ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XL/XLI, 15

SECTIO AAA

1985/1986

Instytut Fizyki UMCS

S. HALAS, J. SZARAN

An Explanation of the Divergency between ⁴⁴S/¹²S Measurements on SO₂ and SF₂

Wyjaśnienie rozbieżności między pomierami ¹⁴S/²¹S z użyciem SO₂ i SF₀

Выяснение разницы между измерениями ²⁴S/²³S в SO₂ и SF₆

Dedicated to Professor Stanisław Szpikowski on occasion of his 60th birthday

INTRODUCTION

this the faith and the state of a said of a talors

The Third Advisory Group Meeting on Stable Isotope Reference Samples for Geochemical and Hydrological Investigations [1] revealed that the consistency of sulphur isotope determinations among different laboratories is unsatisfactory. Reasons for this poor agreement were investigated by Rees [2] who compared sulphur isotope measurements using SO₂ and SF₆. He reported that δ^{34} s values obtained for ocean water sulphate were 20.3 and 21.0 permil, respectively [3].

This difference is partially caused by the adsorption of SO₂ gas on the walls of the inlet tube and parts of the ion source. This difference is partially caused by the adsorption of SO_2 gas on the walls of the inlet tube and parts of the ion source. For the mass spectrometer used by Rees [2], measurements taken 60 s after switching between the standard and unknown, required a memory correction factor of 1.016. Reasons for the remaining difference in values obtained by the two techniques (a factor 1.034/1.016 = 1.018) were not clear.

The SF₆ scale is more accurate and reliable because of the simplicity of the $S^{19}F_5^+$ mass spectrum which comprises about 90 percent of the total ion species. In contrast, SO₂ comprises about 50 percent of the total ion species and the spectrum is complicated by overlapping due to oxygen isotopes, e.g. ${}^{32}S^{16}O^{18}O^+$ which is not resolved from ${}^{34}S^{16}O_2^+$.

Since the effect of oxygen isotopes can be satisfactorily corrected, other factors must be responsible for the bias in 5^{-4} values obtained using SO₂ gas. Two factors which will be considered in this paper are contributions to m/e = 64 and 66 peaks from S₂ and the proton-containing species HSO₂ and H₂SO₂.

S₂⁺ EFFECT

Evidence that S_2^+ species may form, arises from the high peak of m/e = 80 always observed in the spectrum of pure SO₂. This peak is identified with S_2O^+ . However, it can be readily shown that the S_2^+ contribution to the major peak (m/e = 64) is greater than to the minor peak (m/e = 66); the effect is opposite to the result we wish to explain because it will produce slightly higher measured δ_m^{66} values, as shown below.

In order to derive the relation between the corrected δ^{34} s and δ_m^{66} values let us consider the following two values

 $C = \frac{S_2^+ \text{ contribution at mass 64}}{SO_2^+ \text{ contribution at mass 64}}; \text{ and } (1)$

$$\eta = \frac{R^{34}}{R^{66}} = \frac{R^{34}}{R^{34} + 2R^{18} + 2R^{33}R^{17}} \approx \frac{\frac{1}{22.5}}{\frac{1}{22.5} + \frac{2}{490} + \cdots}$$
(2)

where R^a signifies the appropriate abundance ratios: $R^{34}=^{34}S/^{32}S$, $R^{18}=\frac{18}{0}/\frac{16}{0}$, $R^{33}=\frac{33}{5}S/^{32}S$ and $R^{17}=\frac{17}{0}/\frac{16}{0}$; this useful notation is adopted from the paper by Mook and Grootes [4]. For the measured ratio of an unknown sample one may write

$$R_{m}^{66} = \frac{S0_{2}^{+} \text{ at } 66 + S_{2}^{+} \text{ at } 66}{S0_{2}^{+} \text{ at } 64 + S_{2}^{+} \text{ at } 64}.$$
 (3)

From (5) and (7) we may selling

Using (1) and the definition of delta value the above formula may be rewritten as

$$R_{m}^{66} = \frac{R^{66} + 2 (1 + \frac{\delta^{34}}{10^{3}}) R_{g}^{34} C}{1 + C}.$$
 (4)

Similar formula for the standard gas is

$$(R_{\rm m}^{66})_{\rm s} = \frac{R_{\rm s}^{66} + 2R_{\rm s}^{34}c}{1+c}.$$
 (5)

Therefore

$$\frac{R_{m}^{66}}{(R_{m}^{66})_{s}} = 1 + \frac{\delta^{66}}{10^{3}} = \frac{\frac{R^{66}}{R_{s}^{66}} + 2(1 + \frac{34}{10^{3}})\eta c}{1 + 2\eta c}, \quad (6)$$

where 5^{34} s may be calculated from the unbiased 5^{66} value by using the oxygen correction factor [5]

$$C_{\text{oxygen}} = \left(1 + 2 \frac{R_s^{18}}{R_s^{34}}\right)^{-1} = 1.09$$
 (7)

From (6) and (7) we may write

$$\delta^{34} s = \frac{1 + c_o}{\frac{1}{1 \cdot 09} + c_o} \delta_m^{66} , \qquad (8)$$

where $C_0 = 2 \, \eta C \approx 2C$. According to this equation the ratio δ^{34} s to δ_m^{66} is smaller than the oxygen correction factor. For example, if S_2^+ production is 5%, which corresponds to $C_0 = 0.1$, the ratio δ^{34} s/ $\delta_m^6 = 1.08$. Since the larger production than 5% is rather unlikely, then the effect of S_2^+ production on the bias in mass spectrometric measurements is meaningless.

EFFECT OF HSO' AND H2SO'

Let us consider the contributions of the proton-containing species $H^{33}SO_2^+$ and $H_2^{32}SO_2^+$ to the minor peak of m/e = 66. The production rate of these species is proportional to the ion beam intensities at mass 65 and 64, respectively, i.e.

$$\langle H SO_2^+ \rangle = k_1 \cdot I^{65}, \qquad (9)$$

$$\langle H_2 SO_2^+ \rangle = k_2 \cdot I^{64}.$$
 (10)

The measured ratio for an unknown sample is

$$R_{m}^{66} = \frac{\mathbf{I}^{66} + \mathbf{k}_{1} \cdot \mathbf{I}^{65} + \mathbf{k}_{2} \cdot \mathbf{I}^{64}}{\mathbf{I}^{64}}$$
$$= R^{66} + \mathbf{k}_{1} \cdot R^{65} + \mathbf{k}_{2}$$
$$= R^{66} + \mathbf{k}_{1} (1 + \frac{\delta^{65}}{10^{3}}) R_{s}^{65} + \mathbf{k}_{2}.$$
(11)

Similar formula for standard is

$$(R_m^{66})_s = R_s^{66} + k_1 R_8^{65} + k_2$$
 (12)

Dividing (11) by (12), one obtains

$$1 + \frac{\delta_{m}^{66}}{10^{3}} = \frac{1 + \frac{\delta_{m}^{66}}{10^{3}} + k_{1} \left(1 + \frac{\delta_{m}^{65}}{10^{3}}\right) \frac{R_{s}^{65}}{R_{s}^{66}} + \frac{k_{2}}{R_{s}^{66}}}{1 + k_{1} \frac{R_{s}^{65}}{R_{s}^{66}} + \frac{k_{2}}{R_{s}^{66}}}.$$
 (13)

In order to simplify this equation let us denote

$$C_1 = k_1 \frac{R_s^{00}}{R_s^{66}}$$
, and (14)

$$C_2 = k_2 / R_s^{66}$$
, (15)

then the equation (13) may be rewritten as

$$(1 + c_1 + c_2)\delta_m^{66} = \delta^{66} + c_1\delta^{65}$$
 (16)

Substituting here $\frac{1}{2}\delta^{66}$ for δ^{65} , inasmuch as the isotope separation is approximately proportional to mass difference, we obtain the following expression for the corrected value

$$\delta^{66} = \frac{1 + c_1 + c_2}{1 + c_1/2} \delta_m^{66}.$$
 (17)

Assuming a similar production rate of both species, $k_1 \approx k_2$ we may estimate from (14) and (15) that $C_1 \ll C_2$, thus

$$\delta^{66} = (1 + C_1/2 + C_2) \delta_m^{66}, \qquad (18)$$

and

$$\delta^{34}s = 1.09(1 + C_1/2 + C_2)\delta_m^{66}.$$
 (19)

DISCUSSION

In the derived formula (18) the correction for HSO_2^+ production is represented by term $C_1/2$ which, according to definition (14), may be estimate as 0.016 k₁. In contrast, the correction for $H_2SO_2^+$ production

 $C_2 = \frac{k_2}{\frac{1}{22}}$

is significant even at very low production rate of this species. Considering k_2 to be only one part per thousand, we obtain $C_2 = 0.022$ which may totally explain the observed discrepancy between SO₂ and SF₆ scales!

The mechanism of formation of the proton-containing species was not investigated yet. These species may be formed by ionization and dissociation of H_2SO_3 molecules and, indirectly, as result of ion-molecule reactions. In the second way are formed ions H_2^+ and H_2O^+ , always present in mass spectra.

The postulated species HSO_2^+ and $H_2SO_2^+$ must be detected using either high resolution mass spectrometry or, indirectly, by studying the influence of water vapour and H_2 gas on low resolution spectra.

Preliminary results using the second approach are consistent with the existence of such species. These results may be summarized as follows: (1) Addition of hydrogen to the sample gas causes a strong dependence of the measured delta value on the electron emergy, see Fig. 1. (2) It is observed a decrease, by constant factor of 1.035, of the measured of when both capillaries are homogeneously heated to about 100°C. (3) Heating the mass spectrometer chamber after a longer period of work at room temperature causes a considerable drop of absolute value δ_m^{66} .

Of course every one who has access to a high resolution mass spectrometer is most wellcome to investigate the components at mass 66. The high resolution spectrum this mass number is shown in Fig. 2. The resolving power of the mass spectrometer $W/\Delta M = 10\ 000$ is desirable.

Fig. 2. Calculated high-resolution mass spectrum around m/e = 66. Abscissa values represent the difference in mass from the mass of $34s^{10}0^{+}$ molecule in 10^{-3} of mass unit.

CONCLUSION

The effect of S_2^+ production is meaningless but that of $H_2SO_2^+$ and HSO_2^+ may be totally responsible for the bias in all data obtained with SO_2^- . However, in correcting \int_{m}^{66} for the proton-containing species the derived formula (18) is practically useless because the relative production rates k_1 and k_2 are unknown. Moreover, the production rates seems to be essentially depended on vacuum conditions of the chamber of mass spectrometer and of the inlet system. Also sample preparation techniques may introduce a small amount of water vapour to SO₂ gas.

For this reasons the total correction factor $1 + C_1/2 + C_2$ should be determined experimentally using two standards precisely calibrated by the SF₆ method.

This work was supported by Scientific Program CPBP 01.06.

REFERENCES

- 1. G o n f i a n t i n i R.: Advisory Group Meeting on Stable Reference Samples for Geochemical and Hydrological Investigations, IAEA, Vienna, 19-21, September 1983.
- 2. R e e s C. E.: Geochim. et Cosmochim. Acta 1978, 42, 383-389.
- 3. Rees C. E., Jenkins W. J. and Monster J.: Geochim et Cosmochim. Acta 1978, 42, 377-381.
- 4. M o o k W. G. and G r o o t e s P. M.: Int. J. Mass Spectrom. Ion Phys. 1973, 12, 273-298.
- 5. Thode H.G., Macnamara J., Collins C.B.: Can. J. Research 1949, B27, 361-373.

STRESZCZENIE

W pracy rozważono wpływ jonów S_2^+ , HSO_2^+ i $H_2SO_2^+$, które mogą nakładać się na wierzchołek m/e = 66 w widnie masowym CO_2 podczas analizy izotopowej przy użyciu dwutlenku siarki. Wykazano, że wpływ jonów S_2 jest nieznaczny, podczas gdy obecność jonów wodorków SO_2 może całkowicie wyjaśnić systematyczny błąd wyników pomiarów ${}^{54}S/{}^{32}S$ otrzymywanych przy użyciu SO_2 . Wyprowadzono następujący wzór na poprawkę, którą trzeba wnieść do mierzonej wartości δ_m^{56} , aby otrzymać ${}^{34}S$:

 $\delta^{34}s = 1.09 (1 + C_1/2 + C_2) \delta_m^{66}$

188

gdzie $C_1 = 0.016 k_1$, $C_2 = 22 k_2$, zaś k_1 i k_2 oznaczają względne szybkości produkcji jonów HSO_2^+ i $H_2SO_2^+$.

PESЮME

В работе рассматривается влияние ионов s_2^+ , Hso_2^+ и $H_2so_2^+$ которые могут накладываться на пик m/e = 66 в массовом спектре CO, при изотопном анализе с использованием двуокиси серы. Доказано, что влияние ионов s_2 незначительное, в то время как присутствие ионов гидратов so_2 может полностно выяснить систематическую ошибку результатов измерений ${}^{34}s/{}^{32}s$. Выведена следующая формула на поправку, которую следует ввести в измеренное значение o_m^{56} , чтобы получить $\delta^{34}s$:

$$\delta^{34}s = 1.09 (1 + c_1/2 + c_2)\delta_m^{66},$$

где $C_1 = 0,016 k_1, C_2 = 22 k_2, и k_1, k_2 - это относительные ско$ $рости образования ионов <math>HSO_2^+$ и $H_2SO_2^+$, соответственно. The later of the second s

dance & possil second of shirts regardy he fills goals

in the state of the state

- A. C. S. S. E. B. M. B. S. S. S. S. R. Lit. J. Back Spec-
- Cont. J. Reasonable 1997, 207, 201-273-

STATISTICS.

F young researches spire limits by, notif i fully, there many matteries and in comparisons of a side a state of the Thermoster eras scaling interpreter provide the scaling research prove assistance in a state of the side of the state of the state scale for the state of the side of the state of the state scale for the state of the state of the state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state state of the state state of the state state of the state of the

Jan - 1011 11 + 0, 11 + 12, 15

14.2