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1. INTRODUCTION

There has been a recent renaissance of the old idea by T. 
Kaluza[l]and 0. Klein[2]i.e., the geometrical unification of 
gravity and other fundamental interactions using many dimensio­
nal manifold (5-dimensional in the original work by T. Kałuża). 
This idea consists of a unification of two major principles in 
Physics (local gauge invariance and local coordinate invariance ) 
and reducing both principles to the second in a more than 4- 
dimensional world. The additional dimensions cannot be directly 
observed. In our approach, we propose some development of these
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ideas using nonriemannian geometry from Einstein’s Unified Field 
Theory [3] (the so-called Einstein-Kaufman theory) 4, 5,6 . In the 
old Kaluza-Klein approach there were not any "interference ef­
fects" between gravity and electromagnetism. This theory repro­
duces the Einstein and Maxwell equations in an already known 
form. In the nonabelian Kaluza-Klein theory [7,8] (which unifies 
local nonabelian gauge invariance and local coordinate invariance 
principles) we face a fundamental problem with the value of the 
cosmological constant. The cosmological constant predicted by 
this theory is 10 1 times bigger than upper limit from observa­
tional data. This forces us to abandon Riemannian geometry (the 
Levi-Civita connection) and to use some nonriemannian geometries 
defined on a multidimensional bundle manifold [9,"IQ] (a gauge bundle) 
Our approach consists of finding such a Kaluza-Klein theory, find­
ing "interference effects" between gravity and gauge fields and 
their physical consequences.

Now we know that the local gauge invariance principle plays 
the fundamental role in elementary particle physios. The Tfeinberg- 
Salam-Glashow model of electroweak interactions and QCD (quantum 
chromodynamics) are constructed on the assumption of this in- 

i о variance. The recent discovery of W and Z bosons and some 
successes of CjCD in describing jets of hadrons in high energy 
physics support this statement.

Thus investigations in the mathematical structure of a Ka­
luza-Klein theory can give a new light on a problem of unifica­
tion of fundamental interactions, can explain some old puzzles 
of nuclear physics and predict new physical phenomena.

The most interesting problem which arises here occurs when 
this new Kaluza-Klein theory is considered as a realistic model 
of strong interactions. Thus we consider this theory as the 
source of the classical-dielectric model of confinement, suppos­
ing that the gauge group G = SU (3 )c and adding spinor sources 
(quark fields). In this way a confinement idea emerges from the 
physics in higher dimensions with a geometrical interpretation. 
The lagrangian of the nonsymmetric Kaluza-Klein (Jordan-Thiry ) 
theory, in the flat space limit, resembles the soliton bag model 
lagrangian.
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2. THE NONSYMMETRIC KALUZA-KLEIN (JORDAN-THIRY) THEORY

In the lagt few years the nonsymmetric Kaluza-Klein 11, 12 
theory has been constructed together with its extension to the 
nonsymmetric Jordan-Thiry theory (an additional scalar field "f). 
connected to the effective"gravitational constant", see class­
ical works Г13, 14, 153« Nonabelian extensions of the nonsymmetric 
Kaluza-Klein and Jordan-Thiry theories have been found [16, 17] .

It was possible to extend the nonsymmetric Kaluza-Klein 
theory to the case with material sources (including spin sources ) 
and to include such phenomena as spontaneous symmetry breaking 
and Higgs’ mechanism. [18,19] (with two critical points for a 
Higgs’ potential). Thus we can consider the "interference ef­
fects" between electro-weak interactions (described by the geo­
metrical version of Weinberg-Salam-Glashow model) and gravity. 
Simultaneously, this allows us to build a more realistic model 
of Grand Unification including gravitational field.

The linear version of the nonsymmetric Kaluza-Klein and 
Jordan-Thiry theories have been found [20] .

The first exact solution in the 5-dimensional (electromag­
netic) case has been obtained [21]. It was possible to find an 
extension of some earlier works to the case of the nonsymmetric 
Kaluza-Klein theory [22, 23, 24, 25, 26,27] i.e. an introducing 
of fermion sources leading to the small "interference effects" 
(a dipole electric moment of fermion and PC breaking).

This will be very helpful to find a model of strong inter­
actions, i.e. an extended QCD with "interference effects" be­
tween gravity and strong interactions.

The nonsymmetric Kaluza-Klein and Jordan-Thiry theories 
have a well defined geometry on a multidimensional manifold 
(5-dimensional in the electromagnetic case and (n+4 )-dimensio­
nal in the nonabelian case, n = dim G, where G is a gauge sym­
metry group). The geometry in this theory is a geometry from 
Einstein’s Unified Field Theory[3, 5, 6] in the Kaufman version [4] 
This version is known as the Einstein-Kaufman theory. In some 
sense this geometry is a multidimensional extension of the Ein­
stein-Kaufman geometry. This geometry is defined on the gauge 
manifold (manifold of a principal fibre bundle) and one calls 



266 M. W. Kallnoweki

it the Einstein geometry. The nonsymmetric Kaluza-Klein (or Jor- 
dan-Thiry) theory is a generalization of the Kaluza-Klein (or 
Jorùan-Thiry) theory and Einstein Unified Field Theory.

These theories realize a true unification of gravitational 
and gauge fields in the following sense: they not only unify a 
local gauge invariance principle and a local coordinate inva­
riance principle, but they provide "interference effects" between 
gravitational and gauge fields (electromagnetic field in the 5- 
dimensional case) as well. There are the following "interference 
effects":
1 ; The additional tern in the lagrangian for the 

field equals 2 (g^u^ F E? J (or gauge field 
2-lab (gL^3 Hav ) )), where F

of the electromagnetic field and is the
Yang-Mills’ field.

electromagnetic 
equals
is the strength 
strength of

2 ) The new energy-momentum tensor for an electromagnetic field
(gauge field).

3)

4)

5)

The existence of two field strength tensors for the electro­
magnetic (gauge) field, i.e., F^„ , 

The source in the second pair of Maxwell ’s (Yang-Mills’)
equations, i.e., a current j., (j^, ). 

Г" t*  ' 4
The polarization of vacuum - F^y ),

(Mav - --------- (l^xv - Ha^v )) with an interpretation as the
torsion in the 5th dimension (in higher dimensions in Yang-
Mills’ case).

6 ) The additional term in the equation of motion for a test 
particle (additional term for a Lorentz-force term in the
electromagnetic case) as appears in the modified Kerner-Wong 
equation.

7 ) The cosmological constant depending on a dimensionless con­
stant U- with an asymptotic behaviour

This constant in general

const .—— (for large )

is a rational function of p. , i.e.

f <Л) - $ш+2 Л )
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Thus t;e can avoid some problems with the enormous cosmological
constant which appears in the classical approach, when fx is
chosen as a root of the polynomial P , or becomes sufficiently 
large fl6,l7}.The constant is simultaneously a coupling con­
stant between a skewon field g 
in the linear approximation [203.

and a Yang-Mills* field

In the case of the nonsymmetric Jordan-Thiry theory we get 
some additional effects:
1) The lagrangian for a scalar field ЗУ .
2) The energy-momentum tensor for the scalar field .
5 ) Additional scalar forces in the equation of motion for a test 

particle (generalized Kerner-7.'on g equation).
The scalar field is connected to the effect!ve■"gravitational 
constant" by:

-(n+2)tj 
Geff = GN e

where Gjj is a Newton constant and n = dim G, G is a gauge sym­
metry group. This field seems to be massive, with short range 
behaviour (Yukawa-like behaviour) £l2,17].In this way, there are 
no problems with the weak equivalence principle.

Let us give some details of the nonsymmetric Kaluza-Klein 
(Jordan-Thiry) theory 1 • 15, 16, 17].

The lagrangian in the nonsymmetric Jordan-Thiry (Kaluza- 
Klein ) theory is a scalar curvature for the connection defined 
on the (n+4 )-dimensional manifold (bundle manifold) with Ein­
stein geometry. It has the following form:

-g R(77) (rCJ) (n+2 )4»^ „ - (n+2 )У!
e R( p ) + 81Г e

+ Lscal^)] (2.1)

where R (57) is the Moffat-Ricci curvature scalar for the con­
nection W в (on (n+4 )-dimensional manifold), R ( г ) is the 
Moffat Ricci curvature scalar for the connection соаъ on the 
group G (gauge symmetry group)

= - SF гаь (2Ea;Hb - ЬаМ*Н Ъ^ ) (2.2)
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Ha (2.3)

La/XV = gPV Lartp (2.4)

(2.5)

1dc g/*p  gT LTe + lcd g^ê^ LPT = 21cd S**/4  ê H^(2 6)

К (V; ) is the lagrangian in the nonsymmetric Jordan-Thiiy theory, 
LTC plays the role of the lagrangian for the Yang-Mills*  field. 
R(p) plays the role of the cosmological constant and R(n) is 
the lagrangian of the gravitational field in the nonsymmetric 
theory of gravitation. Lscal ) plays the role of the lagran­
gian for the scalar field ij! .

La V plays the role of the second tensor of the Yang-Mills’ r(gauge) field strength.
Equation (2.6) expresses the relationship between both ten­

sors and L^_v
to HaAv and La^v

. This relationship is linear with respect
and nonlinear with respect to g.v

Lscal > = (mg + ng0'1’'3 g (2’7)

where
m = 1^1^- n(n-1) (2.8)

4b = 4b + ^£ab = cad Cbc + P- cab Tr [ <4 fl <2’9 >

Also, (U is a dimensionless constant, 0°^ are structure con­
stant of the Lie algebra of the group G, Xa are generator of 
this algebra. Tr is understood here in the sense of the repre­
sentation of an enveloping algebra of the Lie algebra of the 
gauge symmetxy group G.

The field 4 is related to the effective gravitational "con­
stant" which now is a function of space-time. In the electromag­
netic case G = U (1 ) we have similarly jjO, 1 6j



Can We Get a Confinement in QCD 269

4~g RP) =

= Pg [r(V?) + e 54 (2^CMV] F(UV )2 - F^v ) + (2.10)

+ LscalM +3M

where
Lscal<^ = SCY\v (2,11)

is a lagrangian for the scalar field .

нГ = g«^ gPv • H*  (2.12)

®6p ®T H T*  + S*8  S Г HPÏ = 2S<*8 6 FPÎT (2,13)

HpT=-HTp (2-14)

Ha..v and Fuu are respectively the strength of Yang-Mills’ and c*  r
the electromagnetic field. H^y is a second tensor of the electro­
magnetic field strength. The field is related to the effective 
gravitational "constant" via:

-зу
Geff = gn e <2’15>

g (XV is a nonsymmetric, real tensor defined on a space time such 
that

= 5 (p) + 6I>] (2,16)

»«p • «p« <2-17>

where the order of indices is important.
This tensor satisfies usual compatibility conditions and 

induces on a space-time a non-symmetric connection from the Ein­
stein-Kaufman theoiy [4].The tensor lab satisfies similar comptia- 
bility conditions and induces similar connection on the group G 
{Î6, 17]. por g(“T) we have

8(«nï<a,”-8T <2-,S)
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If we put Ijl = О we get the nonsymmetric Kaluza-Klein theory. 
From the Palatini variational principle for (2.1) vie get field 
equations (see[l1 , 15 » 16 , 17j for details). Thus we get the 
theory which unifies gravity, gauge fields and scalar forces. 
The gravitational field in this theory is described by a non­
symmetric, real tensor g^v (and a scalar field Ï ), which 
connets it with Moffat’s theory of ravitation (one of the most 
important alternative theory of gravitation - see j28], for a re­
view). The non symmetric Kaluza-Klein (Jordan-Thiry) theory has 
been previously designed as a unification of Moffat’s theory of 
gravitation and electromagnetic (or Yang-Mills’ ) field. However, 
there are some differences.

First of all Moffat and his co-workers are extensively 
using the Einstein-Strauss theory [6]in a hypercomplex-hermitian 
version [29],but not the Einstein-Kaufman. The Einstein-Strauss 
theory cannot be extended in any simple way to higher dimensions, 
even in the 5-dimensional (electromagnetic) case. It is a hard 
task also to incorporate spin sources in Einstein-Strauss theory. 
In both cases, we meet a fundamental physical problem. The la- 
grangian becomes hypercomplex (not real). In our case we do not 
have these problems because everything is real. In the case of 
the nonsymmetric Jordan-Thiry theory, we effectively get the 
scalar-tensor theory of gravitation in the nonsymmetric version. 
The scalar field behaves very well in the linear approximation. 
It has been proved that we could avoid tachyons and ghosts in 
the particle spectrum of the theory (if we put m > 0). In the 
case of classical Jordan-Thiry theory, the scalar field is a 
ghost (a negative kinetic energy). This new version of the Ka­
luza-Klein theory is capable of removing singularities from the 
solution of coupled gravitational and Yang-Mills’ equations 
even in the case of spherical symmetry. Such solution has been 
found in the electromagnetic case [21]. It is well known that in 
the case of Einstein-Maxwell equations we cannot get any non­
singular, localizable, stationary solutions (the so-called 
Hilbert-Levi-Civita-Thiry-Einstein-Lichnerowicz-Pauli - theorem, 
see[jO ,31 ,32 ,33]). This result has been recently extended to 
the case of nonabelian gauge fields [34I .
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Recently, R.B. Mann (see R.B. Mann, "Exact solutions of an 
algebraically extended Kaluza-Klein theory”, Harvard University 
preprint HCTP-83/AO55, Cambridge, January 1984) found eight clas­
ses of spherically symmetric and stationary solutions in the non- 
symmetric Kaluza-Klein theory. These solutions are more general 
than this from [2l]and some of them have no singularities in gra­
vitational and electromagnetic fields. Some of these solutions 
possess a nonzero magnetic field and nonzero gr-,,= f 0. The 
nonsingular solutions are parametrized by; fermion charge 1^, 
electric charge Q and a new constant
related to 
roie for i

2
êL23j similarly as 1 to

uo- 
g[U]

This constant is 
.It plays a similar

gC(uv] as a та2пе1;1с charge for F We recall that
the first exact solution found in 21) has no singularity in an
electric field and a finite energy. However, it has a weak sin­
gularity in In this case we put g[23] = 0. It seems
that we can extend these solutions without any problems to the 
nonabelian case.

Thus we can look for models of elementary particles as 
exact solutions of field equations.

In the theory there are two field strength for the elec­
tromagnetic (Yang-Mills’ ) field - Рц7 , H(Uv (H^ , La^v )._JThe 
first is built from (E, B), (( Ea,*B a)) the second from (D, "H) 
(( Da, Ha)). The relations between both tensors are given by 
Eqs. (2.6) and (2.13).

According to modern ideas [35, 36, 37] the confinement of 
color could be connected to dielectricity of the vacuum (dielec­
tric model of confinement ). Due to the so-called antiscreening 
mechanism, the effective dielectric constant is equal to zero. 
This means that the energy of an isolated charge goes to in­
finity. How there are also so-called classical-dielectric model 
of confinement (see Lehman, H., and Wu Tsai Tsu, "Classical mo­
dels of confinement", Preprint DESY83-086, September 1983). The 
confinement is induced by a special kind of dielectricity of the 
vacuum such that E £ 0 and D = О (Ea £ 0,"Da = 0 ). In this case 
we do not have a distribution of charge. This is similar to the 
electric-type of Meissner effect.

It is easy to see that in our case (the nonsymmetric Kalu- 
Klein theory ) the dielectricity is induced by the nonsymmetric 

tensors g^v and lab. If g = 0, D « E and В = h’.
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The gravitational field described by the nonsymmetric ten­
sor g 
(gauge

behaves as a medium for an electromagnetic field 
field). The condition E =/ 0, D = 0 (Ea / 0, Da = 0 )

can be satisfied in the axial, stationary case for F, 
(H^7, ), g(UV . Thus it is interesting to find an exact so­
lution Mth axial symmetry for the nonsymmetric Kaluza-Klein 
theory with fermion sources for G = SU (3 )• This could offer us 
a model of a hadron.

The axially symmetric, stationary case seems to be very in­
teresting from more general point of view. We have in General 
Relativity very peculiar properties of stationary, axially-sym- 
metric solutions of the Einstein-Maxwell equations. These solu­
tions describe the gravitational and electromagnetic fields of 
a rotating charged mass. Thus we get the magnetic field compo­
nent. Asymptotically (these solutions are asymptotically flat) 
the magnetic field behaves as a dipole field. We can calculate 
the gyromagnetic ratio at infinity, i.e., the ratio of the mag­
netic dipole moment and the angular momentum moment. It is worth 
noticing that we get the anomalous gyromagnetic ratio 38 i.e., 
the gyromagnetic ratio for an electron (for a charged Dirac par­
ticle). We cannot interpret the Kerr-Newman solution as a model 
of the fermion for we have a singularity. In the nonsymmetric 
Kaluza-Klein theory we can expect completely nonsingular solu­
tions. We can also expect the asymptotic behaviour of the Ein­
stein-Maxwell theoxy. Thus it seems that we probably will get 
the solutions with anomalous gyromagnetic ratio. Such a solu­
tion could be treated as a model (classical) of 1/2 spin par­
ticle. In the nonabelian case
offer us a model of a charged

(G = SU (3 )c X U(l)em) this could 
barion (i.e., proton), where the

skewon field g^,} induces a confinement of color. In this way,
the
1)

skewon field g^y-] plays a double role:
additional gravitational interactions (from Moffat*s  theory
of gravitation), 

2) a strong interaction field connected to the confinement
problem.
It has been proved by R.B. Mann and J.W. Moffat 1)9,40] that 

the skewon field has zero spin. In a linear approximation 
it is the so-called generalized Maxwell field (an abelian gauge 
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field). Thus it is natural to expect an exchange of some spin 
zero particles in the nuclear-nucleon potential for low and in­
termediate energies. We do not observe such particles. However, 
we cannot fit experimental data for nucleon-nucleon interaction 
without the mysterious & - (spin zero) particles £41} .

It happens that we need two such particles to fit the data. 
In our proposal, they are connected to the skewcn field 
and to the scalar field from the nonsymmetric Jordan-' 
theory. The reason we do not detect such particles directly seems 
to be clear now. They are confined, because they are actually a 
cause of confinement. The scalar field from the nonsymmetric 
Jordan-Thiry theory induces an additional dielectricity of the 
vacuum (see lagrangians for scalar field and for Yang-Mills’ 
field in Eqs. (2.1), (2.2), (2.7). Let us notice that a function 
of the scalar field appears as a factor before the Yang-Mills’ 
lagrangian in Eq. (2.1). This has some important consequences: 
the effective gravitational "constant"depends on and in the 
flat space limit g= t^gv the lagrangian resembles bosonic 
part of the soliton bag model lagrangian if we put

e-10^ =2(1----p-)« % a = const. (2.19)
too

for n = 8, G = SU (3) (see£42j]).
One finds

In (1 - -|~) - (2.20)

and in the flat space limit one easily gets

L = 4 <1 “ f^ab +Ль Kca^>

(2.21 )
6o?(H) шбо2 „

+ 16T( б0-б) " 1ОО(бо -б )ч b 5V

The full lagrangian (2.1) is more general and it contains a gra­
vitational field.
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Friedberg and Lee (see [4?] ) consider the soliton bag model 
with a more general factor К ( £ ).

L = -Jk(6 )hab Ha,UVH</w-i (2.22)

They consider that the scalar field f is a new dynamical field 
with self-interaction given by U(£ ). The quantity К is a di­
electric constant which depends on £ .It is interesting to ob­
serve many similarities between (2.22) and our lagrangian from 
the nonsymmetric Jordan-Thi^y theory i.e. (2.1). Thus in our 
model we have in the flat space limit an effective dielectric 
constant.

-10Ï
Keff = 4 e (2.25)

It is interesting to notice that the scalar field У? enters into 
the effective gravitational "constant and into the effective di­
electric "constant" in the flat space limit.

We recall that in a full nonsymmetric Jordan-Thiry theory 
(curved nonriemannian space-time) we have the following symmetry 
for the scalar field [l2, 1?j

'ü — ï’= f( ^ ) (2.24)

where f is an arbitrary function. In this way the formulae 
(2.19) and (2.25) can be treated as transformations for a scalar 
field in the-nonsymmetric Jordan-Thiry theory. Thus we can con­
nect a bosonic part of some soliton bag model lagrangians via 
Eq. (2.24) in the nonsymmetric Jordan-Thiry theory. In this way 
we see some possibilities of connecting gravitational and strong 
interactions via the nonsymmetric Kaluza-Klein (Jordan-Thiry) 
theory. This is a little in the spirit of an idea of strong gra­
vity [44]. In this approach, there are two metric (symmetric ) ten­
sors. It is easy to see that in the nonsymmetric Kaluza-Klein 
(Jordan-Thiry) theory there are two metric (symmetric) tensors 
g(öe<5) and such that
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r S‘ß; q □“% <2.25)
P ’ d lpoc7 P

and. it is easy to see that if g^p] 3 0» "then f^p = g(o.p )*  
Thus we propose the lagrangian of the nonsymmetric Jordan- 

-Thiry theory as the bosonic part of the lagrangian of strong 
interactions. Why? It seems that something is missing in the QCD 
lagrangian. We have the following objectives:

1) So -particle (which we mentioned before),
2) an exact solution with color radiation (this means color at 

infinity - no confinement) found by J. Tafel and A. Traut­
man [45j.
Thus it seems that the QCD lagrangian is incomplete in the 

bosonic part. In our proposal, we replace the QCD lagrangian by 
the lagrangian from nonsymmetric-nonabelian Jordan-Thiry theory 
for G = SU (3)c. In this way we can get a dielectric model of con­
finement and a soliton bag model-like lagrangian [42, 43} (see 
also DeTar, C.E., Donoghue, "Bag models of hadrons", UUHEP83/3, 
UMH3P-117 - preprint 1983).

Thus we propose the following program of investigation:

1) Find exact solutions of the nonsymmetric Kaluza-Klein and 
Jordan-Thixy theory in abelian and nonabelian cases with and 
without fermion sources in the case of spherical and axial 
symmetry, using inverse scattering, and Riemann invariants 
methods.

2) To find an effective interaction of two axially symmetric 
solutions , exactly, or, using some numerical methods in the 
case of G = SU(3)C, with fermion sources. This could be si­
milar to the nucleon-nucleon interaction in the Skyrme model. 
The solution should be treated as particles using a collec­
tive coordinate method.

3) To find wave-like solutions of the field equations in the 
abelian and nonabelian cases. This could, in the electro­
magnetic case, offer a solution which could be treated as 
a kind of electromagneto-gravitational wave (nonlinear wave) 
with nontrivial interactions between all fields. The objec­



276 M. W. Kalinowski

tive of this hope is related to points [43 andfjj^ in the list 
of "interference effects" (we recall that the displacement 
current in the classical Maxwell equations leads us to the 
nontrivial interaction between the electric and magnetic field 
- the reason d’être of the wave solutions for Maxwell equa­
tions. However, this is only a historical remark). By a non­
trivial interaction, we mean that the flow of energy is pos­
sible from one field to the second in a quasiperiodic way.

There are also some proposals concerning cosmology:

1 ) To find a cosmological solution of I Bianchi-type in the non­
symmetric Kaluza-Klein theory with material sources £l8j. We 
expect completely nonsingular solutions in the presence of an 
electromagnetic field.

2 ) To find a new (or old) inflationary scenario for the Universe 
from the nonsymmetric-nona-belian Kaluza-Klein theory. In Çl9] 
has been proved that from the nonsymmetric Kaluza-Klein theory 
we could get a Higgs’ potential with two critical points. This 
offers phase transitions in early cosmology and could give Guth’s 
new (or old) inflationary scenario without the Coleman-Wein­
berg theory.

It is also interesting to do some research under the formal 
structure of the nonsymmetric Kaluza-Klein and Jordan-Thiry theo­
ries. They are:

1 ) A rigorous treatment of the nonsymmetric tensor lab = hab+uKab 
defined on the algebra of matrices (enveloping algebra of the 
Lie algebra-of the gauge symmetry group).

2) An extension of the nonsymmetric Kaluza-Klein and Jordan-Thiry 
theories including supergravity and supersymmetry (some ideas 
how to do it can be found in£46}, £-8} ).

3) Studies under a spontaneous compactification of an n-dimensio- 
nal submanifold of an (n + 4 )-dimensional manifold with Einstein 
geometry (a global or/and local compactification).
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CONCLUSIONS

In thia paper we propose the lagrangian of the nonsymmetric- 
-nonabelian Jordan-Thiry theory as the bosonic part of the lagran­
gian of strong interactions. In this way the QCD lagrangian would 
be extended, including the skewon field gj-^-j and the scalar 
field Ï . Both fields and play double roles: 1 ) as a
part of gravitational interactions, 2 ) as a part of a strong in­
teraction field. The existence of and could explain (in
principle) the 6 -particles in a nucleon-nucleon potential and a 
confinement of color via the classical-dielectric model of con­
finement. It is possible on the level of the nonsymmetric Jordan- 
Thiiy theory to connect some soliton bag models, via transforma­
tion of the scalar field .

We propose a program of research which consists in finding 
exact solutions in this theoiy. These solutions could be treated 
as models of particles (generalized Skry niions {47,48]). Our ap­
proach seems to be more realistic, because, we include to the la­
grangian gauge and gravitational fields. In the Skryme model we 
have to deal with an effective model of strong interactions. This 
model, despite many spectacular successes, has some problems. For 
example, a mass difference between nucleon and △ ++ particle. 
Moreover, the interactions between two skrymions can give a qua­
litatively good description of a nucleon-nucleon potential (see 
Rho, M., "Pion interactions within nuclei", SPhT/CEN Saclay - 
preprint 1984, p. 54 (from Skrymions to Paris potential)). In 
this way we could approach some classical nuclear phenomenology 
(see Thomas, A. W., "Chiral symmetry and the bag model: a new 
starting point for nuclear physics", TH3368-CERN TRIPP-S2-29 - 
preprint July 1982)).

One could search axially symmetric, stationary solutions in 
the nonsymmetric Kaluza-Klein (Jordan-Thiry) theoiy using forma­
lism presented in {49] . Finally, we conclude that some of E. Wit­
ten’s ideas {50] can be employed for the nonsymmetric Kaluza-Klein 
(Jordan-Thiry) theoiy.
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STRESZCZENIE

W niniejszej pracy prezentujemy niesymetryczne teorie 
Kaluzy-Kleina i Jordana-Thiiy jako interesującą propozycją 
fizyki w wyższych wymiarach. Pokazujemy, jak otrzymać dielek­
tryczny model confinementu z "efektów interferencyjnych" 
w tych teoriach. Postulujemy, że stare problemy fizyki jądro­
wej, tzn. ^-cząstki, mogą tryć związane z polem skośnie-syme- 
tiycznym (skëwon) Ê. -, i Y w niesymetrycznej teorii Jor- 
dana-Thiry.
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РЕЗЮМЕ

В данной работе приведены несимметрические теории Калюцы- 
-Клейна и Яордана-Тири как интересные предложения физики при 
высших размерах. Указывается, как получить диэлектрическую мо­
дель конфайнмент на основе "интерференционных эффектов" в этих 
теориях. Полагается, что давние вопросы ядерной физики, т.е. 
б-частицы, могут быть связаны с косо-симметричным (skewon) по­

лем и Y в несимметричной теории йордана-Тири.


