K. MURAWSKI, R. KOPER

On Construction and Solution of the Higher-order Kortewega-de Vries Equation

O konstrukcji i rozwiązaniu równania wyżzego rzędu Kortewega-de Vriesa

О конструкции и решении уравнения высшей степени Кортевега-де Фриса

> Dedicated to Professor Stanisław Szpikowski on occasion of his 60 th birthday

Among the family of nonlinear partial differential equations it is possible to distinguish the class of equations solved via the inverse scattering method. Basing on the Lax's criterion this method is not strictly analytic. So the problem of construction of equations, which may be solved ria this method, acquires special significance. One has to find a skew symmetric operator B which is relevant to the appropriate nonlinear partial differential equation and fulfils the criterion of solution of a given equation, the so-called Lax's criterion [1]

$$
\begin{equation*}
u_{t}=[L, B] \tag{1}
\end{equation*}
$$

where subscript t implies partial differentiation

$$
\begin{equation*}
u_{t} \quad \frac{\partial u}{\partial t}, \tag{2}
\end{equation*}
$$

$[L, B]$ is the comutator

$$
\begin{equation*}
[L, B]=L B-B L, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
I=-\frac{\partial^{2}}{\partial x^{2}}+u(x, t)=-D^{2}+u \tag{4}
\end{equation*}
$$

is the well-known Sturm-Liouville operator with u playing the role of the potential depending parametrically on time t. When the commatar [L, B] is the operator of multiplication by a number, equation (1) is equivalent to a certain partial differential equation.

To prove this we take the operator B in the following form

$$
\begin{equation*}
B=D^{5}+b_{1}(x) D+b_{2}(x) D^{3}+D b_{1}(x)+D^{3} b_{2}(x) \tag{5}
\end{equation*}
$$

It is easy to note that B is a skew symmetric operator. We try to choose the coefficients b_{1} and b_{2} in such a way that one commutator [I, B] is equibalent to the operator of multiplication by a number. With this end in mind we equate to zero the coefficients by the operators D, D^{2}, D^{3}, D^{4}. The coefficients closed to D and D are equal to zero in the trivial way. Thus we obtain

$$
\begin{align*}
& -4 b_{1 x x}-5 b_{2 x x x x}-5 u_{x x x x}-6 b_{2} u_{x x}-6 b_{2 x} u_{x}=0 \tag{6}\\
& 4 b_{1 x}+9 b_{2 x x x}+10 u_{x x x}+6 b_{2} u_{x}=0, \tag{7}\\
& 4 b_{2 x x}+5 u_{x x}=0, \tag{9}\\
& 4 b_{2 x}+5 u_{x}=0 . \tag{9}
\end{align*}
$$

In this way equation (1) is reduced to the form

$$
\begin{equation*}
-b_{1 x x x}-b_{2 x x x x x}-3 b_{2 x} u_{x x}-u_{x x x x x}-2 b_{2} u_{x x x}=u_{t} . \tag{10}
\end{equation*}
$$

Note that equations (8) and (9) are dependent. So from equation (9) we get

$$
\begin{equation*}
b_{2}=-\frac{5}{4} u+c, \tag{11}
\end{equation*}
$$

where c is any given integration constrant. In view of this equation the set of equations (6), (7) are reduced to the following form

$$
\begin{align*}
& 16 b_{1 x}-5 u_{x x x}-30 u u_{x}+24 c u_{x}=0 \tag{12}\\
& 16 b_{1 x x}-5 u_{x x x x}-30 u_{x}{ }^{2}-30 u_{x x}+24 c u_{x x}=0 . \tag{13}
\end{align*}
$$

Since these equations are dependent, from (12) we obtain

$$
\begin{equation*}
b_{1}=\frac{1}{16}\left(5 u_{x x}+15 u^{2}-24 c u\right) \tag{14}
\end{equation*}
$$

Substituting equations (11) and (14) into equation (10), after making some manipulations, we see that (10) acquires the form

$$
\begin{align*}
& -15 u_{x x x x x}-10 u_{x x x}+40 u_{x x} u_{x}+8 c u_{x x x}+30 u^{2} u_{x}- \\
& -48 c u_{x}=16 u_{t} . \tag{15}
\end{align*}
$$

We have thus obtained in this way the family of nonlinear differential equations parametrized bythe constant c. These equations are called the higher-order Korteweg-de Vries equations.

The most sigaificant use of the nonlinear transformation is the development of the inverse scattering method for exact solution of the above mentioned equation (15). The literature treating the inverse scattering problem is extensive, and the reader is referred to the papers of Nowikow [2], Gel'fand and Levitan [3], Zay and Moses [4], Wadati, Konno, and Ichikawa [5], Fokas and Ablowitz [6].

With this end in mind, let's determine the eigenfunction of the Sturm-Liouville operator L. As the spectrum remains invariant as u evolves with t, in a complex-valued repreaentation the wave function ψ has the asymptotic behavior

$$
\begin{align*}
& \Psi(x, t)=a(k, t) \exp (-i k x)+b(k, t) \exp (i k x), x \rightarrow-\infty \tag{16a}\\
& \Psi(x, t)=\exp (-1 k x), \quad x \rightarrow \infty \tag{16b}
\end{align*}
$$

The amount reflected $b(k)$ is the reflection coefficient and the amount transmitted $a(k)$ is the transmission coefficient. exp (-ikx) and exp (ikx) represent the left-going and right-going waves, respectively. Nevertheless, for the discrete spectrum the rave function can be written as follows

$$
\begin{align*}
& \varphi\left(\alpha_{n}, x\right)=b_{n}\left(\alpha_{n}, t\right) \exp \left(-n^{x}\right), \quad x \rightarrow-\infty \tag{17a}\\
& \varphi\left(\alpha_{n}, x\right) \exp \left(-\alpha_{n} x\right), \quad x \rightarrow \infty \tag{17b}
\end{align*}
$$

It can be shown that the function

$$
\begin{equation*}
g=\psi_{t}+B \psi \tag{18}
\end{equation*}
$$

is a eigenfunction of the operator $L 2$. Let's take in (18) the $x \rightarrow-\infty$ limit. Using (5) and (17), as well as the fact of vafishing of the potential in the infinity,

$$
u \xrightarrow[|x| \rightarrow \infty]{ } 0
$$

from (18) we obtain

$$
\begin{equation*}
g=\left(21 k^{3} c-i k-1 k^{5}\right) \cdot \exp (-1 k x) \tag{19}
\end{equation*}
$$

Hence and from equation (18) we can find the time evolution of the function

$$
\begin{equation*}
\Psi_{t}=-B \psi+\left(21 c k^{3}-1 k-1 k^{5}\right) \psi \tag{20}
\end{equation*}
$$

From this equation in the limit $x \rightarrow-\infty$ we find the evolution of the scattering data

$$
\begin{align*}
& a_{t}=i k a \tag{21}\\
& b_{t}=-\left(21 k^{5}-41 k^{3} c+i k\right) b \tag{22}\\
& \left(b_{n}\right)_{t}=2 \alpha_{n}\left(1+\frac{4}{n}\right) \cdot b_{n}\left(a_{n}, t\right) . \tag{23}
\end{align*}
$$

Hence we have

$$
\begin{align*}
& a(k, t)=a(k, 0) \exp (-i k t), \tag{24}\\
& b(k, t)=b(k, 0) \exp \left(4 i k^{3} c-2 i k^{5}-1 k\right) t, \tag{25}\\
& b_{n}\left(\alpha_{n}, t\right)=b_{n}\left(a_{n}, 0\right) \exp \left[2 a_{n}\left(1+a_{n}^{4}\right) t\right] . \tag{26}
\end{align*}
$$

Where $a(k, 0), b(k, 0), b_{n}\left(\alpha_{n}, 0\right)$ are determined from initial data for equation (15).

Let's use now the Gel'fand-Levitan-Marchenko linear integral equation for the case of zero reflection coefficient, $b(k, t)=0$, and with a kernel determined by the following formula [2]

$$
\begin{equation*}
P(x)=\frac{b_{n}\left(\alpha_{n}, t\right) \exp \left(-\alpha_{n} x\right)}{\frac{1 a_{n}\left(i \alpha_{n}\right)}{\left(1 \alpha_{n}\right)}} \tag{27}
\end{equation*}
$$

Because the reflection and transmission coefficients are related by conservation of energy:

$$
\begin{equation*}
|a|^{2}-|b|^{2}=1 \tag{28}
\end{equation*}
$$

we can only define $a(k, t)$

$$
\begin{equation*}
a(k, t)=\prod_{n=1}^{N} \frac{k-1}{k+1} \operatorname{n} \exp (-1 k t) \tag{29}
\end{equation*}
$$

In order to simplify the problem let's suppose that a(k,0) is equal to zero only for $k \pm i \alpha_{n}$. Solution of equation (15) is then determined by the formula [2]

$$
\begin{equation*}
u(x, t)=-2[\ln (\operatorname{det} A)]_{x x}, \tag{30}
\end{equation*}
$$

where in this case

$$
\begin{align*}
& A=1+\frac{b}{1 a_{1}\left(1 a_{n}\right)} \exp \left(-2 a_{n} x\right) \tag{31}\\
& a_{1}\left(1 a_{n}\right)=\frac{\partial_{a_{n}}}{\left(1 a_{n}\right)} . \tag{32}
\end{align*}
$$

Because of (26) and (29) we can write A in the following way

$$
\begin{equation*}
A(x, t)=1+b_{n}(x, 0) \exp \left\{a_{n}\left[\left(24_{n}^{4}+1\right) t-2 x\right]\right\} \tag{33}
\end{equation*}
$$

Then solution of the higher-order Korteweg-de Vries equation is given by

$$
\begin{equation*}
u(x, t)=\frac{-2 \alpha_{n}^{2}}{\cosh \left\{a_{n}\left(24_{n}^{4}+1\right) t-2 x-\ln b_{n}(0)\right\}+1} \tag{34}
\end{equation*}
$$

This solution represents soliton moving to the right with the velocity ∇

$$
\begin{equation*}
v=\frac{-1+2 a_{n}^{4}}{2} \tag{35}
\end{equation*}
$$

and an amplitude G

$$
\begin{equation*}
G=\frac{-4 \alpha_{n}^{2} b_{n}(0)}{\left[1+b_{n}(0)\right]^{2}} \tag{36}
\end{equation*}
$$

Basing on the Lax's criterion we have constructed the higherorder Korteweg-de Vries equation which then has been solved via
the inverse scattering method. The success of this method for solution of equation (15) can be attributed to two facts. Piratly, the Gel'fand-Levitan-Marchenko equation is linear and the eigenvalues are constants. Secondly, t enters the problem only parametrically.

REPERENCES

1. L a x P. D.: Comm. Pure Appl. Math. $1968,21,467$.
2. N O w 1 k ow S.: Solitons theory, Nauka, Moscow 1980.
3. Gel'fand I. M., Leritan B. Mn: Amer. Math. Soc. Transl. Ser. 2, 1955, 253.
4. \mathbb{X} a y I., Moses M. E.: J. Appl. Phys. 1956, 1503, 27.
5. Wadati M., K○ n no K., I cbikawa y.-H.:
J. Phys. Soc. Japan 1979, 46, 1965.
6. F ○ka s A.S., A blowitz M. J.: Phys. Rev. Lett. 1983, 51, 7.

STRESZCZENIE

W oparciu o kxyterium Laxa skonstruowano plątego rzędu nieIiniowe równanie Kortevega-de Vriesa. Odwrotna metoda rozpraszaIIa zostala zastosowana do znalezienia jedoosolitonowego rozwiązania tego rómnania.

PE 3 D 4 E

Опираясь на критерий Јанса, снонструпроваги нелинейное ууавнение пятой степени Кортевега-Де ఖриса. Обратнะ" щетот диспорсии ט́ыл пэю.еНен для разнснания односолитОнового решениन ЗТого ураэнения.

 1)

14therwin

whers ly Nols aten

$$
\begin{align*}
& \text { finwantat } \tag{9}
\end{align*}
$$

 |h
 वxact

Fanktsansifuly

 3ectir 3

- $1816+3$

 R11

$$
\begin{equation*}
t=\frac{-1623,065}{[1+2,(0)]^{2} \mid} \tag{FAI}
\end{equation*}
$$

154

