ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN — POLONIA

VOL. XXIX/XXX, 2

SECTIO AA

1974/1975

Instytut Chemii UMCS Zakład Chemii Nieorganicznej i Ogólnej Kierownik: prof. dr Włodzimierz Hubicki

Michalina DĄBKOWSKA

Derywatograficzne badania termicznej dysocjacji octanów gadolinu, dysprozu i erbu

Дериватографические исследования термической диссоциации ацетатов гадолиния, диспрозия и эрвия

Derivatographic Investigations of the Thermal Dissociation of Gadolinium, Dysprosium and Erbium Acetates

Badania termicznej dysocjacji octanów lantanowców lekkich zostały przedstawione w poprzednim tomie [1]. Octany lantanowców ciężkich krystalizują łatwiej w porównaniu z octanami lantanowców lżejszych, przy tym tworzą na ogół wyżej uwodnione trójskośne kryształy, najczęściej czterohydraty. Rozpuszczalność tych ostatnich w temperaturze pokojowej jest rzędu kilkunastu miligramów poszczególnych octanów lantanowców ciężkich w 100 g wody, przy tym rozpuszczalności poszczególnych octanów od erbu zmniejszają się w miarę zwiększania liczby atomowej lantanowca, co było nawet przez niektórych autorów wykorzystane do rozdzielania częściowego pierwiastków ziem rzadkich.

Na temat termicznego zachowania się octanów lantanowców cięższych niewiele jest danych w literaturze. L. Mayer i F. Kassierer [2] w badaniach termograwimetrycznych octanów lantanowców lekkich uwzględnili także jednohydrat octanu gadolinu. Jednak autorzy ci nie cytują temperatur poszczególnych przemian rozkładu termicznego, stwierdzili tylko, że tlenowęglany $Ln_2O_2CO_3$ są trwałe w temp. 350–750°C, przy czym trwałość termiczna poszczególnych tlenowęglanów zmniejsza się wraz ze wzrostem liczby atomowej lantanowca, a rozkład bezwodnego octanu gadolinu zaczyna się o wiele wcześniej niż rozkład badanych octanów La, Pr i Sm.

K.C. Patil, G.V. Chandrashekar, M.V. George, C.N.R. Rao [3] przeprowadzali badania produktów termicznego rozkładu bezwodnych i uwodnionych octanów gadolinu i dysprozu, ogrzewanych z szybkością przyrostu temperatury 10° C/min (w przypadku krzywych TG) i 16° C/min (w przypadku krzywych DTA). Według tych autorów tetrahydraty octanów Gd i Dy wykazują dwustopniowe odwodnienie ok. 120 i 220° C, co świadczyć może o niejednakowym wiązaniu drobin wody w octanach tych pierwiastków.

Bezwodne octany charakteryzują się stosunkowo dużą trwałością termiczną, ulegają rozkładowi powyżej 400°C wg reakcji:

$2Ln(CH_3COO)_3 \rightarrow Ln_2O_3 \cdot CO_2 + 2CO_2 + 3(CH_3)_2CO_3 + 2CO_2 + 2C$

Temperatury tworzenia się tlenowęglanów wynoszą w obu przypadkach 450° C. W kolejnym rozpadzie termicznym powstają Gd_2O_3 w temp. 740° C i Dy_2O_3 w temp. 650° C. Natomiast z krzywych DTA, uzyskanych przez tych autorów (przy innych szybkościach ogrzewania) wynika, że temperatury tworzenia się odpowiednich tlenowęglanów Gd i Dy wynoszą 435 i 425° C, a kolejne przekształcenie się ich w tlenki następuje w minimalnych temp. 700 i 660° C.

W żadnej z tych prac nie ma wzmianki w przypadkach octanów lantanowców cięższych o tworzeniu się metaoctanu jako produktu pośredniego rozkładu termicznego, który pojawia się podczas termicznego rozkładu octanów lantanowców lekkich.

Celem tej pracy jest przedstawienie wyników badań termicznej dysocjacji octanów Gd, Dy i Er przy użyciu derywatografu OD 102, systemu F. Paulik — J. Paulik — L. Erdey oraz porównanie zakresów temperatur termicznych trwałości poszczególnych produktów pośrednich rozkładu badanych octanów i octanów lantanowców lekkich.

CZĘŚĆ DOŚWIADCZALNA

Preparatyka octanów

Jako preparaty wyjściowe stosowano tlenki Gd_2O_3 , Dy_2O_3 oraz Er_2O_3 o czystości 99,8%, wszystkie produkcji Katedry Chemii Nieorganicznej UMCS.

Odpowiednie tlenki rozpuszczano w 50% roztworze wodnym CH₃COOH (cz.d.a. produkcji POCh, Gliwice) w temp. ok. 75°C, następnie roztwory odparowywano na łaźni wodnej do małej objętości; końcowe suszenie prowadzono na powietrzu w przeciągu 4—5 dni. Analitycznie stwierdzono, że uzyskano tym sposobem: Dy(CH₃COO)₃ · 6 H₂O, Gd(CH₃COO)₃ · 4H₂O oraz Er(CH₃COO)₃ · 1,5 H₂O

Aparatura i tok postępowania

Do pomiarów stosowano derywatograf typ OD 102, syst. F. Paulik — J. Paulik — L. Erdey, produkcji MOM Budapeszt. Krystaliczne octany poszczególnych lantanowców ucierano w porcelanowym moździerzu; do badań derywatograficznych pobierano próbki około 100 i 1000 mg. Pomiary prowadzono przy czułościach TG możliwie największych, DTG — 1:5 oraz DTA — od 1:5 do 1:20, ogrzewając mniejsze próbki z szybkością przyrostu temperatury 3°C/min, a większe — z szybkością 10°C/min. Jako substancję wzorcową do analizy różnicowej stosowano α -Al₂O₃. Obie próbki w tygielkach platynowych przykrywano szklanką kwarcową przed umieszczeniem ich w piecu. Pomiary wykonywano w atmosferze powietrza.

Uzyskane derywatogramy małych i większych próbek badanych octanów gadolinu, dysprozu i erbu są przedstawione na ryc. 1—6; dane zaś liczbowe dotyczące termicznej dysocjacji poszczególnych octanów badanych lantanowców cięższych oraz skład uzyskiwanych trwalszych termicznie produktów pośrednich w odpowiednich zakresach temperatur zawarte są w tab. 1—6.

OMÓWIENIE WYNIKÓW

Termiczna dysocjacja octanu gadolinu

Z krzywych derywatograficznych TG, DTG i DTA (ryc. 1 i 2) wynika, że ogrzewany czterohydrat octanu gadolinu traci wodę krystalizacyjną w dwóch stadiach, najpierw tworzy się jednowodny i następnie bezwodny octan gadolinu. Wiązania drobin wody w tetrahydracie są dwojakiego typu, co wyraźnie zaznacza się na obu krzywych pochodnych. Wniosek ten pokrywa się z wynikami Patila, Chandrashekara i George'a. Również temperatury rozkładu produktów pośrednich termicznego rozpadu octanu gadolinu, wymienione przez tych autorów, zgodne są z przedstawionymi w tab. 2.

Nieco niższe wartości odpowiednich temperatur podane w tab. 1 odnoszą się do badań siedmiokrotnie mniejszej ilości octanu gadolinu ogrzewanego o wiele wolniej (3°C/min). Te z kolei wyniki pokrywają się z wynikami Mayera i Kassierera, którzy uzyskiwali krzywą termograwimetryczną octanu gadolinu (80—100 mg) ogrzewanego z szybkością 5° C/min przy pomocy automatycznej wagi Adamel.

Bezwodny octan gadolinu utrzymuje swoją masę bez zmian w zakresie kilkudziesięciu stopni w obrębie 250—300°C (zależnie od wielkości próbki i szybkości ogrzewania) i następnie ulega gwałtownemu rozpadowi z

Michalina Dąbkowska

wydzieleniem lotnych i palnych produktów (przede wszystkim acetonu) i przekształceniem się w tlenowęglan, który jest stosunkowo trwały termicznie.

Można przypuszczać, że podczas rozpadu termicznego octanu gadolinu tworzy się również metaoctan, ale jako bardzo nietrwały produkt pośredni, ulegający natychmiast dalszemu rozkładowi do tlenowęglanu, zgodnie z równaniami:

 $Gd(CH_3COO)_3 \rightarrow GdOCH_3COO + (CH_3)_2CO$

 $2 \operatorname{GdOCH_3COO} \rightarrow \operatorname{Gd_2O_2CO_3} + (\operatorname{CH_3)_2CO}$

Oba te stadia są zaznaczone najwyraźniej na krzywych DTG w badaniach octanu gadolinu powoli ogrzewanego.

Derywatograficzne badania termicznej dysocjacji octanów...

Zakres temp.	Masa próbki			Teoret.
°C	mg	%	- Skład substancji	%
20-60	150	100	Gd(CH ₃ COO) ₃ · 4H ₂ O	100
60-130	128	85,33	and the second s	
130-150	127,5	85,00	Gd(CH ₃ COO) ₃ · 1H ₂ O	86,70
150 - 200	124	82,67	The state of the state of the	
200 - 260	123	82,00	Gd(CH ₃ COO) ₃ bezwodny	82,27
260 - 370	86	57,33	(? GdOCH ₃ COO)	57,15
370 - 400	78	52,00	A A A A A A A A A A A A A A A A A A A	
400 - 525	75,5	50,33	$Gd_2O_2CO_3$	50,01
525 - 595	69,5	46,33	1	
595 - 720	69	46,00		
720-900	67,5	45,00	Gd ₂ O ₃	44,59

Tab. 1. Termiczna dysocjacja octanu gadolinu (ogrzew. 3°C/min)

Tab. 2. Termiczna dysocjacja octanu gadolinu (ogrzew. 10°C/min)

Zakres temp.		Masa próbki			Teoret.
	°C	mg	%	Skiad substancji	%
	20-75	1020	100	Gd(CH.COO), · 4H.O	100
	75-180	860	84,32	Gd(CH ₃ COO) ₃ · 1H ₂ O	84,48
	180-260	840	82,35		
	260-330	835	81,86	Gd(CH ₃ COO) ₃ bezwodny	82,27
	330-370	815	79,90		
	370-440	585	57,35	GdOCH ₈ COO (tylko na	57,15
	110 500	500	50.00	DTA)	and any states
	440-500	520	50,98		
	500 - 560	510	50,00	$Gd_2O_2CO_3$	50,01
	560-640	507	49,71	Gd ₂ O ₂ CO ₃	50,01
	640 - 740	455	44,61	and the second second second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	740-1000	452	44,37	Gd ₂ O ₃	44,59

Warto równocześnie zwrócić uwagę, że przy tworzeniu się tlenowęglanu gadolinu obserwuje się na krzywej DTA znaczny efekt egzotermiczny przy powoli ogrzewanej małej próbce octanu. Silnie egzotermiczna reakcja, zaobserwowana również u lantanowców lekkich [1], jest wywołana katalitycznym spalaniem lotnych organicznych produktów, tworzących się podczas termicznej dysocjacji lantanowców.

Ogrzewany nadal tlenowęglan gadolinu nie zmienia swojej masy w zakresie stu kilkudziesięciu stopni; może ulegać tylko pewnej przemianie polimorficznej, na co wskazuje kolejny efekt egzotermiczny na krzywej DTA, ale tylko w przypadku większej próbki (ryc. 2). Około 700°C następuje końcowy rozkład do trwałego termicznie tlenku Gd_2O_3 , utrzymującego się bez zmian do temp. powyżej 1000°C.

Termiczna dysocjacja octanu dysprozu

Badany octan dysprozu okazał się nietrwałym sześciohydratem, który po lekkim ogrzaniu do temp. 40—60°C traci raptownie 5 drobin wody i następnie około 200°C oddaje ostatnią drobinę wody już mniej raptownie (ryc. 3 i 4). A więc i w przypadku hydratu octanu dysprozu potwierdza się fakt o dwustopniowej dehydratacji i różnych wiązaniach wód krystalicznych w drobinie, uwidoczniony na krzywych derywatograficznych DTG i DTA.

Octan dysprozu w stanie bezwodnym jest stosunkowo dość trwały termicznie, utrzymuje swoją masę bez zmian w obrębie stu stopni powyżej $200-300^{\circ}$ C, w zależności od szybkości ogrzewania (tab. 3 i 4). Dalsze ogrzewanie powoduje gwałtowny rozpad ok. 400° C do tlenowęglanu dys-

Derywatograficzne badania termicznej dysocjacji octanów...

Zakres temp.		Masa próbki			Teoret.
	°C	mg	%	- Skład substancji	
	20-40	150	100	Dy(CH ₃ COO) ₃ • 6H ₂ O	100
-	40-110	120	80,00	Dy(CH ₃ COO) ₃ · 1H ₂ O	79,90
	110-170	117	78,00		
	170-260	115	76,67	Dy(CH ₃ COO) ₃ bezwodny	75,86
	260-380	75	50,00	Contraction 1	
10	380-480	69	46,00	Dy ₂ O ₂ CO ₃	46,57
1.	480-550	65	43,37	Skowp, durante V	
0	550-900	64	42,47	Dy ₂ O ₃	41,65

Tab. 3. Termiczna dysocjacja octanu dysprozu (ogrzew. 3°C/min)

Tab. 4. Termiczna dysocjacja octanu dysprozu (ogrzew. 10°C/min)

Zakres temp.	Masa próbki			Teoret.
°C	mg	%	Skład substancji	%
20-60	1140	100	Dy(CH ₃ COO) ₃ · 6H ₂ O	100
60-160	910	80,26	Dy(CH ₃ COO) ₃ · 1H ₂ O	81,89
160 - 235	870	76,32		
235-325	870	76,32	Dy(CH ₃ COO) ₃ bezwodny	75,86
325 - 490	555	48,69		
490-550	530	46,50	Dy ₂ O ₂ CO ₃	50,64
550-660	490	42,89		
660-1000	480	42,11	Dy ₂ O ₃	41,65

prozu, który w odróżnieniu od tlenowęglanu gadolinu nie jest trwały i stopniowo ulega rozkładowi z utratą CO_2 , tworząc Dy_2O_3 powyżej $600^{\circ}C$ utrzymujący już swoją masę bez zmian do $1000^{\circ}C$.

Należy zwrócić uwagę, że egzotermiczny efekt spalania ulatniających się substancji organicznych, towarzyszący przekształceniu się octanu w tlenowęglan dysprozu, zaznacza się bardzo ostrym, głębokim pikiem w obrębie temp. 380°C podczas ogrzewania 150 mg próbki wyjściowej z szybkością 3°C/min; natomiast ogrzewanie próbki 1140 mg z szybkością 10°C/min prowadzi najpierw do przekształcenia się octanu w tlenowęglan w reakcji silnie endotermicznej, której maksimum szybkości występuje w obrębie 400°C, a efekt egzotermiczny spalania się substancji lotnych zaznaczony jest na krzywej DTA dopiero w zakresie temp. 500—600°C (ryc. 4).

Termiczna dysocjacja octanu erbu

Z przeprowadzonych pomiarów derywatograficznych termicznej dysocjacji octanu erbu $Er(CH_3COO)_3 \cdot 1,5 H_2O$ (próbki o masach 55 i 1500 mg), ogrzewanego odpowiednio z szybkością przyrostu temp. 3°C/min (ryc. 5

 $Er(CH_3COO)_3 \cdot 1,5H_2O$ m=55 mgszybkość ogrzewania = 3°C/min czułości: TG 50 mg, DTG 1/3, DTA 1/3

m=1500 mgszybkość ogrzewania = 10° C/min czułości: TG 1000 mg, DTG 1/5, DTA 1/10

i tab. 5) oraz z szybkością 10°C/min (ryc. 6 i tab. 6), widać duże podobieństwo w termicznym zachowaniu się hydratów octanu dysprozu i octanu erbu. Najpierw zachodzi dwustopniowa dehydratacja z utworzeniem się dość trwałego bezwodnego octanu erbu, następnie ok. 240 lub 320°C, zależnie od szybkości ogrzewania i wielkości badanej próbki, raptowny rozkład do tlenowęglanu erbu, jeszcze mniej trwałego niż w przypadku dysprozu, i wreszcie stopniowe przekształcanie się tlenowęglanu w tlenek erbu.

Zaobserwowane równocześnie efekty egzotermiczne, towarzyszące dysocjacji octanu erbu w badanych warunkach, są także analogiczne jak w przypadku octanu dysprozu, zależne od wielkości pobranych próbek i szybkości ich ogrzewania.

Derywatograficzne badania termicznej dysocjacji octanów...

Zakres temp.	Masa próbki			Teoret.
°C	mg	%	Skład substancji	%
20-40	55	100	Er(CH ₃ COO) ₃ • 1,5H ₂ O	100
40-70	54	98,18		
70-110	54	98,18	Er(CH ₃ COO) ₃ · 1H ₂ O	97,57
110-130	52,5	95,46	COCIDERDIA	1. 19.90
130 - 240	51,7	94,00	Er(CH ₃ COO) ₃	92,71
240-380	32,5	59,1	and a start of the	
380-420	31	56,37	Er ₂ O ₂ CO ₃ nietrwały	57,41
420 - 520	29	52,53	addiend as owner under	CALCULAR CONCERNS OF
520 - 600	27	50,91	And State of Annual State	a providence i
600-850	27	50,91	Er ₂ O ₃	51,49

Tab. 5. Termiczna dysocjacja octanu erbu (ogrzew. 3°C/min)

Tab. 6. Termiczna dysocjacja octanu erbu (ogrzew. 10°C/min)

Zakres temp.	Masa próbki		Child a below it	Teoret.
°C	mg	%	Skład substancji %	
20-90	1500	100	Er(CH ₃ COO) ₃ • 1,5H ₂ O	100
90-140	1490	99,30	conteccommitches and environment	
140-150	1488	99,2	Er(CH ₃ COO) ₃ · 1H ₂ O	97,57
150 - 220	1448	96,67	DD D est	
220 - 320	1440	94,00	Er(CH ₃ COO) ₃ bezwodny	92,72
320 - 410	890	59,33	(Er ₂ O ₂ CO ₃ nietrwały)	57,41
410-630	805	53,67	Summer departed as mouth	
630-980	800	53,33	Er ₂ O ₃	51,49

WNIOSKI

1. Wyniki badań termicznej dysocjacji octanów gadolinu, dysprozu i erbu przy pomocy derywatografu OD 102, MOM Budapeszt, zasadniczo pokrywają się z wynikami innych autorów mimo odmiennych metod i warunków badań. Różnice występują jedynie w wartościach zakresów temperatur poszczególnych rozkładów termicznych, zależnych przede wszystkim od wielkości pobranych próbek do badania i szybkości ich ogrzewania.

2. Zakresy temperatur termicznej trwałości poszczególnych produktów pośrednich rozkładu octanów Gd, Dy i Er oraz octanów lantanowców lekkich, ogrzewanych w analogicznych warunkach [a) próbki 120—150 mg ogrzewane z szybkością 3°C/min oraz b) próbki 1200 mg ogrzewane z szybkością 10°C/min] są następujące:

Ogrzewane bezwodne octany lantanowców poutraciewód hydratacyjnych utrzymują się bez rozkładu w zakresach temperatur (°C):

	a)	b)
La(CH ₃ COO) ₃	200-280	270-330
Ce(CH ₃ COO) ₃	170-200	250-270
Pr(CH ₃ COO) ₃	190-240	215-275
Nd(CH ₃ COO) ₃	240-315	280-300
Sm(CH ₃ COO) ₃	160-240	250-320
Gd(CH ₃ COO) ₃	200-260	260-330
Dy(CH ₃ COO) ₃	170-260	235-325
Er(CH ₃ COO) ₃	150-240	220-320

Metaoctany lantanowców zarysowują się na krzywych derywatograficznych tylko w przypadku lantanu, prazeodymu, neodymu i gadolinu w następujących temperaturach (°C):

LaOCH ₃ COO	ok.	340
PrOCH ₃ COO	ok.	350
NdOCH ₃ COO	ok.	450
GdOCH ₃ COO	ok.	370

Tlenowęglany poszczególnych lantanowców utrzymują się jako produkty pośrednie w badanych warunkach w następujących zakresach temperatur (°C):

	a)	b)
$La_2O_2CO_3$	440-650	540-730
$Pr_2O_2CO_3$	430-550	570-590
Nd ₂ O ₂ CO ₃	560-670	530-660
Sm ₂ O ₂ CO ₃	510-560	530-590
$Gd_2O_2CO_3$	400-525	560-640
Dy ₂ O ₃ CO ₃	380-480	490-550
Er ₂ O ₂ CO ₃	380-420	ok. 410

Z wymienionych tlenowęglanów najmniej trwały termicznie jest tlenowęglan erbu.

Całkowite przekształcenie tlenowęglanów lantanowców w odpowiednie tlenki, jako końcowe produkty termicznej dysocjacji octanów pierwiastków ziem rzadkich w badanych warunkach, zachodziło po osiągnięciu następujących temperatur ($^{\circ}$ C):

	a)	b)
La_2O_3	780	900
CeO ₂	400	500
Pr ₆ O ₁₁	550	730
Nd_2O_3	780	820
Sm_2O_3	630	770
Gd ₂ O ₃	720	740
Dy ₂ O ₃	550	660
Er,Og	600	630

3. Porównanie uzyskanych krzywych derywatograficznych TG octanów lantanowców lekkich z krzywymi TG octanów gadolinu, dysprozu i erbu wykazuje największą analogię pomiędzy krzywymi octanu lantanu i octanu gadolinu oraz pomiędzy krzywymi octanu prazeodymu i octanu dysprozu.

4. Hydrat octanu erbu podczas stopniowego ogrzewania przechodzi najszybciej w stan bezwodny i następnie przekształca się w tlenowęglan erbu także w najniższej temperaturze w porównaniu z innymi lantanowcami, z wyjątkiem octanu ceru.

PIŚMIENNICTWO

- 1. Dąbkowska M., Kalbowiak M.: Ann. Univ. M. Curie-Skłodowska, Lublin, sectio AA, 26/27, 341-358 (1971/1972).
- 2. Mayer L., Kassierer F.: J. Inorg. Nuclear Chem. 28, 2430-2432 (1966).
- Patil K. C., Chandrashekar G. V., George M. V., Rao C. N. R.: Can. J. Chem. 46, 257-265 (1968).

РЕЗЮМЕ

Проследено процесс термической диссоциации ацетатов гадолиния, диспрозия и эрбия при помощи дериватографа ОД 102 системы Ф. Паулик—Я. Паулик—Л. Эрдей. Результаты собраны в таблицах 1—6.

Сопоставлено термическое поведение исследованных в одинаковых условиях ацетатов Gd, Dy, Er и ацетатов лёгких лантанидов. Представлены пределы температур существования промежуточных продуктов распада: безводных ацетатов лантанидов, метаацетатов, основных карбонатов и окисей солей отдельных лантанидов.

SUMMARY

The course of thermal dissociation of gadolinium, dysprosium, erbium acetates have been investigated by means of derivatograph OD 102, of the system of F. Paulik — J. Paulik — L. Erdey. The results are gathered in Tables 1-6.

A comparison has also been made between the thermal stability (behaviour) of Gd, Dy, Er acetates and light lanthanon acetates. A list has been made to indicate the ranges of temperatures of existence (under the applied conditions) of intermediate decomposition products: anhydrous lanthanons acetates, metaacetates, basic carbonates and oxides of the particular rare earth elements.

