pseudoscalar coupling (1), which is conventionally used to describe 

the irNN vertex. If we deal with some relativistic corrections introduced by some particular 

approximations, they can involve different correction terms into the original expression (3). 

There are at least three ways to switch on approximations : (i), the Foldy-Wouthuysen 

transformation, (ii), Galilean invariance of the non-relativistic expression and (iii), the

1 One can show equivalence of the both types of couplings in the non-relativistic limit and we will not 
pay attention to the PV form of the interaction. For details see e.g. [11].

2 Possible s-wave IT — N interaction is based on mechanisms completely different from those described 
above and we do not intend to discuss this point in the present paper.
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higher-order non-relativistic reduction of eq. (3). The final forms differ by some factors 
*

[13]. Furthermore, the whole picture must be incomplete as the basic process ttNN requires 

an off-shell leg and so must be embedded in some more complicated interactions. All 

these ambiguities suggest a need for a more consistent relativistic picture, but because 

of difficulties in describing nuclei relativistically, we limit our considerations to the non- 

relativistic static Hamiltonian (5) only.

A description of irNN scattering must correctly incorporate the contributions of se­

cond-order processes generated by absorption or emission of a pion on the nucleon. One 

has to calculate amplitudes of these processes and therefore we need the matrix elements 

connecting the vacuum and a one-pion state ]*«(?))  (e-g- [11]) '■

(irb(q')]H,NN]0) = i—cr-q'^e-*451 , (6a)

(0|HTNN|ire(q)) = -i—<7-q-fae*4X . (66)

The transition matrix T for the direct and crossed terms shown in Fig. 1 is obtained using 

the standard second-order perturbation theory with the operator Яг,у,у.

3. Quasiparticle Random Phase Approximation and the form of the H^nn 

Hamiltonian (

The proton-neutron quasiparticle RFA formalism has been extensively discussed in 

literature [14-16], so we need only to present its basic feature here.

The pn-QRPA was developed for the description of charge-changing excitations, such as 

the Gamow-Teller transitions or charge exchange with pions. In these processes transitions 

from the 0+ ground state of an even-even nucleus (Z,N) to states in the odd-odd nucleus 

(Z±l,Nq=l) are considered. The QRPA phonons with angular momentum J and its third 

component M are defined by the ansatz (e.g. [17]):

QIm = E (pn JM) - r(;n)Jct (pn JM )] , (7)
pn
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Figure 1. Illustration of the direct (a) and crossed (b) contributions.

where indices p and n distinguish between proton and neutron states. The proton-neutron 

pair-creation and annihilation operators are defined with the aid of the Clebsch-Gordan 

coefficients

C\pnJM)= У {jTmrjnmn\JM)a\mrb\mn (8)
mp,mn

and C(pnJM)=[Ct(pnThe forward- and backward-going amphtudes and 

aie obtained by solving the QPRA eigenproblem

(ê -“)(?) . <»>
with normalization

E[(y7„)j)2-(^)7)21=1 . (10)
pn L -

The submatrices A and В are expressed explicitly

A^p,n, = (BCS\C(pnJM)H„C\p'n'J'M')\BCS) =
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= 6rp^6лn^6JJ^6мM^ +e») -

-2ÿpp((pn)JM|G|(p'n')JM)(upu„up/u„, + VpVnVfVn'}-

-2jp*((pń _1)JAf|G|(p'n,-1)JM)(upv„up,vn,+t>punvp/un<) , (11)

= {BCS\C(jm JM)Ć(p'n' JM)H„\BCS) =

= -2ÿpp((pn)JAf|G|(p'n')JM)(upu„vp<v„< + vpvnup-un-)-

-2pp*((pn _1)JM|G|(p'n'-1)JM)(upvnvp-un/ + vpu„up-v„<) . (12)

Here Hqp is the nuclear Hamiltonian after the Valatin-Bogoliubov quasiparticle transfor­

mation. The quasiparticle energies ea (a= p or n) and the occupation amplitudes ue, va 

are obtained by solving the BCS equations in some model space of a single-particle po­

tential, the Wood-Saxon potential for example. The matrix elements of particle-particle 

{(ab) J M\G\(a' b'^J M} and particle-hole ((ai-1)JM|G|(a'b'-1) interaction are related to 

each other through the Pandya transformation and can be obtained from realistic or phe­

nomenological forces3. The constants gpp and gph parametrize the two-body matrix el­

ements ( |G| ) in order to take into account the finite model space restriction always 

involved into calculations and a renormalization for finiteness of a nucleus. The submatrix 

A in eq. (11) is responsible for the mixing of various particle-particle states in the odd-odd 

nucleus reached by the charge-changing transition because its elements are dominated by 

the particle-hole interaction and quasiparticle energies. The contribution of the particle­

particle interaction is smaller implying that this interaction has only a little effect on the 

mixing of particle-hole states in the (Z+1,N-1) intermediate nucleus. On the other hand, 

the elements of the submatrix В (eq. (12) consist of the both interaction terms of the 

same order. This indicates that the particle-particle interaction can significantly enhance 

the ground state correlations by increasing the backward-going amplitudes [19].

3 A realistic one-boson exchange potential was applied in papers [8, 9, 18] and a zero-range spin-isospm 
force in ref. [7], for example.
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The supermatrix in eq. (9) has the dimension 2r, where r is the number od different 

possible proton-proton two-quasiparticle states of the angular momentum J and parity 

x(ir = ±). The diagonalization of this matrix gives r eigenvectors for each J*  combination 

corresponding to the r positive eigenvalues fi; (1=1,2,...,r) and the same number negative 

eigenvalues, which we treat as nonphysical ones. The physical eigenvectors

|тЛМ) = QTu\RPA) (13)

with the RPA'phonon operator Q™m given by eq. (7), can be constructed for two separate 

sets of states of the same intermediate nucleus (Z+1,N-1) depending on if the QRPA 

calculation is based on the parent (Z,N) or (Z+2,N-2) daughter nucleus ground states (see 

Fig- 2).

Both sets of intermediate states should be physically identical. In fact they result from 

the two different QRPA calculations which causes their mathematical nonequivalence. 

Particularly they fulfill the orthogonality relation approximately in the sense

{mJm\m'Jm>) « 0 for \E^—E^,\ >

and

52 |("»Лп|т'Лп>)|2 ~ 1
IS'-Ei,! <Д£

with AE being of the order 1 MeV [19].

To describe the DCX reaction in the pn-QRPA model one has to expand the tran­

sition operator (5) in the quasiparticle operators a*,a,,  (b£,bn) . We get (for details see 

Appendix A)

hP(k) = -Лй-Д 52{(-i)Jr;M(fit) [£ G;n(fc)K/„M]} . (u) •
K JM pn

Here the QRPA part of the transition operator can be expressed in the form:

T^-pn — upvnC\pnJM) + vTunC(pnJM) + upu„D(pnJM) — vpvnD*(jmJM)  . (15)

The C\pnJM) and C(pnJM) operators have been defined in eqs. (8a)-(8b) and other 

two operators are expressed as follows

D\pnJM) = £(JpmpJ„mn|JM)a;m/-iy"+m"anm„ ,
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Figure 2. The QRPA model for the DCX reaction. One starts with the RPA proton-particle neutron­
hole (a) or neutron-particle proton-hole (b) calculation to the intermediate (Z-H, N-l) nucleus states. 
The mode (a) corresponds to the ground state of the (Z,N) nucleus while mode (b) to the ground state of 
the (Z+2, N-2) nucleus. A transition from an unoccupied to an occupied single particle state is strongly 
stifled.
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. D(pnJAf)= [^(pnJAÏ)]1 . (16)

The tilde operation. Ä(abJM) — (—l)J+MA(abJM) is used here to have for the annihi­

lation operator the usual phase convention of spherical tensors. YjM^k) is the spherical 

harmonic of degree J [25] and an expression for the Gp^(k) form-factor can be found in 

Appendix A (eq. A6).

4. The QRPA Model for the DCX Reaction

Treating the DCX reaction we assume a sequential mechanism. In this picture the 

incident pion тг+ of the beam exchanges its charge to a neutron. In the second step 

the produced pion ir° exchanges the charge to another neutron to produce a proton and 

a pion ir~, which then leaves the nucleus and is detected. During this process spin- 

isospin dependent nuclear interactions mix the unperturbed particle-hole states giving a 

contribution to nucleon-hole pair excitations (Fig.3). In the RPA scheme the basic DCX 

process can be described by the two-fold action of the one-exchange QRPA operator hp 

(14). Schematic picture of the mechanism is shown in Fig. 4.

Ln thé second-order perturbation theory we can express the DCX transition amplitude 

as

(k,k)= :-----------
mm' ‘ 2

+ crossed term. (17)

|i, tr+(k)) and \f, ir_(k')) are the ground states of the parent and daughter nuclei; к 

and k' are in- and outgoing pion momenta and e*  = (fc2 + 4-m2): is the incident pion 

energy. Note that the summation in eq. (17) involves products of the transition matrix 

elements of the both QRPA mode, calculations (compare Fig. 2 and remarks in Sec. 3). 

This trick allows to write eq. (17) symmetrically in both indices m and m' because of 

quasi-orthogonality of the sets {|mJAf)} and The procedure introduces an

uncertainty in the energy denominator for which we involved an average value of the
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Figure 3. Diagrammatic representation of the nucleon-hole contribution in the lowest order: (a) - direct 
term, (b) - crossed term. 

/
QRPA excitation energies E^ and E^,, however this uncertainty is small compared to the 

mean value of the denominator.

Using eq. (6) and the explicit form of the hp operator (eqs. (14)-(16) and (A3)) after 

cumbersome derivations one can find the final formula for the total amplitude F*

t
F(k,k') = £>j(k,k') , (18a)

j

-, ,, ,1 ( f 2\ „ . . . V-' (m J\m'J}Fj(k-k > = “ta (£ )4 z mm1 Jhi -f- ------- 2

4 See details in Appendix В
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• {[>/12 £G;n(Fx-iy’+>-+J (x(;n)7v>ön + f^.)]

■ + . (186)
pn * }

Here Pj(cos Ö**')  is the Legendre polynomial of the J‘à order [20] and the overlap between 

two J*  states belonging to two different sets, (mJ M\m’ JM) is given by

(m JM |m' JM) = £ (0j |0t) . (19)
pn

In eq. (19) the factor (0+|0+) when approximated by the BCS states is

(Oy |0t) = JJ(upüF + vpvp)JJ(unün + vnvn) . (20)
p n

In the above expressions all quantities with a bar correspond to the daughter (Z+2,N-2) 

nucleus and without a bar to the parent (Z,N) nucleus.

The crossed term (Fig. lb) is treated similarly. The corresponding amplitude satisfies 

crossing invariance: the crossed term is obtained from the direct term by interchanging 

the in- and outgoing pion momenta as well as energies: q «-------q'; e*  *-------

The scattering amplitude F(k, k') is connected directly with the differential cross sec­

tion

^(öiJkz) = №k')|J . (21)

The accuracy of the single and double charge exchange data requires the careful treat­

ment of kinematic factors. The differential cross section (21) must be evaluated in the pion­

nucleus centre-of-mass frame, which approximately coincides with the laboratory frame. 

The amplitudes (18) are defined in the irN centre-of-mass frame. It is therefore necessary 

to incorporate the kinematic factors relating these two frames of reference. This can be 

done in a manner of any textbook (e.g. [11]) and results in a slight change of angular 

momenta k, k' and an angle [11,23].
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5. Summary and Final Remarks

In the paper we have introduced formulae for the DCX transition amplitude within the 

pn-QRPA formalism. The static limit for the p-wave pion-nucleon effective interaction was 

used but in principle there are no difficulties to extend this approach onto relativistically 

corrected expression (4). Existing suggestions [23] and the author’s preliminary estimations 

made for calcium isotopes [24] allow to admit that the recoil term is of no quantitative 

importance for p-wave pion-nucleon interaction.

An extension of the DCX description which one has to involve in the low pion energy 

region is an inclusion of the s-wave pion effective interaction [11, 22]. Suitable formulae 

for the double isobaric analog transitions can be found elsewhere [24] and for the ground 

state transitions in a subsequent paper.

The author would like to thank Professor Amand Faessler for suggesting the interesting 

problem of the DCX reaction with pions and for many helpful discussions. The fruitful 

advice and stimulating discussions on the QRPA formalism with Professor S.B.Khadkikar 

and Dr. J.Suhonen are also acknowledged.
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Appendix A

We need to express the transition operator (5) in the second quantization formalism. 

Firstly using the relation (6) one can evaluate the pion operator part to have

(p(x) = (0|Яя.Лглг(х)|тг‘г(9)) = -75 » — <r q e‘4 Xr+ , (Al)

where r+ is the nuclear isospin raising operator and we .used pion plain wave expansion 

for the pion field operator ip. Next we define the transition operator hp from its density 
= J d3гФ^(х)(р(х)Фw(x) and express it in terms of the creation and annihilation 

nucleon operators с£,ср (cj,,cn) as

pn

е(”хФ(х,£) cj. (A2)
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or after transformation to the quasiparticles

h,(q) = -75 i £ ^„М(Ч)Я^ . 
* pn, JM

The quasiparticle operator is this of eq.(15) and J/^(q) is given by

J>J„M(q) = £(-iy*  -"*•(;,  [ d3x^;(x,f)a-qe“’^n(x,Ç)
(m) U

(A3)

■ (A4)

In the above equations ( means additional intrinsic spin coordinates. Cumbersome calcu­

lations allow to find more usefill expression for ^j™(q):

^.M(q) = Æ 76 r;M(fi,)G/n(?)

where

(1

1

Ip ip 

In Jn

I" J ,

(A5)

(A6)

Here Yjm is the spherical harmonic [25] and ja = y/'ï-ia. + Ï . The symbols ( | ) and 

{ } mean the Clebsch-Gordan coefficient and 6j symbol, respectively. The formulae for 

the fïpn(ç) function can differ for different radial dependence of nucleon wave functions 

^p(x, f )(tZ»n(x, £)). In the case of harmonic oscillator wave functions one get the analytical 

expression

.......  -,..... .—_ —----- -- --------- ---------- ------- ✓ 2 l2
у пР!пп!(2п, + 2lr + l)!!(2n„ + 2Zn +1)!!2',q exp \~~

y (_2)^(l(Ip + Zn-r) + s + sQ!
^os!(np-s)K2Zp + 2s + l)!!s'!(nn-s')!(2Zn+2s' + l)!! 1 5 ' > 1 ’

The constant b is the harmonic oscillator length b = (ti/Mufi « 1.006.4« fm and £3 

means the Laguerre polynomial [20] with ß = j(Zp + Zn — Z") + s + 3'.
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Appendix В

То express the amplitude F(k, к') (eq.(6)) in terms of the QRPA quantities one needs 

to calculate two matrix elements (f,x~|hp|mJAf) and (m1 JAf|hp|»,ir+). It can be done 

by using the quasiboson approximation [26]

(BPA| [C(abJM), C\a'b'J’M'j\ |ÄPA) « 6„-6w6jj.6MM. (Bl)

and the fact that the QRPA phonon annihilation operator gives zero operating on 

the RPA vacuum. Finally one can receive

{RPA\ \r™',C\pnJM)] \RPA) = (-1/+M'vr.un.6pp.6nn.6jj.6M-M. , (B2)

(ÆPAI [r^',C(pnJM)] \RPA)^-(-l)J+Mu^vn.6pp.Snn.6jj.6M-M. . (B3)

With the aid of the formulae (B1)-(B3) one finds expressions for both needed matrix 

elements

(/,0+;7r-(k')|h.|mJM) =-Л2 i—Ær/MCnF) 
771T

^(-i)^+>-G/n(V) (x?pn)Jvrun + ÿ(;n)Jüpv„) 

- Pn

and

{m1 JM\hp\i,0+;ir+(k)) = У12 t-^-Æ(-l)JyJM(n*)

(x^p'n)Jupvn + y(;n)JvpUn) 

. pn

(B4)

(B5)-

The quantities with and without bars correspond to the daughter and parent nucleus 

ground state, respectively.

Abstract: The quasiparticle random phase approximation (QRPA) weis applied tothe 

double charge exchange (DCX) reaction with pions x+ + zXn —► + z+iXn-2- A 

case of the ground state to ground state transition is discussed. Final formulae for the 



DCX Ground State Transitions... 147

total amplitude and differential cross section are given within the p-wave тг — jV effective 

interaction.

Streszczenie: W artykule zastosowano formalizm RPA do opisu reakcji z pionami podwój­

nej wymiamy ładunku na jądrach atomowych. Dyskutowany jest kanał reakcji, w którym 

końcowe jądro atomowe znajduje się w stanie podstawowym. Otrzymano wyrażenia na 

całkowitą amplitudę reakcji i różniczkowe przekroje czynne dla efektywnego oddziaływania 

pion-nukleon w przybliżeniu fali p.
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