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Флуктуации в коллективной ядерной динамике

1) THE GOAL

In nuclear physics collective motion plays an important role. The word 
"collective" implies the participation of many nucleons in a dynamical 
process. Hence, in many cases this word is synonimous for "macroscopic". 
The latter is associated mostly with the notion of classical physics or, at 
least, with the concept of average motion. However, in many or most 
examples of nuclear physics, fluctuations around such averages cannot be 
neglected.

These fluctuations may be entirely quantal. As one of the most exciting 
cases let us mention ground state fission [1], a process which is not 
possible within classical physics and where a description in terms of an 



224 H. Hofmann, R. Sollacher

average motion becomes meaningless.
But in nuclear physics we may have the other extreme of fluctuations 

becoming entirely statistical. This will be true for high excitations and slow 
collective processes for which an intrinsic temperature T can be defined. If 
this T may be considered large compared to the typical collective excita­
tions we are in the regime of classical statistical mechanics, albeit not the 
one of complete equilibrium. It was no one less than Kramers who pointed 
out in 1940 already how the dynamics of fission can be described in such a 
picture.

Thus the problem is set: In nuclear physics we need to understand to 
describe collective motion including both quantal and statistical aspects. 
Clearly this has to be non-equilibrium quantum statistical mechanics! But 
what a tremendous problem: we all know of the high non linearity of 
nuclear dynamics. The main reason for that can be traced back to the mean 
field evolving coherently with the collective degrees of freedom; as a first 
approximation we must describe the nucleon’s dynamics with the help of an 
average potential. To come back to the example of fission one more time: for 
the mother nucleus this average potential will be very different from the 
one describing the nascent fragments around the scission region.

How can we handle this problem? Well, TDHF is one answer. But besides 
the fact that it does not lead to an easy and adequate treatment of fluc­
tuations, it does not account properly for residual interactions (as well as 
the inclusion of irreversible mechanisms). But such residual interactions are 
present for the examples to be studied, and the extended version of TDHF 
just becomes too complicated.

In the last few years there was another suggestion to tackle the task. 
It bases on the early suggestion of refs. [3] and [4] to apply linear 
response theory locally. There, one describes large scale collective 
dynamics in -a locally harmonic -approximation. In its most general version 
one may do this by applying successively propagators in phase space. 
These propagators are valid over a small time interval 4L and in a small 
region of phase-space. Of course, the size of the latter is related to the 
length of <5t through the (local) dynamics. But for this <5t there must be a 
lower limit: it cannot be smaller than the time т which we must allow to 
elapse if we want to avoid an explicit description of the intrinsic excita­
tions. This t is related to a relaxation time for the intrinsic degrees of 
freedom. We may note that for т - 0 the description of the dynamics in 
terms of propagators could be made identical to the path integral formu­

lation. And it would only be in this case that this picture would ensure a 
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complete quantal description. But for finite т it may still amount to a 
semiclassical version. (For a somewhat more detailed description of the 
theory see refs. [4] and [5].

As the main problem then appears to find the equation of motion for the 
local propagators. But the concept for the perturbation scheme is clear: we 
linearize locally all forces which are possibly present (within a certain 
model, see below) and describe the local motion to harmonic order as good 
as we can. This amounts to a generalization of the RPA in a threefold 
sense, namely: a) to a finite temperature, b) to include residual inter 
actions, and, finally, c) to treat fluctuations. In this contribution we would 
like to concentrate fully on the third aspect and wish to refer to refs. [5] 
and [6] where a close description of points a) and b) can be found.

2) THE THEORY

As our first approximation we take advantage of the picture of Bohr and 
Mottelson and introduce collective variables Q through a shape dependent 
shell model potential V(Xj,Q). According to our scheme discussed above we 
linearize locally like:

H,«) = V(fc<,Q0) + (Q-Qo) F(2t,Qo) . (1)

The first term is a purely intrinsic operator (it "renormalizes" the intrinsic 
Hamiltonian or energy), whereas the second term defines the effective 
(local) coupling between the collective motion Q(t) and the intrinsic system.

If we were just to describe average motion, this scheme would do. We 
could follow a line similar to the one of the conventional "cranking model" 
and derive an equation of motion for the Q(t), as the representative for the 
average collective dynamics. It can be seen in ref. [4] and [6] (with 
further references given there) how the effects of finite temperature and 
residual interaction can be included, finally leading to an equation having a 
friction force.

But we are interested in fluctuations. Therefore, we have to "introduce” 
the Q as a genuine dynamical variable, together with its conjugate 
momentum. Notice, for a quantal system this "introduction as a dynamical 
variable" is another word for quantization. A classical dissipative system 
cannot be quantized. Therefore, we must choose a different way: we have 
to quantize first and then to perform all the steps necessary to describe 
dissipative processes. We even have to start "before" eq. (1), in the sense 

that we should have a two-body force, like
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V<’) = I F(x(,Qo) F(X(,Qo) • (2)

Such a force does lead to (1) within the approximation of the mean field. 
For this we only need to have as a condition:

k<F>t = Q(t) - Qo . (3)

How can we get the coupling constant k? Well, it should not depend on 
time. Therefore we may use a static procedure. We may calculate the total 
static energy from our Hamiltonian with the (approximate) two body force. 
This will depend on the coupling constant k. In our locally harmonic 
approximation we will calculate it to second order in (Q-Qo)- This expression 
we may identify with total static energy calculated differently, namely by 
combining the shell model with the liquid drop renormalization according to 
Strutinsky’s procedure. For more details see ref. [7], as well as ref. [6] 
for possible modifications to include the effects of finite temperature. 
Clearly, our к will be a function of Qo-

How can we introduce the dynamical variables Q and P? They have to 
come as additional, superfluous degrees of freedom. But if we take it 
serious we then must have a subsidiary condition. Indeed, we found one in 
eq. (3) already. There it served for the average motion. So we have to 
generalize it to an operator equation. For the sake of simplicity we shall 
replace 1/k (Q-Qo) by Q. Then this operator equation can be written as:

F(»,) - Q = 0 . (4)

All we have to do is to find a Hamiltonian for the extended dynamics (to 
include both the intrinsic and collective degrees of freedom). Such a 
Hamiltonian can be obtained by exploiting the method of Bohm and Pines 
(see ref. (81) for our nuclear physics problem (see refs. [9] and [10]). It 
reads:

Л = Ho + ₽P - ßQF + + (^)О’ .. (5)

Here Ho is a Hamiltonian which represents the unperturbed intrinsic motion 

(it includes the potential V(x(,Q0)' The Operator F is defined as

F = -i [F,H0] (6)

and the unperturbed mass m0 as
1 à лŹ" = i <tF,F]>o , (7)
WQ

where the average is to be calculated with the density distribution p0= 1/z 
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exp(-H0/T). To obtain (5) we have been guided by our general scheme to 
describe (locally) the collective motion to harmonic order, and we have 
chosen the terms in Q such that the two-body interaction (2) has been 
cancelled. There is one free parameter ₽. Fortunately it turns out that the 
dynamics of the interesting quantities does not depend on its value (see 
below, in particular section 3).

The Hamiltonian (5) has terms which couple collective and intrinsic 
motion. They are of linear order in Q and P, and they are essential for the 
whole dynamics. To understand their influence one may proceed in different 
ways, depending both on Ho as well as on the special question to be 
answered.

Let’s assume for a moment that Ho represents simple dynamics of 
independent particles. In this case we would not expect to find any trace 
of irreversibility in the final equations of motion. Therefore we would just 
try to "diagonalize" the Hamiltonian. This may be done by means of canoni­
cal transformations as in the original papers by Bohm and Pines. One 
obtains the usual RPA for undamped motion.

But the Ho may represent a more complex situation. Il might have, for 
instance, a quasi-continuous spectrum, or it may have some further resi­
dual interaction which couples Ip-lh excitations to more complicated confi­
gurations (in a way which is largely independent of Q). Then there will be 
irreversibility, and a canonical transformation to a new Hamiltonian would 
not adequately describe all features. It is here where the typical elements 
of non-equilibrium statistical mechanics show up. The best one can do is to 
find a transport equation for the reduced density operator d(t) for the 
collective system, or its Wigner tranform d„,(Q,P,t). There, the problem is to 
treat adequately the coupling terms, such that the dynamical fluctuations 
are treated on the same footing as the average motion. The latter we know 
from RPA, or better its extended version to include damping. In this paper 
there will be no space to describe in more detail the derivation of the 
transport equation. We refer to [5] as well as to further publications and 
concentrate once more on the average motion. From this we will then be 
able to deduce important observation for the fluctuations in equilibrium, at 
least for somewhat simple cases. Furthermore, it may elucidate the point 
made about the proper version of perturbation theory.

From (5) the average motion can be obtained via Ehrenfest’s equations. 
They contain <F>t and <F>t. Clearly, these averages are functionals of 
Q(t) = <Q>t and P(t) = <P>t. In linear order one may write:
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~ -(») -(°)
<F>t - ß № XFf(s) Q(t-s) - fds Xff(s) P(t-s) (8)

<F>t = - № XffAs) P(t-s) + ß fds Xff^s) Q(t-s) (9)

This form is by no means trivial. It is obtained by treating the influence of
the coupling terms on the intrinsic system by low order perturbation 
theory. Therefore, the response functions for the intrinsic system appear, 
like

^’’(t) = 2i0(t) XFFO)(t) = i0(t) <[FI(t),F]>0 (10) 

and similar expressions for the other functions. In the final equations for 
Q(t) and P(t) the Ho will appear only through this XffU), and therefore 
any form of Ho is acceptable which allows the computation of this intrinsic 
response function. With respect to the collective motion the expressions (8) 
and (9) imply much more than simple perturbation theory. Notice, that the 
collective factors do not just involve Q and P in the interaction picture: 
the Q(t) and P(t) are meant to be the actual solutions of Ehrenfest 
equations.

Let us not write down these equations but just mention that their 
solutions may conveniently be described by response functions for the 
Q,P-motion itself. According to the general definition of the response

A<A„>U = Г xvp (») f.xt (“) (ID

to an external field:

AH = Ï f^xŁ(t)

we find for

AH = - Q qext - P P.xt(t) : (12)

, . Xo(“)
Xoo(“) = i-kx0(u) ■ (13)

. . . (1-P Xo(u))
Xop(u) = -1 U Xo('») *oa(u) = " X₽e(u)

Xpp(u)
(+k-2ß+ß’x0(«)) 

o’ Xo(o) XOO(U)

(14)

(15)

We have used Fouriertransformations and some simple relations among

(°) (°) (°)
Xo(“) - Xff (“) , Xff (“) and Xff (“)
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In the remaining part of this section we would like to comment on these 
results (13) to (15) and eventually draw some first conclusions.

1) First, we observe that the expressions (13) to (15) turn out to be 
functions of the frequency u. Clearly, the frequencies for the actual motion 
of our system will be found by studying the poles of these expressions. 
Their values will be different from the frequency u0 of the unperturbed 
case (which can be calculated easily from the last two terms in (5)). This 
essential feature was obtained only because, above, we did avoid to use 
simplest perturbation theory. Indeed, had we used the interaction picture 
to define the time dependence of Q and P appearing in expressions (8) and 
(9) we would have ended up with expressions with the x being calculated 
at uo.

2) By looking at Xqq(“) we encounter the same functional form as 
known for the quantity <F>U from ordinary RPA, i.e. when using just 
Ho + k/2 F-F. As a matter of fact it is easy to show that we recover this 
result as well for our present model, which is to say that (5) guaranties to 
satisfy (4) on the average for all times, or all frequencies:

<F>O - Q(u) = 0 . (16)

We may put it in different words: the form (13) guaranties that the 
frequency spectrum for the Q-motion to become identical to the frequency 
spectrum of the <F>t motion, when calculated in conventional RPA 
(provided, of course, we use the same Ho).

3) This must have implications for the equilibrium values of 
fluctuations. Let’s assume for a moment that we use the form (5) for a 
situation where we study collective vibrations around a genuine stable 
point. Then our harmonic solutions represent the true situation for all 
times, thus also for t -» ». (For the interpretation of Fouriertransforms in 
the general case see refs. [5] and [6]). Therefore, we may apply the 
fluctuation-dissipation theorem to obtain fluctuations in global equilibrium. 
This theorem, applied to Xqq, says:

<(Q - <Q>e4)’>eq = / cotgh |f Xqq(u) , (17)

with a similar expression for the fluctuations in F. (The Xqq is the 

dissipative part of Xqq). But since Xqq(u) = Xff(°) we obtain the important 
result

<F2>eq = <Q’>.q . (18)

It says that eq. (4) is fulfilled not only in its time-dependent mean but, for 
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the equilibrium, even in second order. Whether or not such a statement is 
true for the dynamical fluctuations as well is yet unclear. However, for the 
model represented in section 3) we will be able to fulfill (4) as an operator 

equation, indeed.
4) Please notice that the statements made so far do not involve the 

parameter ß. From (14) and (15) we see that ß appears whenever the 
momentum is involved. Furthermore, we observe that in the latter case the 
frequency spectrum has one more solution. These features are hard to 
understand from the general model. We will be able to clearify it by looking 
at a schematic case in the next section.

3) A SCHEMATIC MODEL

Suppose we choose Ho to be a set of coupled oscillators:

й° 4 J. (!r +<19>
and F to be a linear function in the x(, 

л N
r= I 1, 8, . (20)

i = i

Then our problem allows an analytical solution. However, if we. do that for 
the Bohm-Pines Hamiltonian (5) we encounter a little problem: the secular 
equation has a solution u = 0 which makes the diagonalization a little 
uncomfortable. The reason for that is the subsidiary condition, and in 
particular the choice of m0 as given by eq. (7). It is only for this choice 
that we are able to fulfill the subsidiary condition in the way described in 
section 2. But then it is clear how we can circumvent the problem: we 
replace mo by mo, do all calculations for a finite

N X, 2
£ = (m0) m0 1 = m0 1 - Î, -— (21)1=1

and let c got to zero in the final expressions. In this way the Hamiltonian 
can be written as

я = Ï (йкск + ekêk) (22a)
k=o

with the secular equation being given by

£ [2ß - к - ß2 Xo(»)J - «41 - к Xo(«)3 = 0 . (23)

Clearly, there is one solution, we call it ß0> which vanishes in the limit 
t -» 0 (like Vc, provided 2ß-k-ß2x(0) * 0). We call this the zero frequency 
mode. It should be noted that the c{ + ck depend on e as well, so that the 
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term к = 0 does not vanish in the limit € -» 0. One obtains:
Яо + 2ß-k-ßaxo(0) ~ л

Цо 2" <e° e° + e°&o) = 1-kXo(«) (Q”F) ' <22Ь)

In this paper we will not go into any further detail of the calculation. 
We will just mention the most important results and refer to a forthcoming 
publication [11]:

a) The solution of the Heisenberg equations lead to

S(t) - F(t) = - lim /57 teo + ej] = Q-F • (24)
€“>O v

This shows a) that the subsidiary condition is stationary and ß) that it is 
related to the zero frequency mode: the subsidiary condition is a symmetry 
of our problem. (Notice the close analogy to gauge transformation in 
quantum field theories).

b) For к > 0, and in the limit of e -> 0, all Ûk are identical to the 
physical solutions found in the RPA; the secular equation (23) defines the 

poles of Xqo<°)-
c) As can be seen from (23) the paramter ß drops out of the secular 

equation only in the limit c -» 0.
d) Nevertheless, the parameter ß may contribute to solutions for 

operators or their averages, but only if these operators depend on the 
momentum P. We have seen that in section 2) already. But here it is easy 
to prove that ß does not appear, for instance, in the operators for 
velocities like dQ/dt and dF/dt.

e) We may calculate the fluctuations in thermal equilibrium. If the 
latter is defined by:

W„q = | exp (- Л/T) , (25)

we obtain in the limit e -> 0 and among other results:

а л (1“ß X (0))2
<(Q - <Q>.4)2>.4 = C1_k xo(0)][a-ß2 Xo(0)] T

1 ^k+ J дк cot*h 2ï <26)

~ ~ .e a 1-k Xo(0)
<((Q-F)2 - <Q~F>eq)’>eq = a_ßa xo(oj T <27>

dû dû N $k«f - <HT»e4’>.4 = J, Д7 cotgh (29) 

and
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<(P - <P>e4)’>eq = lia 7 + ï ^4’cotgh . (30)
4 4 c-»o C k = » Pk“k z

In (26), (27) and (30) we gel a contribution from the zero frequency mode. 
In the last case this is even divergent, for T » 0. As stated above the 
result (29) for the velocity is independent of ß, whereas for the momentum 
P ß even contributes to the modes к * 0.

The results (26) and (27) are different from the ones obtained in the 
previous section by exploiting our response functions (13) to (15). The 
difference is that (26) and (27) have a contribution from the zero 
frequency mode, whereas the response functions for the Q and F motion do
not have a pole at zero frequency. Looking for possible reasons for this
feature, we may notice that these response functions have been derived for 
t being identically zero from the start, and that certain limits do not
commute. We will have to clearify this point further [11]. But in any case
we could cure this point simply, and in a physically satisfying way, by 
using a thermal distribution for the physical solutions к - 1...N and leaving 
the system in the ground state of the spurious mode к = 0. That implies to 
put T = 0 in the terms involving the zero frequency solution.
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SSRESZCZHÎIS

Dyskutujemy potencjalny teorię opisu wielkoskalowej 

jądrowej dynamiki kolektywnej w skończonych temperaturach. 

Stwierdzamy, że właściwy opie typowych zjawisk jądrowych 

wymaga równania opartego o nierównowagową kwantową mecha­

nikę statystyczną. Wskazujemy^jak można wyprowadzić takie 

równanie i koncentrujemy się na problemie wprowadzenia 

zmiennych kolektywnych w sposób kwantowy. Sugerujemy uży­

cie metody Bohma i Pinesa, pozwalającej na jawne rozważe­

nie warunku pomocniczego. Dyskutujemy,w jaki sposób warunek 

pomocniczy może być spełniony w postaci równania operato­

rowego. Problemy te są objaśnione w ramach uproszczonego 

modelu pozwalającego uzyskać rozwiązanie analityczne.

• РЕЗЮМЕ

Рассматривается потенциальная теория представления крупно­
масштабной коллективной ядерной динамики при конечных темпера­
турах. Доказывается, что правильное представление типичных 
ядерных явлений требует уравнения базирующегося на неравновес­
ной квантовой статистической механике. Мы показали, как можно 
вывести такое уравнение, и сосредоточились на проблеме введения 
коллективных переменных квантовым образом. Полагается примене­
ние метода Бома и Пайнеса, позволяющего явно рассматривать вос- 
помогательное условие. Обсуждается, каким образом воспомагатель- 
ное условие может выполняться как операторное уравнение. Зти нре- 
проблемы обясняются в рамках упрощенной модели позваляющей по­
лучить аналитическое решение.
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