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1. INTRODUCTION

The collective Hamiltonian for quadrupole motion originally 
proposed by A. Bohr in 1952 [1] was successfully used for de­
scription of low lying collective nuclear states [2]. The para­
meters of the Hamiltonian at first were determined phenomenolo­
gically and afterwards on the basis of microscopic theories [2,51*  
In the estimation of the inertial functions as well as the col­
lective potential function different models have been used. The 
partially phenomenological pairing-plus-quadrupole model [4-6], 
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TDHF approach [7], ATDHP theory of collective motion [8] and a 
direct application of the Inglis formula [9-111 provide only a 
few examples of a great variety of methods used to calculate the 
mass tensor and the potential energy surface. However, to obtain 
a quantal collective Hamiltonian all the methods require not uni­
que procedure of quantization of a classical collective Hamilto­
nian [121. In addition, e.g. in the popular cranking approach, 
the potential energy surface [13, 141 is chosen with accuracy to 
any arbitrary scalar function i.e. the quantal zero-point energy 
is not taken into account [15, 16].

The criticism of these quasi-quantal methods was a motiva­
tion to look for a more satisfactory approach. The generator co­
ordinate method (GCM) offers a fully quantal theory [17-191 which 
together with the Gaussian overlap approximation [20] or its ex­
tension [21] allows for microscopical derivation of the collective 
Hamiltonian. This method allows to derive the collective Hamilto­
nian starting from stationary Schrbdinger equation in a fermionic 
space. Contrary to the previous approaches no redundant variables 
are introduced and no quantization procedure of a classical Hamil­
tonian for collective motion is needed. The first attempts in this 
direction were already made nearly ten years ago. Using an appro­
ximate narrowing kernel approach [221 the rotational kinetic ener­
gy of the Bohr Hamiltonian has been obtained in [231. However, the 
moments of inertia are derived only for the many-body Hamiltonians 
and not for the mean fields Hamiltonians. In addition the paper 
does not offer explicitly any expression for the zero-point cor­
rection to the potential energy. The full Bohr Hamiltonian is 
also not explicitly derived there because the analytical diago­
nalization of the five-dimensional metric tensor is needed.

It is the aim of the present paper to describe a quantal de­
rivation of the full quadrupole collective Hamiltonian within the 
GCM and the extended Gaussian overlap approximation [21]. The re­
cent GCM estimates of the mass parameters and potential energy 
[24-27] are different from those obtained by quantization of the 
classical collective Hamiltonian. However, to decide which ap­
proximation gives results more closer to the experimental data 
one needs to solve the full, including the most important degrees 
of freedom collective Hamiltonian. It will be a topic of our fu­
ture publications. The present paper is only a preliminary step 
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towards this goal; here we give only the outline of the theo­
retical formalism.

2. THE GENEBATING FUNCTION AND THE METRIC TENSOR

The classical Bohr Hamiltonian is dependent on five quadru­
pole complex collective variables a J2 (u=-2,1,...,2) which 

f* I one assumes as generating coordinates. One also assumes that the 
appropriate normalized generating function I au > describing 
a quadrupole nuclear motion of many body system satisfies the 
conditions for the extended Gaussian overlap approximation [21] 

z (?) <«> i <Wi .e. the overlap function <Хг /is a deformed
in the variables Ct .J2 ) and Gaussian profile (for details
see [21, 26 and 27]). After transformation [1] to the shape va­
riables p and у and three Euler angles Л= 52 the
generating function can be factorized as

1<2,...,<’> = 1ЙРТ>= R(û)|pT> , (i)'

• Л -ißjüj
where R (Л) = 6 в в is the rotation operator de­
fined in the space fixed frame. The normalized "intrinsic" func­
tion I corresponds to the generating function | <1 > at the
moment when the "intrinsic" (rotating) and the laboratory (fixed 
space) frames coincide. In applications the intrinsic function 
j jbf) is usually chosen as a BCS-type function. Following the 
paper [23] one assumes that the intrinsic function has the 
reflection (dg-group) symmetry [2, 3] :

-iT3k
£ IpPHpp , k = 1,2,3. (2)

The symmetry allows to obtain the rotational inertia in respect 
to the principal axes. To apply directly the formulae of Refs. 
(21, 26, 27J one requires that the matrix elements ?

к rs 4. 5(q = k=1,2,3, q^ =p » q3 = ]• ) have to be equal zero. It is
alyways fulfilled by the operators ~— due to do-symmetry (2 ).
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On the other hand, from the normalization property<p-j-= 1, 
one can easily obtained that Re<2pj'|Aj |ßp[> = О and the ap-

ł
priate choice of (p>y )-dependent phase factor in the generating 
function (1 ) allows always to satisfy the required condition (see 
e.g.[27] ).

Following [21, 27] the metric tensor in the collective space 
can be calculated from the formula

Î/W = Re ^9 I д^Г I <0 , (5)

where q= (q*)  = ( Л 1, Ä2,5?3,p ) and Д- JL act on bra
and ket, respectively. Owing to d2-symmetry the metric tensor has 
a reduced form:

0

‘hß Sn

(4;

Using the relation (it can be obtained 
of the rotation operator)

by direct differentiation

R*(a) a g (Д)
(?)

where the matrix

( иг)) -
- sin 22cos£3 

sin &3

Sin cos

COS &3 0 (6)
0 10

one can obtain the expression for the "rotational" part of the 
metric tensor
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bklifl)bvt(Ä)<?v> П)

In (7 ) and further the notation <( A ) = < A | У is used. One 
can easily check that the corresponding contravariant components 
can be expressed in a similar way:

(b”(®)lk(b"(«)lkl<5t>'' (6)

The "vibrational" part of the metric tensor is dependent on ex­
plicite definition of the generating function and in general can 
be written as (3) (}i»b = 4»5):

<jm„-<PtI V Ai|pT> : “ł4 = ₽and < ‘ Г <9)

Note that the vibrational components (9) do not depend on Euler 
angles. To derive expressions for the mass tensor and the poten­
tial energy one needs to calculate a part of Christoffel coeffi­
cients connected with the full metric tensor (g^)» One can easily 
prove that

<ггГмгГ^гм'° <1°>

and in practice only the coefficients related to the vibrational 
tensor (9) have to be evaluated i.e.

3. THE MASS PARAMETERS AND THE ZERO-POINT ENERGY

Denote by H the many-body (or j3 , у dependent mean field) 
Hamiltonian of the nucleus at the moment when the laboratoxy and 
intrinsic frames coincide i.e. for £2=0. After rotation the Ha­
miltonian is equal
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H' = R (£) НЙ*(Л).  (12)

A
Obviously, if H is a true many-body Hamiltonian then it is in­
variant under space rotation and H' = H, For the mean field Hamil­
tonians we assume only that H is invariant under dg-group, i.e.

e’lir^k He = i-i ; к =1,2,3. (13)

It allows to avoid the asymmetry terms linear terms) [27] in the 
collective Hamiltonian which are not observed in experiment. The 
covariant components of the inverse mass tensor can be calculated 
from the formula [21, 26, 2?]:

r e {ч ' < *■*'  4^ > l *
1 zn I э эИz I \ _ JL -^1
2 <CH 3qv 2 J ’

where the linked matrix element is, as usually defined [18]

нâq* H 19-^41** 11Я) (15)

<q
< a|Q'> /a.a»q U =1,2,...,5) (16)

and ---- -r denotes a covariant derivative e.g.

△ ho _ Shy X _? i

(17)

Using (10), d2-symmetry property (2) and (13) one can show that
the mass tensor has also a reduced form (4)
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0

1171 ]pp (177

( 177 ) JP ( rn’1) y|

(18)

After straightforward but lengthy 
contravariant inverse mass tensor 

calculation.one can obtain the

<3’>]
(19)

and for u, 9 = 4,5

£ £ cff М<рт| ^-tH^|pT>L

jL / a r I Э Э M i . i Ahj- 1 (2° )
2 <Pï' acf " 2 ûq€ j '

Similarly to the vibrational part (9) of the metric tensor, the 
vibration part (20) of the inverse mass tensor does not depend on 
Buier angles.

The zero-point energy can be obtained from [21, 26, 27]

V? ^l4>] (21)

i »

and due to dg-symmetry property reduces to a sum of the rotational 
о ‘ and vibrational S corrections to the standard col­

lective potential energy <яру|н'|йр»|> = :

c ctroi) (vib) 
% = -^o (22)
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In a similar way as for (19), making use of the formulae

<$РТ| эа;Н'Д;|ярг\-- £ b^b^WÓtHO^L
(23)

and

(24)

one can obtain the rotational zero-point correction:

C 4 è < 3 ‘ > [< >l 4 < A « Л > ] (25)

where, as it will be shown in next paragraph, 4 represents the 
rotational inertia:

4 < & .Ok,«]])
(26)

Note that, the moments of inertia (ßf ) resembles the Peiers- 
Toccoz and Une et al. [23] moments of inertia. The vibrational 
zero-point energy can be written as

eW4è <4е{<Рг1^Н^1рт>и.

*<рт!з^ 3^lPï>] ; vP л4 5=г

4. THE COLLECTIVE HAMILTONIAN

The collective Hamiltonian derived in the GCM with extended 
gaussian overlap approximation [21] is veiy similar in form to the 
collective Hamiltonian obtained after the Pauli-Podoisky quantiza­
tion procedure [3, 12]
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<28)

where
<rdeHfyJ ; tu,v = t5

and the potential energy is

V (4) = <ql H'l4> - £«(4) (29)

The main difference between (28) and the traditional collective 
Hamiltonian is that the metric tensor is different from the mass 
tensor and the potential is corrected by the zeio-point energy.

In the case of the Bohr Hamiltonian (28) the rotational 
energy can be easily written in the standard fono [23] :

э-;1(ртК1к)\ о»)

where the inertia parameters are explicitly given by (26) and 

3 д
i'k=-i£(b <»)цж <”)

are the angular momentum operators in the rotating (intrinsic) 
frame expressed in terms of Euler angles (see Chpt. 5 of [3] )• 
In derivation of (30) the following relation was used

è [ fa ■ ’Пуг 0?)

The vibration kinetic energy does not depend on Euler angles and 
is given by the operator

£■ _ 1 г a „z .Л a a _npr a’vib 2D 19(3 D^m ' 3J3 + ap D(m ) ay

(55)
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where D = J l<|0p<jTr'(9pr)2|<34 < Э г ) < Э j >

The potential energy (29), as it is expected, is a function of 
only shape parameters:

A . (rot) (vib)
V=<PT |H|pr> -€o (PT)-SO (pj), (34)

where £ and 6 can be calculated from (25) and (27)« To 
complete formulae, one can quote the volume element

dT=^det(^)r dpdT dÆ,0Ягdfi3 HI(]ßJh-(<jр/1 '•

• <>< 3’ >(Э, > • dpdæ sin Лг dĄ d£2 dP3 (35)

which ensures the Bohr Hamiltonian

(56) 

to be hermitian. It is also important to note that the Hamiltonian 
(56) is invariant under space rotations even when the Hamiltonian 

H’, (12), is not invariant.
This way we derived the full quantal Bohr Hamiltonian with 

unique expressions for the mass tensor and potential energy for 
both a many-body and effective nuclear Hamiltonians. The deriva­
tion is independent on somewhat artificial quantisation of a class­
ical collective Hamiltonian as it was in the cranking or similar 
approaches. The collective Hamiltonian (56) has required symmetry 
properties and, on the other hand, allows for a very flexible 
choice of the collective subspace in the full fermion space. This 
fully quantal derivation of the Bohr Hamiltonian is limited only 
hy rather general conditions under which the extended Gaussian 
overlap approximation can be used.

The author is greatly indebted to Professor K. Pomorski for 
suggesting this problem and for stimulating discussion. The author 
also would like to thank Professor M. Brack and B. Werner for warm 
hospitality at the University of Regensburg.

This work has been partially supported by contract CPBP 01.06.
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STRESZCZENIE

'.7 pracy zastosowano metodę współrzędnej generującej 
f+ ogólnione przybliżenie gaussowskiej do otrzymania kwantowe­
go hamiltonianu opisującego kwadrupolowe ruchy kolektywne ją­
dra atomowego. Jako zmiennych kolektywnych użyto trzech kątów 
.Lilera oraz dwóch standardowych parametrów deformacji (b i . 
Uzyskano vj pełni mikroskopowe wyrażenia na tensor masowy i po­
tencjał kolektywny.

РЕЗЮМЕ

В работе применяется генерирующей координаты (+ обоб­
щенное гауссово приблежение) для получения квантового гамиль­
тониана, описывающего квадрупольные коллективные движения атом­
ного ядра. Как коллективные переменные применялись три углы 
Эйлера и два стандартные параметры деформации Jb и Т. Получены 
полностью микроскопические выражения на массовый тензор и кол­
лективный потенциал.


