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1.INTRODUCTION

Octupole degrees of freedom in nuclei have been the 
subject of many investigations. They were introduced by Bohr 
and Mottelson Ill within the context of a description of 
collective states in nuclei in terms of shape variables. Some 
of their properties were subsequently investigated by Strutin
ski [21 and Lipas and Davidson 131. An alternative treatment 
of collective states in nuclei is in terms of interacting 
bosons. Octupole (or f) bosons were introduced in Refs.[4,51 
and their properties studied in Ref.161 and. more recently, by 
Han et, al [71. Barfield 181 and Engel 191. Szpikowski. 
together with Góźdź and Zajęć [101, analyzed other aspects of 
the same problem and discussed in detail the spectra expected 
in some situations.

All the references mentioned above were concerned mainly 
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with octupole vibrations. Meanwhile» other authors ill! had 
suggested that octupole deformat ions may occur in some nuclei. 
This suggestion arose from the study of some properties of 
odd-even nuclei in the Ra region 1123. Although the question 
of whether or not octupole deformations in this region do 
occur is still debated 1133» it appears necessary to have a 
framework in which it can be investigated in a systematic and 
detailed way.

In constructing models capable of describing sim
ultaneously both vibrations and rotations two approaches are 
possible. One is in terms of shape variables. Rohoziński 1143 
and others have developed the appropriate formalism. The other 
is in terms of interacting bosons. Engel 1153 has developed 
the appropriate formalism here. In this article» written in 
honor of Stanislav Szpikowski who has contributed considerably 
to the subject» I will summarize the boson formalism and 
comment on the results obtained so far.

2.INTERACTING BOSON MODEL OF OCTOPOLE STATES

In previous treatments of this problem I5»63. f bosons 
were introduced in addition to s and d bosons. These can be 
thought of as the quantization of the shape variables а3ц 
(М=0»±1.±2»±3). However, it appears that this introduction is 
not sufficient to describe properly phenomenological 1163 and 
microscopic 1173 properties of the observed states. It has 
been suggested that a comprehensive treatment requires the 
introduction of both p and f bosons alongside the usual s and 
d. One is thus led to consider a system of N s»p»d and f 
bosons with angular momenta and parities JP=0+,1“,2+ and 3“ 

respectively. The introduction of p bosons here is somewhat 
similar to that of s bosons in the usual case. On one side 
they facilitate the phenomenological treatment 1163 while on 
the other side they are dictated by microscopic considerations 
1173. With s,p,d and f bosons the space spanned by single 
boson states becomes 1+3+5+7=16 dimensional and the corre
sponding algebraic structure is that of 0(16). The algebra of 
0(16) is rather large since it is composed of 162=256 genera

tors. A general phenomenological study requires the introduc
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tion of many parameters which cannot be determined directly 
from experiments. There are thus two possible alternatives. 
One is to study the structure of the solutions corresponding 
to dynamic symmetries. The other is to do a numerical analysis 
but retaining in the Hamiltonian only those terms which are 
suggested by microscopic considerations.

I begin by briefly outlining some of the dynamic 
symmetries of 0(16). The single boson states contained in this 
model are shown in Fig.l. From microscopic considerations

----------- s Jp = 0 +

ep — p JP=1‘ Fig.l. Schematic représenta-
tion of the single

ef ----- f JP=3" boson states in 0(16).

Ed -----  d JP = 2+

one expects that in many nuclei the energy of p-bosons, Cp. is 
so large (=4 MeV) that its effects on the low-lying states 
can, in lowest order, be neglected. This corresponds to break
ing 0(16) into

□ (16 > Э 0(13 ) ® 0(3) . (2.1)

A model in terms of 0(13) was studied by Goźdz, Szpikowski and 
Zaj^c (101. If the energy of f-bosons is also large (~2 MeV) 
as compared with that of s and d bosons (=0.5 MeV), 0(13) can 
be further separated into

0(13) Э 0(6) ® 0(7) . (2.2)

This is the situation in many nuclei (4-91. Effects of p- 
bosons can be introduced either by a renormalization of opera
tors (61 or explicitly 171. Since 0(6), 0(7) and 0(3) do not 
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have any common subalgebra, except that of 0(3), the situation 
corresponding to (2.1)-(2.2) can only be investigated numeri
cally, except in the case in which there is no interaction 
between bosons of different species. This situation is semi- 
realistic only in vibrational nuclei where 0(6) can be further 
separated into 0(l)®0(5) leading to

0(16) Э 0(1) ® 0(5) ® 0(7) ® 0(3) (2. 3)

States here can be characterized by the irreducible repres
entations of the various groups appearing in (2.3) and of 
their subgroups.

0(16)
4
N

Э 0(1) ® 0(5) ®
4

nd

0(7) ® 0(3) □ 1

4 *
nf np 1

0(5) ® 0(7) ® 0p(3) Э
1 4 4

vd'ПД vf,vr v2'v3 LP

0d(3) ® 0f(3) © 0p(3) Э 0(3) □ 0(2)
4 4 4 4 I

Ld 4 Ldf'L ML j . (2.4)

The quantum numbers n&, Vj»v2,v3'Ldf represent missing labels. 
A simple Hamiltonian with this symmetry is

HVIB = Eo + ednd + efnf + epnp (2.5)

which yields an harmonic spectrum

EVIB(N, nd,nf,np, vd, vr v2, v3,Lp,Ld,Lf,Ldf,L,ML) =

= Eq + ®dnd + efnf + epnp • (2-6>

In (2.5) the energy of s-bosons has been taken as zero and in
cluded in Eq. The spectrum of (2.6) is shown in Fig.2. It is 
worthwhile noting that the total number of labels characteriz-
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ing the totally symmetric irreducible representations of 0(16) 
is 16.

4- (MeV) ------2+. 0+

6+,4+2+,0 +

Fig.2. Vibrational spectrum with s, d»f and p bosons (N=2).
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It may happen that in some nuclei the energy of p and f 
bosons becomes comparable. This leads to the possibility of 
another dynamic symmetry. This arises from the fact that s and 
d bosons transform as the representation (2.0) of 50(3), while 
p and f bosons transform as the representation (3,0). Indeed a 
situation similar to this is encountered in light nuclei where 
a scheme based on fermion 50(3) is appropriate. It was 
analyzed by Elliott (18) many years ago. The chain of interest 
here is

0(16) Э 0(6) ® 0(10) Э S0(3)a ® S0(3)b Э S0(3) Э

0(3) Э 0(2) (2.7)

where the two 50(3), that generated by s,d bosons and that 
generated by p,f bosons, have been distinguished by the letter 
a and b. The most general Hamiltonian with this symmetry can 
be written as (16)

HR0T = Eo + a-jCJOe) + SaC2(06) + a^tOlO) + 6bC2<010) +

(2. 8)
+ KaC2(S03a) + rbC2(S03b) + rC2(S03) + k'C2(O3)

where I have used the notation of Ref. (191. The basis states 
for this chain are labelled by the appropriate representations 
of groups in the chain and given by

0(16) Э 0(6) ® 0(10) Э S0(3)a ® SU(3)b Э I
Illi i i

N Ng Nb <Ла,ма) (Xb,ub)w1,u2,w3,u4 \

50(3) Э 0(3) Э 0(2) /

III /

w,(Х,ц)К L ML . (2.9)

Here Uj,w2,w3,u4,и,K represent missing labels. Although super
fluous, I have also included the label Na=N-Nb since it 
appears in the following formula (2.10). The energy 
eigenvalues of HR0T in the basis (2.9) are given by
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gROT (n,Na,N|J.Xa,Ma»Xb,ulj,uj,U2»<«>3»u^,o,X.|j.K.L, Mg) =

= Eo + aaNa + PaNa(Na+5) + abNb + >bNb(Nb+9) +

+ raC(Xa,ua) + KbC(Xb,Mb> + «С(Х,ц) + r'L(L+l). (2.10)

where

C(X.u) = X2 + m2 + Xu + 3X +3m . (2.11)

Because of the condition mentioned above that Na=N-Nb (con
servation of total boson number) one can rewrite (2.10) as

ER0T(N, Nb, Xa, ya, Xb, ub, wr w2‘, u3, w4, u. K. L. ML) =

= E'o + a'Hb + ₽'Nb2 + l!ac(xa'Ma) + ltbc(xb'%) +

+ кС(Х.ц) + r'L(L+l) . (2.12)

The location of the negative parity bands relative to the 
positive parity bands depends here crucially on the values of 
a*  and ₽'. Microscopic calculations indicate that a’si MeV. 
S'sl MeV. This implies that the lowest configuration is that 
with Nb=0. This configuration is composed of states with posi
tive parity. The next highest configuration is that with Nb = l 
composed of states with negative parity, etc. An analysis of 
the S0(3) representations (X.p) of (2.9) can be obtained by 
multiplying the representations (Xa.pa) by (Xb.ub). For Nb=0 
no multiplication is needed, and the values of (Xa,ua) are 
given by the usual rule (5). For Nb=l one must multiply the 
representations (Xa.pa) by (3.0). As an example, consider the 
case N=4. Then one obtains the results shown in Table I. The 
spectrum corresponding to (2.13) with appropriately chosen 
parameters is shown in Fig.3.
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Table I. SU(3) representations (X.p) contained in N=4 of U(16) 
when Nb=0 or 1.

“a Nb (X.p)

4 0 (8, 0) (4, 2) (0, 4) (2, 0)
3 1 (9, 0) (7, 1) (5, 2) (3, 3) 

( 5, 2 ) ( 3, 3 ) ( 1, 4 ) ( 4, 1 ) 
( 2, 2 ) ( 3, 0 ) ( 1, 1 ) ( 0, 3 ) 
(3, 0)

It is interesting and important to note that in Fig.3 there 
are two bands with KP=0~, two with KP=1” and one with K₽ = 2~ 
and 3”. With only f bosons only one band of each Kp appears. 

Furthemore, the representation (5,2) or in general (X=odd,2) 
p - -contains bands with both К =0 and 2 . There are several 

nuclei in the rare-earth and actinide region which show close
lying bands with Jp=0~,2“. In SU( 3) with p and f bosons the 

two bands are expected to be degenerate. With f-bosons only 
one band can be obtained 181.

Although a'4'>0 represents the situation normally ex
pected on the basis of microscopic considerations, it could in 
principle happen that a'<0. In this case the minimum of energy 
would occur for Nb/0 (i.e. a condensate of octupole-dipole 
bosons leading to deformations). The spectrum corresponding to 
this case is illustrated in Fig.4 of Ref.116]. This situation 
seems to be unrealistic since it would require that F-pairs be 
more bound than S and D pairs.

Before considering other, more realistic, situations it 
is worth noting that U(16) contains another, somewhat unusual 
chain. This is the chain [161

XJ( 16) Э U(4)a ® U(4)b Э Sp(4)a ® Sp(4)b □ SU(2)a ® SU(2)b s

0(4) □ 0(3) Э 0(2) . (2.13)

As discussed in Ref. (163, the chain (2.13) arises from strong 
dipole-dipole interactions. These are the dominant forces in
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Ü
) Jl cn

(8,0)

Fig.3.
SU(3) limit

Schematic representation of the spectrum in the
of U(16). Only the lowest lying bands are shown.

molecules. In nuclei» where the dominant forces are pairing
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plus quadrupole, the chain (2.14) is quite unlikely to be 
realized.

3.REALISTIC HAMILTONIANS

Dynamic symmetries represent ideal situations that rarely 
occur in practice. In the actual situation, one must resort to 
numerical calculations. Because of the large number of poss
ible interactions, a full phenomenological study, keeping all 
possible terms is practically unfeasible. It is thus of inter
est to investigate limited parametrizations in which only 
those terms expected to be important from microscopic con
siderations are retained. The 0(16) Hamiltonian can be written 
as

H = Hsd + Hpf + Vsd,pf , (3.1)

where Hsd represents the part describing s,d bosons. Hpf that 
describing p, f bosons and Vsd/pf their interaction. The s.d 
part has been extensively investigated in the past and 
presents no problem. A convenient parametrization is the cons
istent-!) formalism of Warner and Casten 120]

Hsd = ednd + *d$sd'$sd  + * ^sd'^sd ' (3.2)

where

Qsd = (sfxd + d’xS)(2> + ж (dfxd)<2) . (3.3)

The p-f part should, in principle, be parametrized in a 
similar way. However, since in realistic situations it is ex
pected, that the energy of p and f bosons is much larger than 
that of s and d bosons and thus that, in low-lying states, 
only configurations with zero, one and two p-f bosons are im
portant, it is sufficient to consider the Hamiltonian

Hpf ~ ep"p + ef"f + Mnp+nf)2 . (3.4)

The important part is the interaction between s,d and p,f 
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bosons. This has several contributions:
(i) the interaction due to the strong quadrupole-quad

rupole force» which can be written in the form

V00 = <Osd-Qpf • (3.5)

where Qsd is given by (3.3) and Qpf by

Qpj = (płxf + fłxp) (2) + х'(р’хр)<2) + »••(ftx?)<2). (3.6)

In order to limit the number of parameters, one could take in 
(3.6), the SU(3) values x'=-3/3/2/7, x"=-/3//2;

(ii)the interaction due to the weak dipole-dipole and 
octupole-octupole forces. This interaction can be represented 
by a term

VDD = AD-D , (3.7)

where the dipole operator D is given by

D = □|(ptxs+stxp)(D + (d*xp+p*x d)*  1)

+ Tj(fłx3+d’x?)(1> . (3.8)

Again, in order to reduce the number of parameters, one could 
take in (3.6) the 0(4) values aj=/5, 6i=-2/2, у. The main 
effect of the dipole-dipole interaction and, eventually, of an 
octupole-octupole interaction

Vüü = BO-U , (3.9)

with

U = a3(stx?+ftXs)(3) + 63(dfxf + f łxd)(3) , (3.10)

is that of mixing states with different numbers of a and b 
bosons. Since the Hamiltonian is a scalar, it can only mix 
states differing by two p,f bosons. If the minimum before the 
introduction of the mixing terms was for N^=0, the interaction 
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VDD will introduce some admixture in the ground state of Nb=2 
states (octupole-dipole correlations). This situation was 
analyzed by Engel in his thesis (15), and appears to describe 
nuclei in the Ra region reasonably well.

Finally, in cases in which one wishes to do a calculation 
spanning an isotopic chain, one may introduce'also terms that 
take into account the filling of the shells. These terms, ex
change interactions, have been considered in great detail when 
treating the coupling of single particle degrees of freedom to 
s-d bosons, and discussed by Barfield (8) in her analysis of f 
bosons. The structure of the exchange interaction is

5
Hexc ° Е лк (dt»f)<k),(ft»3)(k) + 

k = l

+ I Лк' (d*xp)  (k) • (płxd)(k) + (3.11)
k=l

3
+ E Ak‘- t(d*xf )(k).(p*xd) (k)+(d’xp)(k)•(ffxd)<k>]. 

k = l

4 .CONCLUSIONS

Because of its complexity, the study of octupole degrees 
of freedom in nuclei still represents a major challenge to 
nuclear spectroscopy. A completely phenomenological study 
appears to be unfeasible and one must resort to a combination 
of phenomenology and semi-microscopic calculations. I have 
presented here a scheme in which this study can be done. 
Within this scheme and in view of the fact that the dominant 
interactions in nuclei are pairing and quadrupole with small 
dipole and octupole contributions, the most natural scheme to 
treat deformed nuclei appears to be that based on Q-Q interac
tions (SU(3)-like structure as discussed in Sect.2). With 
these interactions, a situation in which large and rigid 
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octupole■defor mat ions occur seems to be quite unnatural [16]. 
A situation likely to occur is that in which some octupole and 
dipole correlations are introduced in low-lying states by 
octupole and dipole interactions (soft deformations). Further 
work is needed to clarify the situation both from the theore
tical and experimental point of view. In particular, the ex
perimental determination of more than one negative parity band 
is a crucial ingredient in order to distinguish the various 
possibilities, as discussed in detail in Ref. [16].
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STRESZCZENIE

Przedstawiono opis oktupolowych stopni swobody w ramach 
przybliżenia oddziałujących bozonów. Grupą U (16) i jej pod
grupy zinterpretowano jako możliwe symetrie dynamiczne układu 
zawierającego bozony tyixi 8 (L = 0+), d (L ? 2+), f (L = j“) 
i p (L = Г).

РЕЗЮМЕ

Изложено описание октупольных степеней свободы в рамках 
приближения взаимодействующих бозонов. Группа и (16) и ее 
подгруппы интерпретируются как возможные динамические симме- 
трии системы включающей бозоны типа в (1 = о+), d (L = 2+), 
f (L = з") и р (Ь = 1").


