AN NALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN - POLONIA
VOL. XLIII/XLIV, 7
SECTIO AAA
1988/1989
Instytut Fizyki UMCS
A. GÓŹDŹ, M. WIERTEL

Quadratic Optical Media in the $\mathbf{S} \overline{\mathrm{p}}(4, R) \supset \mathbf{U}(2)$ Group Chain Approximation*

Dedicated to
Prof.dr hab. M. Subotowicz
The development of Lie methods to optics is very recent. for a review of this approach see [11. Through studying linear and nonlinear transformations (aberrations) of optical phase space

Work supported by the project RR.I. 02.
which model optical systems, Lie theory can provide an effective calculation method in optics $[2,3,4]$. Light rays are described in an optical phase space as points $\left(p_{1}, p_{2}, q_{i}, q_{2}\right)$, evolving along the optical axis z of the system (which takes the role of time in the hamiltonian formulation of classical mechanics). At every $z=c o n s t a n t$ plane the configuration space has coordinates $q=\left(q_{1}, q_{2}\right)$. Fermat's principle leads to the optical Lagrangian and allows to calculate the conjugate momenta p_{1}, p_{2} which can be interpreted as a two-dimensional vector p in $z=c o n s t . p l a n e$. along the projection of the ray on the $p l a n e$. Its magnitude p is determined by the refraction index n at (q, z) and the angle θ between the ray and z axis: pansine. A general linear group which action conserves the optical phase space structure is a symplectic group $S p(4, R)$. For axially symmetric systems it is enough to use a smaller symplectic group. namely $S p(2, R)$. However. for a general case of nonaxial optical media one has to work with full Sp(4,R) group which has rather complicated structure. Instead of Sp(2,R) as a subgroup of $\mathrm{Sp}(4, R)$ it is more convenient, in this case. to use a chain containing a maximal compact subgroup, a very well known unitary group $U(2) \subset S p(4, R)$. Embeding of this group into symplectic one is given by the construction [5]:
if $A+i B \in U(2)$, where A and B are two-dimensional real matrices.
then

$$
\left[\begin{array}{rr}
A & B \tag{1}\\
-B & A
\end{array}\right] \in U(2) \subset \operatorname{Sp}(4, R)
$$

The generators of the group $U(2)$ can be calculated directly frorn (1) in the form of 4×4 matrices:

$$
X_{a}=\left[\begin{array}{cc}
0 & 0 \\
-0_{0} & 0^{0}
\end{array}\right], X_{b}=\left[\begin{array}{cc}
0 & 0 \\
-0 & 0^{3}
\end{array}\right], X_{c}=i\left[\begin{array}{ll}
0^{2} & 0 \\
0^{2} & 0
\end{array}\right], X_{d}=\left[\begin{array}{cc}
0 & 0 \\
-0_{1} & 0^{1}
\end{array}\right]
$$

where $\sigma_{k}, k=1,2,3$, are the usual Pauli matrices and σ_{0} denotes the 2×2 identity matrix. A subgroup $U(1) \subset U(2)$ is generated by the matrix X_{a}. Three matrices X_{b}, X_{c} and X_{d} generate the subgroup SU(2). Two diagonal generators

$$
\begin{equation*}
\mathrm{D}_{1}=\mathrm{diag}(1,0 .-1.0) \text { and } \mathrm{D}_{2}=\text { diag }(0,1,0,-1) \tag{3}
\end{equation*}
$$

can be easily found from Iwasawa decomposition of $\operatorname{Sp}(4, R)$ [6].
Last four generators can be calculated from the following comutators:

$$
\begin{array}{ll}
x_{e}=\frac{1}{2}\left[x_{a}, D_{1}\right] . & x_{f}-\frac{1}{2}\left[x_{b} \cdot D_{2}\right] \\
x_{g}=\left[x_{c} \cdot D_{2}\right] . & x_{h}=\left[x_{d} \cdot D_{1}\right] \tag{4}
\end{array}
$$

This way we have constructed required generators for $S p(4, R)>U(2)$ group chain.
First approximation to optical ray dynamics is a linear optics. We consider here an optical medium described by the quadratic refraction index

$$
\begin{equation*}
n=n_{0}+\sum_{j} n_{i j} q_{i} q_{j} \tag{5}
\end{equation*}
$$

where n_{14}, n_{2} we assume to be negative numbers, to obtain an "atractive" optical system. For the oposite case one can calculate the evolution operator analogously. The optical hamiltonian for linear optics can be thus written in the form

$$
\begin{equation*}
H-\frac{1}{2 n_{0}} p^{2}-n_{0}-\sum_{i j} n_{i j} q_{i} q_{j} \tag{6}
\end{equation*}
$$

Lie operator corresponding to a function on the optical phase space we denote by - e.g. for H Lie operator will be denoted as \hat{H}. In our case \hat{H} is a simple differential operator acting on functions defined on the optical phase space:

$$
\hat{H}--\frac{1}{n_{0}}\left(p_{i} \frac{\partial}{\partial q_{1}}+p_{2} \frac{\partial}{\partial q_{2}}\right)-2 n_{11} q_{1} \frac{\partial}{\partial p_{1}}-2 n_{22} q_{2} \frac{\partial}{\partial p_{2}}
$$

$$
\begin{equation*}
-\left(n_{12}+n_{21}\right)\left(q_{2} \frac{\partial}{\partial p_{1}}+q_{1} \frac{\partial}{\partial p_{2}}\right) \tag{7}
\end{equation*}
$$

Action of \hat{H} onto column vector $\left\{p_{1}, p_{2}, q_{1}, q_{2}\right\}$ allows to find its matrix representation. which in turn can be expressed in terms of the generators (2-4):

$$
\begin{align*}
\underline{H}= & \frac{1}{2}\left(n_{11}+n_{22}-n_{0}^{-1}\right) x_{a}+\frac{1}{2}\left(n_{11}-n_{22}\right) x_{b}+\frac{1}{2}\left(n_{12}+n_{21}\right) x_{d} \\
& -\frac{1}{2}\left(2 n_{11}+n_{0}^{-1}\right) x_{e}+\frac{1}{2}\left(2 n_{22}+n_{0}^{-1}\right) x_{f}-\frac{1}{2}\left(n_{12}+n_{21}\right) x_{g} \tag{8}
\end{align*}
$$

The hamiltonian H and its representations (7) and (8) are independent of z ("optical time"). This property implies that the evolution operator $G_{n}(z)=\exp (-z \underline{H})$) (in the matrix represetation). The operator $G_{H}(z)$ can be calculated directly making use of Perron's formula for n-th power of matrix F :

$$
\begin{equation*}
\underline{F}^{n}=\sum_{i=1}^{t} \frac{1}{\left(\alpha_{i}-1\right)!} \frac{d^{\alpha_{i}-1}}{d \lambda^{\alpha_{i}-1}}\left[\frac{\lambda^{n} F(\lambda)}{\prod_{j \neq i}\left(\lambda-\lambda_{j}\right)^{\alpha_{j}}}\right]_{\lambda=\lambda_{i}} \tag{9}
\end{equation*}
$$

where $\lambda_{i}(i=1,2, \ldots, t)$ denotes different eigenvalues of the matrix F. α_{i} their multiplicity and $F(\lambda)$ is an algebraic complement of the matrix $\lambda 1-\underline{F}^{T}$. The evolution operator can be written in a form of 4×4 z-dependent matrix.

$$
\begin{equation*}
w_{i}-\sum_{j} G_{i j}(z) w_{j} . \tag{10}
\end{equation*}
$$

where $\left(W_{1}, W_{2}, W_{3}, W_{4}\right)=\left(p_{1}, p_{2}, q_{1}, q_{2}\right)$. For the refraction index
with negative n_{11} and n_{22} (only this case is interesting for light propagation in optical, fibers) one can get. in general, four eigenvalues λ_{i} which are puerly imaginary numbers:

$$
\begin{equation*}
\lambda_{k}=(-1)^{k+1} i_{z_{*}}\left\{\left[x+\left(1-2 \delta_{3 k}-2 \delta_{4 k}\right) y\right] / n_{0}\right\}^{1 / 2} . \tag{11}
\end{equation*}
$$

where $x=-\left(n_{11}+n_{22}\right)>0$ and $y=\left[\left(n_{11}-n_{22}\right)^{2}+\left(n_{12}+n_{21}\right)^{2}\right]^{1 / 2}$. In this case the matrix elements of the evolution operator can be expressed in terms of trigonometrical functions

$$
\begin{equation*}
G_{k 1}(z)=A_{k 1} \cos \left(\omega_{1} z\right)+B_{k 1} \cos \left(\omega_{2} z\right)+C_{k 1} \sin \left(\omega_{1} z\right)+D_{k 1} \sin \left(\omega_{2} z\right) \tag{12}
\end{equation*}
$$

where the spacial frequences are given by $\omega_{k}=\left[\left(x+(-1)^{k} y\right) / n_{0}\right]^{1 / 2}$ and all non-zero coefficients we list below:

$$
\begin{gathered}
A_{11}=A_{33}=-0.5\left(x-y+2 n_{22}\right) / y \quad B_{11}=B_{33}=0.5\left(x+y+2 n_{22}\right) / y \\
A_{22}=A_{44}=-0.5\left(x-y+2 n_{11}\right) / y \quad B_{22}=B_{44}=0.5\left(x+y+2 n_{11}\right) / y \\
A_{12}=A_{21}=A_{34}=A_{43}=-B_{12}=-B_{21}=-B_{34}-B_{43}=\left(n_{12}+n_{21}\right) / 2 y \\
C_{32}=C_{41}=-0.5\left(n_{12}+n_{21}\right) /\left\{y\left[n_{0}(x-y)\right]^{1 / 2}\right\} \\
D_{32}=D_{41}=0.5\left(n_{12}+n_{21}\right) /\left\{y\left[n_{0}(x+y)\right]^{1 / 2}\right\} \\
C_{14}-C_{23}=0.5\left(n_{12}+n_{21}\right)\left[n_{0}(x-y)\right]^{2 / 2 / y} \\
D_{14}=D_{23}=-0.5\left(n_{12}+n_{21}\right)\left\{n_{0}(x+y)\right]^{1 / 2} / y \\
C_{13}=0.5 n_{0}^{1 / 2}\left[4 n_{11} n_{22}-\left(n_{12}+n_{21}\right)^{2}+2 n_{11}(x-y)\right] /\left[y(x-y)^{1 / 2}\right] \\
D_{13}=-0.5 n_{0}^{1 / 2}\left[4 n_{11} n_{22}-\left(n_{12}+n_{21}\right)^{2}+2 n_{11}(x+y)\right] /\left[y(x+y)^{1 / 2}\right] \\
C_{24}-0.5 n_{0}^{2 / 2}\left[4 n_{11} n_{22}-\left(n_{12}+n_{21}\right)^{2}+2 n_{22}(x-y)\right] /\left\{y(x-y)^{1 / 2}\right] \\
D_{24}=-0.5 n_{0}^{1 / 2}\left[4 n_{11} n_{22}-\left(n_{12}+n_{21}\right)^{2}+2 n_{22}(x+y)\right] /\left[y(x+y)^{1 / 2}\right] \\
C_{31}=0.5\left(2 n_{22}+x-y\right) /\left\{y\left[n_{0}(x-y)\right]^{2 / 2}\right\} \\
D_{31}=-0.5\left(2 n_{22}+x+y\right) /\left\{y\left[n_{0}(x+y)\right]^{2 / 2}\right\} \\
C_{42}=0.5\left(2 n_{11}+x-y\right) /\left\{y\left[n_{0}(x-y)\right]^{1 / 2}\right\} \\
D_{42}-0.5\left(2 n_{11}+x+y\right) /\left\{y\left[n_{0}(x+y)\right]^{2 / 2}\right\}
\end{gathered}
$$

From the expression (12) one can see that motion of light rays is much more complicated in this case than in presence of axial symmetry. However. even now the motion without aberrations is harmonic in the optical phase space. To include aberrations one can follows the works [2,3] and [4]. Using the basis constructed in $[4]$ and the aigebra a^{3} non-linear effects in light ray motion can be approximately taken into account. The formula (12) gives a mean part of light ray motion and can be useful in preparing of more exact numerical program. Inclusion of third order aberrations
allows to obtain more. details about light rays propagation in quadratic optical media. especially in optical fibers. Solution of this problem requires a construction of appropriate representations of the optical group $S p(4, R)$ and will be presented in subsequent paper.

REFERENCES

1. Lie Methods in optics. Proc. CIFMO-CIO Workshop. Leon, Mexico. January. 7-10. 1985, Lecture Notes in Physics vol.250. Springer-Verlag.
2. Navarro-Saad M..Wolf K.B.:J.Math.Phys., 27. 1449 (1986):

Wolf K.B.:J.Math.Phys., 1986,27.1458.
3. Navarro-Saad M..Wolf K.B.:J.Opt.Soc.Am.: A3. 340 (1986).
4. Gózdz A.,Szymona J.: Sp(4.R) group action on the optical phase space, (submitted to Acta Phys. Polonica).
5. Klimyk A.U.:J.Math. Phys. 24. 224 (1983).
6. Barut A.O.. Raczka R.:Theory of group representations and applications. PWN. Warszawa. 1980.

