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On Strong Interactions of the Boussinesq-type Solitons

Silne oddziaływania solitonów typu Boussinesq

Сильные взаимодействия солитонов типа Бусикеск

The Boussinesq equation was derived in the context of surface water waves for 
the first time in 1871 [1]. Three-dimensional generalization of two different forms 
of this equation was obtained and investigated for stability of slowly varying non­
linear wavetrains [2j. Nonlinear evolution of linearly unstable solution was studied 
by Yajima [3]. The Lax pair for the inverse scattering transform was constructed 
by Zakharow [4]. This equation is associated with the bilinear Hirota’s method [5]. 
Exact IV-periodic wave solutions were obtained by Nakamura [6]. The representa­
tion of periodic waves as sums of solitons was given by Whitman [7]. Solutions that 
are bounded for all time and those that blow up in finite time were observed ana­
lytically and numerically [8]. The explode-decay solitary waves of the spherical” 

Boussinesq equation were found by Nakamura [9]. For the Boussinesq equation 
which is known to possess the Painlevé test [10], a Bäcklund transformation was 
defined [11]. The phase-shift was matched for two small waves in the Boussinesq 
case of head-on collision [12].

Following Miles [13] solitary waves interaction can be divided into two classes.
(1) Weak interaction, for which the difference in speeds of the two colliding 

waves is at a range of 0(1) with respect to a speed Vq of the reference moving 
frame, and

(2) strong interaction, for which the difference in speeds is 0(a) with respect to 
the same velocity Vq, where a is a measure of the amplitude ratio of either wave.
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' The distinction between the two classes shown above is that for weak interaction 
time is relatively short, both solitary waves emerged unchanged to 0(a) and the 
interaction is 0(a2), while for strong interaction, the interaction time is relatively 
long and the interaction £ is an 0(a) term [14].

A special case of strong interaction is the so-called resonant interaction. To 
define this we present two-soliton solutions in the following linear form:

4 u = (log/)XI! (1)

/ = 1 + e«* +e(i +C(wi,ki)e(l+it , (2)

£i = kiX — Wit , * = 1, 2 . (3)

A theoretical analysis of this solution shows that in the limits C —» 0 or C —» oo, the 
interaction region becomes infinite. This may be thought of as soliton resonance.

Solitary waves interaction was extensively studied by many authors. The obli­
que interaction of a large and a small solitary wave was discussed [15]. Hirota et al. 
[16] considered one-dimensional soliton resonances of the Sawada-Kotera equation, 
a model equation for shallow water waves, and the following equation

F(Dx,Dt)f f = 0, (4)

where F may be both a polynomial or exponential function of the bilinear operators 
Dx and Dt satisfying the conditions

F(0,0)=0;, F{Dx,Dt) = F(-Dx,-Dt) . (5)

Two-dimensional soliton resonances of the Kadomtsev-Petviashvili equation were 
discussed by Ohkuma et al. [17] and Tajiri et al. [18]. The authors showed that 
the soliton resonances occur not only between two solitons but also between three 
solitons. The quantum nonlinear Schrôdinger soliton was studied to show that it 
breaks up into solitons resonantly with external force [19].

Nonlinear interaction between short and long capillary-gravity waves was stu­
died by Kawahara et al. [20]. The short and the long waves can exchange energy 
in a resonant manner, if the group velocity of the short wave is close to the phase 
velocity of the long wave. A general theory for interaction between short and long 
waves was presented by Benney [21].

Initial value problems of triply solitary waves ih resonant interaction of three 
wave packets was solved numerically. These solitary waves were found to be solitons 
which are formed by nonlinear interaction of the packets [22]. The quantum three- 
wave interaction models were introduced for various choices of statistics [23].

Resonant interaction in shear flows were reviewed by Craik [24].
In 1982 Tajiri and Nishitani [18] discussed resonant interaction of solitons taking 

the Boussinesq-type equation which now is rewritten in a slightly different form

Ujt 4- (u }xx 4- uxxxx = 0 . (6)
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Two-soliton solution of this equation may be obtained via the bilinear Hirota’s 
method introducing to equations (1) - (3) the following expressions:

Г = ~ ~ (W1 ~ ~ (fc.i ~ (7)
(w; + W2)2 T (k\ + — (ki + '1C2)2

w? -T k?(k; - 1) =0 , »=1,2. (8)

In this note, we will show how two solitons interact strongly witch each other 
taking equations (1) - (6) into consideration. Figures 1-4 present the profile of the 
scaterring with various C, ki and k?. The head-on colliding solitons are exhibited 
in Figures 1 and 2 for C = IO-10 and C = 105, respectively'.

Fig. 1 Two-soiiton profiles with k\ — —, C — 10 10

From Figure 1 we can explicitly observe the attractive behaviour of two solitons 
which meet together at time t = —50. New unmoving soliton is the result of the 
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encounter and lasts in its own static state till the moment of t = 0. Diminishing 
a value of C, we bring about the increasing of the interaction width. It suggests 
that soliton resonances in this case {C —► 0) will rely on creation of an unmoving 
virtuaj soliton which will fall to pieces at t —» oc.

The other type of head-on strong type interaction is presented in Figure 2. It 
happens for C > 1 and we chose C — 10s. Solitons in this case do. not run across 
but repulse, being some distance from each other. This distance broadens when C 
tends to infinity. So in a resonant interaction case (C —» oo), solitons repulse being 
in infinity distance off.

Consider now the problem where the two solitons are placed on the real fine 
with the taller one to the right of the shorter one (Figures 3 and 4). The shorter 
soliton will travel faster to the right, catch up with the taller one and they will 
undergo a nonlinear interaction according to equation (6).

Figure 3 offers a view of two such solitons that are travelling in tlie same direc­

tion where C and h; are chosen to be 10-6 and respectively. The larger soliton 
is restrained by the smaller one. An interaction is so strong that the larger soliton 
breaks up*into two parts at time t = —30. One of these parts moves to the right 
and becomes the smaller soliton but the second part turns back and fuses with the 
previous smaller soliton aUtime t = —10 creating the larger one. Resonance in this 
case (C —» 0) will be revealed by the repulsion between solitons being at infinity 
distance from each other.

From Figure 4 we see the interaction of two solitons moving to the right with

C = 103 and kj. = -.
3

They combine at time t = —110 creating a new virtual soliton 
which will disintegrate at time t = 90. In Figure 4 the fusion part is presented only.
In the resonance limit (C —> oo) virtual soliton will crumble at time t —» oo. The 
phase shift 6 of one soliton may consist a measure of the interaction region width, 
so 6 ■= ±oo corresponds to soliton resonance.

It seems that the results of the paper may explain some features of the behaviour 
of solitons on the surface of the planet Jupiter.

APPENDIX

Before we apply the bilinear Hirota’s method, we introduce the operators Dt, 
Dx, and various products of them by

D?ab = (A-A? a(t)6(t') . (A.1)
y (Ji at J

( д d \n [Dnxab = ^-^7 • (A.2)
\ ox ax' J : _.X ' IX—X

Equation (6) reduces to

(Ą2 - Dx + Dx) f f = O (A3)
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Fig. 3. Two-solitons profiles with ki = I, C = 10"6
3
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Fig. 4. Two-solitons profiles with fci = —, C = 103.
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by the transformation
u = (log /)хя . (АЛ)

We expand f as power series in small parameter e:

f = fo + efi + e2f2 + • • • , (A.5)

where fi, i = 0,1, 2,..are assumed to tend to zero as x —» —oo.
Substituting (A. 5) for equation (A. 3) and collecting terms with the same power 

of e, we obtain

e : (D2 - D2 + Pj) (A • fi + fi • fo) = 0 , (A.6)

e2 : (D2 -D2x+ Dx) (f0 ■ A + A A + A • A) = 0 , (A.7)

s3 : (Pf — D2 + Dx) (f0 • A + fi • A + A • fi + A • fo) = 0 , (A.8)

and so on. We start with the following solution

A = A , £ = kx — wt , ( A.9)

where A, k, w are constans which may be described by the initial problem.
From (A. 6) we have linear dispersion relation

w2 + k2(k2 - 1) = 0 . (A.10)

Two-soliton solution may be obtained if we choose A 33 follows:

f!=Ae(l+B^, (A.ll)

where w,- and kt, i — 1, 2, satisfy the following relation derived from equation 
(A. 6):

w? + Ä:?(fc?-l) =0. (A. 12)

Solving equation (A. 7), we find the particular solution

f2 = Ce(1+it, (A.13)

. c _ - k2)2 - (wi - w2)2 - (*i - k2)4] , .
A[(W1 + w2)2 + (ki + fc2)4 — (ki + k2)2]

and from (A. 8) follows that all higher-order terms are zero. Finally, we can write 

f = f0 +Ae(l + Bei3+Ce(l+il . (A.15)
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STRESZCZENIE

W pracy rozwiązano problem wzajemnego odziaływania dwóch solitonów, korzystając z dwu- 
liniowfej metody Hiroty w przypadku, gdy zachodzi między nimi silne oddziaływanie.
Wyniki obliczeń komputerowych zostały przedstawione w formie wykresów i przedyskutowane.

РЕЗЮМЕ

В работе решен вопрос взаимодействия солитонов при воспользовании метода 
Гирота в случае их сильного взаимодействия. Сделан численный расчёт и ре­
зультаты показаны на временных диаграммах.
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