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1. Introduction.

In the following article we want to show how to solve the problem of propagation of 

light in a planar waveguide structure with a graded refractive index. The method here is a 

consequence of Feynman path integration formalism [1]. This formalism was developed for 

quantum .mechanics and can be applied to solve the typical quantum mechanical 

problems [1,2].

#) Work supported from RRIOS Fund.
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S. Schrödinger equation in paraxial optics. ##)

In the case of light propagation in media with graded index profile the Schrödinger— 

—like equation appears in the so called paraxial optics [3,4]- In order to have such a 

situation consider the planar waveguide directed along z axis. The coordinate x is 

perpendicular to the propagation direction and measures the lateral dimension of the 

waveguide. The Schrödinger equation for this case reads [4]:

1 n ={- +ni«} =11 e<x-2> (1)
Here n^(x) is the deviation of the refractive index n(x) from its constant value Hq: 

п(х)=Пд+П|(х), A is the wave lenght of propagated light and E(x,z) is the electric field in 

the waveguide. In this equation the role of the Planck constant is played by the reduced 

wavelength A/2ir of propagated light.

To solve this equation one can use the Green function G(x,x';z) which is defined as 

a propagator of the point signal as follows:
[H - 4]<Xx,x';Mo) = ^M')- (2)

The Green function G(x,x';z) is related to propagation constants {^m} through the relation 

known from the analog situation in quantum mechanics. The formula reads:

G(x,x';z) = |=0 um(x) exp(i£mz) u * (x1), (3)

where um(x)=<x|m> is a normalized eigenfunction and ß^ is the eigenvalue of the H 

operator defined in eq.(l):

H|m>=-(A/2)r)£m|m>. (4)

By the use of the orthonormality of the modal eigenfunctions um(x), one can find the 

useful relation between G and {^m}> which does not exploit the explicit form of these 

functions. One has

##) chapter and Chapter 3 follow closely the material of paper [5] by Hawkins and 
serve as a guide for understanding Chapter f.



Feynman Path Integration in Optics... 9

Tr G(x,x';z) = J*G(x,x;z)  dx =*  E exp(i^mz). (5)
—a> m=0

In the next step we use the analitical continuation of the Green function G(x,x';z) 

by the substitution r = —iz. If т is large and positive then the largest contribution to the 

sum in equation (5) comes from the lowest eigenvalue of IH operator. Thus one has the 

relation
/Îq = — lim i In Tr G(x,x';iT), (6)

т-»ш
which is the known Feynman—Kac formula [2]. In the same limit of large r one can also 

obtain the intensity distribution function

T-ta> ' ’ '

3. The evaluation of the Green function.

In order to evaluate the Green functions needed for calculation of the propagation 

constant of the fundamental mode and the intensity distribution function Iq one can use 

the short time approximation [3,5—7] and exploit the group property of the evolution 

operator exp(—Wz/A). In the case of light propagation equation the short time corresponds 

to short distance. For the short distance slice 2e one has

G(x,x';2ie) = f Gfr^jie) G(x",x';ie) dx'.' (8)

If we chose the final distance equal to r then the successive iterations of this equation give 
the Green function corresponding to r. In the following we take r=2^{, where 2^ is the 

convenient number of distance slices in the distance interval r, each equal to e. Thus, we 

have made the distance discretized for our numerical purposes. If N ( or 2 ) is large then 

this approximation converges to the "smooth" Green function G(.,.;ir).

The short distance propagator G(x,x';ie) is given by [3,5,6]
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G(x,x';i«) = <x|e“2xełł/A)|x'>«

« exp{-[n1(x)+n2(x')]} exp[- (9)

The integral in eq.l can be calculated by using rectangular quadrature approximation of 

the form
M

G(x,,x.;2if) я Д E G(x. ,x.;ie) G(x;,x1;ie), 
K 1 - j=0 K J J 1

(10)

where Xjg(—C,C) and j=l,...,M. The parameter Д is the griding distance of x coordinate 

and is small enough to make the quadrature approximation as good as possible. The cut off 

parameter C is finite in calculations. However its value is larger then the lateral measure of 

the considered waveguide. As it was pointed out in [3] the convergence of the iterating 

procedure is obtained when both parameters △ and t fulfill the condition ПрД /Ae < 0.1. 

This last criterion was also tested in our calculations.

The iteration procedure described above can be make very fast if one exploits the 

properties (reality and symmetry) of the Green matrices G(ie) for the infinitesimal distance 

e and G(ir) for the finite distance r. From equation (10) one has
,N 

(G(ie)]2 . (11)

Diagonalizing real and symmetric matrix G by a proper matrix S one finds 
_l _l 2N-1 2N 2N-1 2ND(ir) = S 1G(ir)S=S ХД2 X[G(i€)r 5=ДГ (it), 12)

where D(...) is the diagonal matrix with the eigenvalues of G(...). These results together 

with the approximation (10) give for the trace operation (eq.5) 
qN „N

TrG(ir) = Дг Ed2k, (13)

where d^ are the diagonal elements of D(ie). 3

2N—1G(ir) = Д2 1

3. Example 1: Single strip.

Consider the simple case of a strip waveguide with the graded refractive index in 

which the index deviation is
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f \ onП1 (x) =------ я---------  ,
cosli (2x/h) 

where fa is the maximum deviation from Hq and h is the lateral measure of the strip. The 

solution of the analogous quantum mechanical problem is discussed in Landau and Lifshitz 

textbook on quantum mechanics [8] and the expression for propagation constants {/?m} is 

given in the Kogelnik's paper [9]. The formula reads

^m = ~<15) 
V

where
Ss^fll-^fa^)2]1/2-!}, (16)

and m is the mode number. We will use the following values of the waveguide parameters: 

Uq=2.2, fa=0.006, corresponding to the Ti diffused in LiNbOj [3,9].

Table 1. Propagation constant for zero mode ß^ (A=1.3 дт) .

А[дт] £0(calc) ^g(exact)

6 -0.01903 -0.01903
7 -0.02020 -0.02020
8 -0.02112 -0.02112

*) This result coincide with that in Table 1. of paper [5].

Figure 1 shows the index profile and the calculated intensity distribution Iq(x) for 

the fundamental mode in the case of strip with lateral dimension Ь=6дт and the typical 

length of the propagating light, A=1.3 дт. Exact and calculated values of ß^ for different 

widths h are shown in Table 1. Notice a very good agreement of the calculated values of 

propagation constants with the exact ones. This example serves also as the test of our 

numerical procedure.
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5. Example ê: Double strip.

As a more complicated example of application of the Feynman path integration let 

us consider the two strip planar waveguide with completely symmetric index profile. The 

index profile is modelled by smoothly joint parabolic curves or by two Gauss functions. 

The parameters listed in Figure 2 as well as in other figures in this paper are chosen so as 

to be close to realistic situation like this in Chapter 3. The results of numerical calculations 

Eire shown in Figures 3 — 10. By the use of different models and various parameters one can 

show the basic properties of the solutions of Schrôdinger equation (1).

Figures 2 to 6 show the behaviour of the intensity function for various widths and 

heights of the index profile and for different distance between strips. For the symmetrical 

index the intensity distribution is also symmetrical. In the case of well separated strips the 

disturbed symmetry causes the signal to disappear either in the lower strip or in the 

narrower one. For more overlapped strips the intensity distribution is located in one of the 

strips and shows a hump at the side of the other strip.

The similar situation can be observed for the refractive index built of two Gauss 

functions. The deviation of the refractive index is

n (X) = -^xp[-+ —^-exp[- <£221?]. (18)

Here the standard convention for parameters is used. The results are shown in Figures 7 to 

,10. The interesting results for this case are those for asymmetrical widths and/or 

asymmetrical heights of the refractive index profile. The propagation constants for 

fundamental mode are given in each figure.

6. Discussion.

The above examples show that the method of path integration is effective in the one 

dimensional case and for various kinds of refractive indices. Its application is independent 

on the symmetry property of the index profile. The similar procedure can be applied to 
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determine the propagation constants for higher order modes.

The path integration can also be realized by using the Monte Carlo method [6]. 

However the calculation times in this case are one order of magnitude larger as compared 

to these of the present method.

It seems that the described procedure can be succesfully applied to two dimensional 

cases. However the large matrices entering the calculations will considerably slow down the 

effectivness of the matrix multiplication algorithm and the time of calculations will be very 

large.

7. References

1. Feynman R. P., Hibbs A. R., Quantum Mechanics and Path Integrals 
(McGraw-Hill, New York, 1965).

2. S c h u 1 m a n Ł. S., Technics and Application of Path Integration (Wiley, New 
York, 1981)A

3. H a w к i n s R. J., Applied Optics, 26, 1983 (1987),
G e г у C. 0., K i e f e r J., Am. J. Phys. 56 (11), (1988).

4. Snyder A. W., Love D. J., Optical Waveguide Theory (Chapman and Hall, 
London, New York, 1983).

5. F e y n m an R. P., Statistical Mechanics. A set of Lectures (Benjamin, Inc., 1972).

6. C r e u t 3 M., Freedman B., Ann. Phys.fRU.') 132, 427 (1981).

7. ScherrG., Smith M., Baranger M., Ann. PAys.(N.Y.) 130, 2290 (1980).

8. Landau Ł. D., Lifshitz E. M., Quantum Mechanics (Wiley, N.Y., 1970).

9. Kogelnik H., in Integrated Optics, T. Tamir, Ed. (Springer—Verlag, New York,
1979) pp. 13-81.



14 A. Baran, J. Szymona

Lateral distance in Pn
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Figure 2.

Lateral distance in P*

Figure 3.

Lateral distance in pn



16 A. Baran, J. Szymona

x‘ bust

Havelen. - 1.3000 Pa 

n0 = 2.2000

Width 1 - 4.0000 PH
Иах. 6nl - 0.0060

Width 2 ; 6.000S рн

Hax. 6n2 - 0,0060

Distance - 10.0000 pa

a - -0.020532 1/PB

Lateral distance in pn

Lateral distance in Ph
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Lateral distance in »
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Figure 7.

Lateral distance in pn

Figure 8.

Lateral distance in pn
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Figure 9.
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Lateral distance in Pn

Figure 10.

La+eral distance in Pn




