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1, INTRODUCTION

Calculating the electronic energy band structure of solids 
by means of the linear-combination-of-atomic-orbitals one usually 
keeps interactions only up to nearest neighbours. Nevertheless, 
it is known, that for example, for the body centered cubic (bcc ) 
crystal lattice the strength of the next-nearest-neighbour (nnn) 
interactions is not small in comparison with the nearest-neigh- 
bours ones 111. In [21 it has been shown that inclusion of nnn 
interactions has greatly improved the accuracy of the calculated 



490 E. Taranko, R. Taranko, M. Piłat

(in tight-binding method) valence band structure and density of 
states for diamond and zincblende ciystals. Kiwi M. et al. [3] 
have investigated the influence of nnn interactions and overlap 
between orbitals centered on neighbouring atoms on the band 
structure of the Bethe and diamond lattice. They showed, that 
inclusion of nnn interactions changed considerably the electronic 
structure of these solids.

The purpose of the present paper is the calculation of the 
density of states and electrical conductivity of disordered al­
loys with nnn interactions taken into account. The remainder of 
this paper is arranged as follows. In Sec. 2 we present a model 
alloy Hamiltonian and investigate the influence of nnn interac­
tions on the density of states of a pure bcc crystal. Next, in 
Sec. 3, we introduce the nnn bcc lattice Green functions and give 
the recurrence equation for them. In Sec. 4 we present the for­
mulas for de and ac electrical conductivity with nnn interaction 
included. Numerical results for a density of states of a pure 
nnn bcc crystal and for a binary alloy crystal we present in 
Sec. 2 and 3, respectively, and numerical results for a de elec­
trical conductivity in Sec. 4.

2. THE ALLOY HAMILTONIAN

Let us consider a substitut!onally disordered binary alloy 
AxB1-x A, В randomly distributed at sites of a cubic
perfect lattice. The alloy is described by a single s-like con­
duction band and is assumed to' be treated in the tight-binding 
approximation in Zannier’s representation. The Hamiltonian reads:

H = <n| + > 4m <ml = <1a)
n n/m

(nn ) (nnn )

= "Zi11 >€n<nl +^5 Z|n ><m|+ h2 5"£ln > <m| (1b) 
n n^m n/=m
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Here the |n> are Cannier functions localized at the n-th 
site. The diagonal elements may be regarded as random atomic 
levels which take one of two nossible values €, or ë_ defending A is
on whether an atom of type A or В occupies the site n. As 
we can see from Eq.(1 ) we assume the hopping integrals Ьгш, 
responsible for the propagation of electrons, to take on a non- 
-zero value only when "n" and "m" are nearest-neighbours (nn) 
and next-nearest-neighbours (nnn^. In general hopping integrals 
can take six possible values h/. \ h,Q \ hjl \ h5?\ h/2 \ kJ?

AA AB ’ BB AA AB BB 
according to the occupation of sites "n" and ’'m", but in the 
following we assume constant h^ and h2 values, independent on 
the nature of the atoms located at nearest or next-nearest-neigh­
bour lattice sites. This means, we consider diagonal disorder, 
only. Sfe assume the lattice of the alloy to be body centered cu­
bic. The Hamiltonian of the ideal crystal composed, say of A-type 
atoms reads:

(nn ) (nnn )
HA = У I n Xnl + h1 7ln >< m| + h2 25_»n><ml (2)

n n^m (n/m

This Hamiltonian in "k", Bloch-like representation defined by

-1/2 “lk ®j 
lk> = N e I J >

j

is diagonal, and the eigenvalue £.(k) is given by 

akx ak ak
£.(k) = €, - 8h. cos--- cos —cos —я---A 1 2 2 2

„ ak _ ak _ ak i- 4h2 £cos2 —- + cos2 —+ cos2 —-] + 6h. 
2 2 2

(5)

So the pure A(B) component band is centered at ^A(€B) and has 
a width 2W. (2Wg) = léh^ (the band extends from ёд(ев) - Sh^ - 
- 6h2 to <д(€3) + 8h1 - 6h2)..
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3. THE DENSITY OF STATES AND "nnn" LATTICE GREEN FUNCTIONS

The lattice Green functions for Hamiltonian with only 
nearest-neighbour hopping integrals included has been widely 
used [5-12]. Because of additional interactions included in the 
Hamiltonian (1) we must introduce the "nnn" lattice Green func­
tions. They are defined in the following way:

. ( 'I. cos lx cos mx cos nx dx dy dz
G (lmn;E,a )= \ —--------------------------------------- -----------------------

о E+ + cos x cos у cos z + a(cos^x+cos y+cosdz )

(5) 
where E+ = E + io.

The density of states of the ideal crystal may be written 
in terms of these "nnn" lattice Green functions as:

D(E) = - g^- Im G(000-, k/2)t к = 4^ (6)

Problem of calculations of the density of states for a pure bcc 
lattice with nnnn" transfer integrals included has been investi­
gated in papers [13-15]. Nevertheless, for the sake of complete­
ness and for latter discussion we calculate this density of states 
for several values of the ratio of transfer integrals h^ and h2 
and present in Fig. 1. For a computational convenience we used 
the half bandwidth as an energy unit. The inclusion of the "nnn" 
transfer integrals in Hamiltonian (-1) changes the shape of the 
density of states in a rather clearly way.

Firstly, the unphysical divergence in the middle of the band 
disappears. Secondly, the maximum moves in the upper energy band 
side (for h2/h.| < 1 ) and simultaneously decreases and broadens. 
We can.see, especially near the maximum of the curve D (Fig. 1) 
for h2/h1 = 0.5 some similarity to the shape of the SC density 
of states (with "nn" transfer integrals in Hamiltonian included, 
only). This similarity increases with increasing ratio h2/h1 aid 
in limit h^/h^ —*•  °° one can obtain the "nnn" sc tight-binding
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Fig. 1. The density of states for a pure "nnn" bcc crystal (in 
tight-binding representation). The parameters hg/h^ are: A - 0.0, 
В •— 0.1, C — 0.3» D — 0.5. Energy in units of half-bandwidth.

density of states (for s-like states) - see, for comparison 
lu, 15].

For a lattice Green functions defined in Eq. (5) we can 
write the following equation:

(E + ^k )G(1 ;E,^j)+-g 5 ® »E ) + g X G ( 1 + <S »E ,^ ) =
S Î 1 ,0 

(7)
The first summation is performed over lattice vectors connecting 
nearest-neighbour atoms and the second one over the next-nearest- 
-neighbour atoms. From this equation, taking various crystal vec­
tors 1 into consideration, we can obtain relations between dif-
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ferent "nnn" lattice Green functions. For instance, taking 
ï = (000 ) we have:

(E + |k) G(000jE,|) + G(111jE,^) + ■ęG (200łE,Tj) = 1 (8)

and for T = (111):

(E + -|k) G(OOO;E,^) + ^[g(222;E,^) + JG (220;E,^ ) + JG (002jE^) +

+ G(000}E,^)] + к [g(111}E,^) + G(11JjE,^)] = 0 (9)

Not all of the Green functions we get in Eqs. (8) and (9) are 
independent. In a case of the "nn" lattice Green functions it is 
known [21] that for the body-centered cubic lattice there are 
only three independent Green functions, and these are usually 
taken as G(OOO;,E), G(200;E), G(220jE).

The other Green functions can be obtained from them through 
relations similar to these represented in Eqs. (8) and (9). In 
our case the number of independent Green functions is greater, 
but still the relations (8), (9) and those obtained from Eq. (7) 
for other 1 vectors may be helpful in calculations.

4. DC AND AC ELECTRIC CONDUCTIVITY

In the random alloy problem many investigations have been 
devoted to the calculation df the electronic density of states, 
electric conductivity, Hall coefficient (see for example [16-19]). 
For these problems the coherent potential approximation (CFA) 
and its generalization (off diagonal disorder, cluster effects, 
short-range-order, long-range-order and so on) have been found 
useful. Ue use the coherent potential approximation formulated 
by Soven [20] (see also CPA method for ternary alloys [19] ). 
The quantity we wish to determine first for the alloy is:

<$(E)> = G(E) = [E-W- ^(E)]"1 (10)
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ENERGY,FERMI ENERGY

Fig. 2. The density of states for the alloy described by para­
meters: A — hg/h-j = 0,5’ x = °’5» B — h1 = °’5’ x ? °’5, 
Positions of an atomic levels are: A — €a’ &B G’
В — £д» ’ H (°ee fig" 5 )•

Fig. 3. The density of states for the alloy described by para­
meters: x = 0.3 and h2/h1 is 0.0, 0.3, 0.5 for curves А, В, C, 
respectively. Positions of atomic levels: A----—* L,K-, 
B- eA,€B-*G,F; c-eA,<e-B_w,H.
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the configuration average of the single-electron Green function. 
Here the operator Tf is the second term on the right-hand side 
in Eq. (1a) and "5,$) is the self-energy operator. In a single 
site approximation (we neglect the statistical correlations be­
tween the atomic scattering matrix and the effective waves coming 
from other sites) the CPA self-energy ^(E ) is obtained as a so­
lution of the following equation [.181 :

5(E) = x tA + (1 - x)<B + (^A- T(E)) G(E)(€B - T(E))

(11)
The knowledge of the self-energy enables us to calculate elec­
tronic density of states for our model binary alloy. Results are 
shown in Figs. 2 and 5. 'Ее have calculated the density of states 
for four values of the ratio h^/h^ i.e. for 0.0, 0.1, 0.5 and 
0.5. In Fig. 2 we present density of states for h2/h1 = 0.5 and 
for two values of the concentration of A-type atoms: x = 0.5 
and x = 0.5. Ее can observe, that the peak’s position do not de­
pend on the concentration of various sorts Of atoms, in contrast 
to the situation in the next Fig. 5. Here we have density of 
states curves for a constant concentration x = 0.5 and for dif­
ferent values of a ratio h^/h^ = 0.0, 0.5 and 0.5. As is
raised the peaks of the D (E ) move in the upper band energy side 
and simultaneously the main peak decreases and that’s one cor­
responding to the"impurity band” increases. So, changing the 
ratio bg/h-i we can obtain the density of states the same as for 
"nn” Hamiltonian but for different positions of band centers and 
cone ent rati on s.

The de electrical conductivity tensor is given by the Kubo- 
-Greenwood formula [16]:

gdr = --- jdEÇ-— ) <Тг[р*  S(E - H)p<*  <S (E - H)]> ,(12) 
m-£2 4 dE

where e, m denote the charge and the mass of electron,-Q. - 
the volume of a crystal, p - the momentum operator, f(E) - the 
Fermi-Dirac distribution function and H - the Hamiltonian of the 
system. The sign <....> denotes the average over configura­
tions. Since this method was described elsewhere [16, 1Sj, we 
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quote here the final form of the formula

2 2
в = W Я (13)

” к

where summation is carried, over the Brillouin zone of the bee 
crystal, v*  (k) is the -th component of the electron velo­
city and Im G (к, г|+) = Im [4|+ - è(k) - "52(is the spec­
tral density of states of the averaged crystal. Here we calculate 
exactly the function 'vfk) contrary to commonly, used approximate 
formula [161, and finally obtain

2 Г
Ш Ch^f^x.y.z) + 2h1h2f2(x,y,z) + h2f3(x,y,z)].

1------------------- Im -------------------------- I obdytlz (14)
tfep - £(k) - Re ICEy)!2 + [Im

where:
fl(x»y»z) = sin2x cos2y cjs2z + cos2xsinLy cos"z+cos2x ccs2ysin2z

^2(х,У,г) = °°sx cos у cos z (sin2x + sin2y + sin2z)

£j(x,y,z) = ^(sin2 2x + sin2 2y + sin22z) (15)

The frequency dependence of the real (absorptive) part of the ac 
electrical conductivity tensor is described by [161:

jd^[f(ij)-f(^+£o ^Trfv^C^-HJv/*  §(^+«-Н)П> .

(16)

following the way described, for example in [41 we obtain

6T(tó) = “ Rej d^-^-jf(^) - f C^-ł-co) "] >
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4>(5(f+» )) -ф(5(^-)) )) -£(S(p

7<7‘ + ») - X('Y’) ♦uJ-Jty")

Here the function <p reads (in terms of a "nnn" bcc lattice Green 
functions ):

4>(z) = ^-^[(1 + k2)G (000;z1 ,k1 ) + G (200;z1 ,k1 ) - G(220;z1,k1J - 
4h

- G(222',zy,k^) + 4kG (111;z1,k1 ) - 4k G^llłZ^kp -

- k2G (40012. ,k1 )1;
1 1 J (18)

_ _ z 3 h2 k _ 1 h2 k _ h2 
zi - -gq 7 ki -7iq’ k - h;-

Numerical results of the de electrical conductivity are pre­
sented in Figs. 4 and 5. The conductivity is plotted as a func­
tion of the Fermi energy By, and half of the bandwidth of the 
pure material is taken as a unit of energy. In Fig. 4 we show S'for 
x = 0.3 and for two values of ratio hg/h^ equal to 0.3 - curve A 
and 0.5 - curve B. Ue can see that conductivity depends on a va­
lue of the next-nearest neighbour transfer integral, it is great­
er for greater ratio hg/h^. This is consistent with the physical 
picture of the motion of electrons in systems described by Hamil­
tonian (1 ), namely, electrons have an additional possibility for 
propagation in- crystal.

In order to give a simple and transparent picture of the in­
fluence of "nnn" transfer integrals on de conductivity we present 
in Fig. 5 conductivity curves for the alloy described by concen­
tration of A atoms equal 0.5 and hg/h^ =0.5 - curve A and hg/h^ = 
= 0.0 - curve B. In a case of "nn" Hamiltonian a conductivity is 
a symmetrical curve (and density of states, too). For the "nnn" 
Hamiltonian situation is quite different. Now conductivity is a 
strongly asymmetric function of E^ and an "impurity" part of this 
curve has a smaller value in comparison with the "host" part, al­
though is located in energy region of increased values of a den­
sity of states.
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FERMI ENERGY
Fig. 4. The de electrical conductivity for the alloy described 
by parameters: x = 0.3 and h^h. equal to 0.3, 0.5 for curves 
A and B, respectively. £

Fig. 5. The de electrical conductivity (curve A) and density of 
states (curve B) of the alloy described by parameters: x = 0.5, 
hg/h-j = 0.5. Curve C - de conductivity for "nn" Hamiltonian - 
for comparison.
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In conclusion, we can say, that the conductivity curves as 
functions of Fermi energy level for the "nn" and "nnn" Hamilto­
nians may be quite different depending on the ratio hg/h^. This 
means, that when we want investigate the behaviour of the de 
conductivity for a specific model Hamiltonian of a solid the pa­
rameters of this Hamiltonian must be chosen very carefully.
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STRESZCZENIE

W pracy obliczono stałoprądowe przewodnictwo elektryczne 
stopu opisanego hamiltonianem ciasnego wiązania zawierającym 
różne od zera całki przeskoku dla najbliższych i dalszych sąsiaJ 
dów. Wyniki obliczeń numerycznych wskazują, że dołączenie do 
opisu całek przeskoku dla dalszych sąsiadów całkowicie zmienia 
zależność przewodnictwa od energii Fermiego.

РЕЗЮМЕ

В работе вычислено статическую элекропроводность справов 
в модели учитивающей матричные элементы перехода мезду ближай­
шими и дальнейшими соседами. Результаты показывают как функция 
фермиевской энергии сильно зависит от величины этих параметров.




