ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XXVI/XXVII, 7

SECTIO AA

1971/1972

Instytut Fizyki UMCS Kierownik Zespołu Badawczego: doc. dr hab. Jadwiga Skierczyńska

Władysław BULANDA

Pomiary impedancji komórek Chara brauni

Измерение импеданса клеток Chara brauni

Measurements of the Impedance of Chara brauni Cells

Celem pracy było zbadanie możliwości przedstawienia impedancji warstwy otaczającej wodniczke za pomocą modelu o stałych, niezależnych od częstości prądu wartościach oporu R i pojemności C (ryc. 1a). W piśmiennictwie spotykamy podzielone zdania na temat zmian pojemności elektrycznej błon pojedynczych komórek i tkanek w zależności od częstości. Z pracy Curtisa i Cole'a [5] wynika, że pojemność błon komórkowych jest wartością stałą, niezależną od częstości prądu; natomiast prace Schwanna [8] i Plicquetta [7] podaja, że wraz ze wzrostem częstości występuje silne zmniejszanie się pojemności. Zmiany pojemności przy niskich częstościach przypisywane są głównie zmianom struktury błon komórkowych. W uprzednich pracach, przeprowadzonych w naszym laboratorium, wykazano, że krzywe $Z(\omega)$ przedstawiające zmiany impedancji Z komórek Chara brauni z czestościa w, otrzymane z pomiarów metodą dwuelektrodową, dają się zmodelować za pomocą czwórnika elektrycznego [2] (ryc. 1b), natomiast krzywe Z (ω), otrzymane metodą mostka RC, można zmodelować elementem RCR_{2} [12] (ryc. 1c), gdzie R_{0} stanowi jednak tylko 3% R i zawarte jest w granicach błędu pomiaru. Ponieważ późniejsze badania oporu polaryzacyjnego i pojemności polaryzacyjnej elektrod Ag/AgCl [3] wykazały, że jeden z elementów czwórnika należy przypisać elektrodom, zatem model b nie jest właściwym modelem warstwy otaczającej wodniczkę. W niniejszej pracy chodziło o rozstrzygnięcie, który z modeli, przedstawionych na ryc. 1, a czy c lepiej odzwierciedla właściwości badanej warstwy. W przypadku, gdyby okazało się, że bardziej właściwym modelem jest model c, ale wartość R_0 nie odpowia-

dałaby wartości żadnej ze znanych struktur wewnątrzkomórkowych, należałoby sądzić, że stosowany model jest modelem czysto hipotetycznym, a zmiany Z ze zmianą częstości mogą być wywołane w rzeczywistości zmianami pojemności C.

Przeprowadzone pomiary zawady jako funkcji częstości prądu zostały dokładnie przeanalizowane z uwzględnieniem poprawek związanych z apa-

Ryc. 1. Modele oporowo-pojemnościowe warstwy oddzielającej wodniczkę od zewnętrznego ośrodka

raturą pomiarową, oporem wnętrza komórki, przesunięciem fazowym między napięciem i natężeniem prądu oraz efektem kablowym. Wymagało to szeregu dodatkowych pomiarów oraz przeprowadzenia wielu analiz matematycznych.

Działania matematyczne na zawadach przeprowadzano metodą liczb zespolonych (przypis 1).

APARATURA

Pomiar zawady warstwy oddzielającej wodniczkę od środowiska zewnętrznego przeprowadzono techniką czteroelektrodową (ryc. 2): dwie elektrody (I) służyły do doprowadzenia prądu do komórki, dwie pozostałe (U) — do pomiaru napięcia. Naczynia A i B napełniano wodą z akwarium, w którym rosły komórki. Komórki zanurzone były w naczyniach A i B na długości 1 cm. Zawartość jonów w wodzie, określona na podstawie analizy chemicznej, wynosiła: Na — 0,20 mM/l, K — 0,24 mM/l, Cl — 0,23 mM/l, Ca — 1,58 mM/l, Mg — 0,28 mM/l. Źródłem prądu był wzorcowy generator drgań sinusoidalnych (typ PW 5). Napięcie mierzono woltomierzem lampowym o dużym oporze wejściowym (ok. 5 M Ω). Natężenie prądu płynącego przez komórkę wyliczano z pomiaru napięcia na oporniku $R=300~\Omega$ połączonym szeregowo z komórką. Częstość przepływającego prądu zmieniano w zakresie 10 Hz — 5000 Hz, natężenie prądu wynosiło we wszystkich pomiarach 10⁻⁶ A. Dokładność odczytu napięcia wynosiła 3 mV, co stanowiło 1—5% mierzonej wielkości, dokładność odczytu natężenia — 10⁻⁷ A, tj. ok. 10% mierzonej wielkości. Ponieważ mierzona zawada Z_c była rzędu kilkudziesięciu czy nawet kilkuset kiloomów, błąd w pomiarze Z_c , wynikający z dołączenia do obwodu opornika 300 Ω , był tak mały, że można było go nie uwzględniać.

MATERIAŁ

Pomiary wykonano na komórkach *Chara brauni* pobranych z hodowli laboratoryjnej. Hodowla została założona w sierpniu 1969 r., pomiary przeprowadzono w listopadzie 1969 r. Do badań używano pojedynczych komórek międzywęzłowych o długości 3—5 cm i średnicy ok. 0,5 mm.

METODA

Pomiar całkowitej zawady Z_c

Pomiar metodą 4 elektrod napięcia U i natężenia prądu I w zestawie pomiarowym przedstawionym na ryc. 2 pozwala wyliczyć całkowitą zawadę badanego układu $Z_c = \frac{U}{J}$. Zawada Z_c składa się z zawady Z_m warstwy otaczającej wodniczkę, oporu wnętrza komórki R_i oraz oporu cieczy R_c wewnątrz naczyń pomiarowych A i B. Oporowo-pojemnościowy model badanego układu przedstawia ryc. 3. Symbolem Z'_m oznaczono na ryc. 3 zawadę całej warstwy otaczającej wodniczkę łącznie z cieczą w naczyniu

pomiarowym. Element RCR_0 na ryc. 3b przedstawia warstwę otaczającą wodniczkę. Opornik l_0R_i symbolizuje opór wnętrza części komórki zawartej między naczyniami A i B; l_0 oznacza odległość między naczyniami A i B, R_i — opór jednostki długości wnętrza komórki. Oporniki R_c przedstawiają

Ryc. 3. Model oporowo-pojemnościowy układu pomiarowego; a — model szczegółowy, b, c — modele uproszczone

opór cieczy w naczyniach A i B. Model ten jest równoważny elektrycznie modelowi przedstawionemu na ryc. 3c, gdzie $R_1 = l_0 R_i + 2R_0 + 2R_c$. Wszystkie wyliczenia podane w pracy przeprowadzono w oparciu o model szczegółowy (ryc. 3a). Z modelu uproszczonego (ryc. 3 bc) korzystano tylko przy uzasadnianiu słuszności wzoru (4), którym posługiwano się przy pomiarze oporu wnętrza R_i .

Pomiar oporu wnętrza R_i

Pomiar oporu wnętrza wykonano dwiema różnymi metodami:

1. Pomiar przeprowadzony na aparaturze przedstawionej na ryc. 2 polegał na mierzeniu zawady komórki Z_c przy dwóch różnych odległościach l_{01} i l_{02} między naczyniami A i B. Zawadę Z_c tego układu można przedstawić liczbą zespoloną, korzystając z uproszczonego oporowo-pojemnościowego modelu przedstawionego na ryc. 3c (przypis 1, wzory [20, 21, 22])

$$\bar{Z}_{c} = \frac{2R}{1 + \omega^{2}R^{2}C^{2}} + R_{1} - i\frac{2\omega R^{2}C}{1 + \omega^{2}R^{2}C^{2}}$$
(1)

Przesunięcie fazowe między natężeniem i napięciem zmierzonym na zawadzie wynosi

$$g\varphi = \frac{2\omega R^2 C}{2R + R_1 + \omega^2 R^2 C^2 R_1}$$
(2)

Wartość Z_c uzyskana z pomiarów równa się modułowi zawady Z_c

t

$$Z_{c} = \sqrt{\left(\frac{2R}{1+\omega^{2}R^{2}C^{2}}+R_{1}\right)^{2}+\frac{4\omega^{2}R^{4}C^{2}}{1+\omega^{2}R^{2}C^{2}}}$$
(3)

Ze wzoru (3) wynika, że różnica dwóch zawad o różnych wartościach oporu R_1 nie równa się różnicy wartości tych oporów. W przypisie 2 wykazano jednak, że w warunkach przeprowadzonego eksperymentu przy wartościach oporów i pojemności właściwych dla *Characeae* część urojona zawady ma wartość niewielką ze względu na małe przesunięcie fazy między natężeniem a napięciem i praktycznie różnica zawad zmierzonych przy różnych odległościach naczyń A i B równa się różnicy oporów wnętrza przy tych odległościach. Przy wyliczaniu R_i , korzystano zatem ze wzoru

$$R_i = \frac{Z_{l_{01}} - Z_{l_{02}}}{d_1} \tag{4}$$

gdzie $Z_{l_{01}}$ całkowita zawada zmierzona przy odległości l_{01} , $Z_{l_{02}}$ całkowita zawada zmierzona przy odległości l_{02} ; $d_1 = l_{01} - l_{02}$. Dowód wzoru (4) przeprowadzony na modelu uproszczonym (ryc. 3c) pozostaje słuszny dla modelu szczegółowego (ryc. 3a). Wynika to z przypisu 3, gdzie wykazano, że różnica w przesunięciu fazowym na zawadach Z i Z_m jest niewielka i możemy we wzorach zastępować te zawady przez ich moduły.

Ryc. 4. Zestaw do pomiaru oporu wnętrza komórki; G — generator, mV — miliwoltomierz lampowy, μA — mikroamperomierz

2. Pomiar oporu wnętrza komórki wykonano na aparaturze przedstawionej na ryc. 4. Między naczyniami A i B znajdowały się dwa wąskie, napełnione wodą z akwarium, naczynia C i D z wprowadzonymi elektrodami Ag/AgCl. Opór R_i wnętrza komórki wynosi $R_i = \frac{U^c_D}{Id_2}$; gdzie U_{CD} napięcie między elektrodami znajdującymi się w naczyniach C i D_x I natężenie prądu przepływającego przez komórkę, d_2 — odległość między naczyniami C i D.

Uwzględnienie efektu kablowego

Opór wnętrza komórki na odcinkach zanurzonych w naczyniach A i B powoduje, że gęstość prądu wpływającego i wypływającego z komórki nie jest jednakowa na całej powierzchni zanurzenia. Uwzględnienie tego zjawiska, zwanego efektem kablowym, prowadzi do następującego równania (patrz przypis 3):

$$\mathbf{Z} = \sqrt{R_i Z'_m \operatorname{ctghl} \sqrt{\frac{R_i}{Z'_m}}} \tag{5}$$

gdzie l — długość zanurzenia komórki w naczyniu A lub B, Z'_m — zawada jednostki długości [k Ω cm] warstwy otaczającej wodniczkę (łącznie z cieczą w naczyniu pomiarowym), $Z = \frac{Z_c - l_o R_i}{2}$ (dzielenie przez 2 wynika

z tego, że Z obliczamy dla części komórki zanurzonej w jednym z naczyń — A lub B, a pomiar Z_c wykonujemy przy zanurzeniu komórki w obu naczyniach). Wielkość Z'_m występuje w równaniu (5) w postaci uwikłanej, co sprawia trudności w rozwiązaniu tego równania. Wyliczenie Z'_m w sposób algebraiczny wymaga rozwijania funkcji *ctgh* w szereg. Dokładność wyliczenia zależy od liczby wyrazów w szeregu, przyjętych do rozwiązania, zwiększenie liczby tych wyrazów daje równanie coraz wyższego stopnia. Znacznym uproszczeniem przy obliczaniu Z'_m z równania (5) jest graficzna metoda rozwiązania (patrz przypis 4).

Ryc. 5. Zestaw do wyznaczania oporu cieczy w naczyniach pomiarowych

Pomiar oporu cieczy R_c

Do naczyń pomiarowych A i B (ryc. 5) zanurzono zamiast komórki srebrny pochlorowany drut a. Z pomiaru napięcia i natężenia prądu obliczono opór R_2 , na który składają się opór polaryzacyjny R_p drutu a i opór cieczy $2R_c$ w obu naczyniach A i B (opór drutu zaniedbujemy).

$$R_2 = R_p + 2R_c \tag{6}$$

Następnie naczynia A i B łączymy jednocześnie dwoma drutami chlorosrebrnymi (a i b) i mierzymy opór R. W tym przypadku opór polaryzacyjny jest dwa razy mniejszy, ponieważ zanurzona powierzchnia drutów a i b jest dwa razy większa od zanurzonej powierzchni jednego drutu a.

$$R_3 = \frac{R_p}{2} + 2R_c \tag{7}$$

Rozwiązując układ równań (6) i (7), otrzymuje się wartości R_p i R_c .

$$R_{\rm p} = 2(R_2 - R_3)$$
 (8a)

$$R_{\rm c} = \frac{2R_3 - R_2}{2} \tag{8b}$$

Określenie wartości oporu R₀

Dla dużych wartości ω model badanego układu przedstawiony na ryc. 3 upraszcza się, ponieważ opór pojemnościowy kondensatora C, bocznikującego opór R, dąży do zera. Dla takich częstości zawada Z_m redukuje się do oporu R_0 i w skład całkowitej zawady układu wchodzą tylko opory R_i , R_c i R_0 . A zatem, znając wartości całkowitej zawady dla wysokiej częstości prądu i wartości R_i i R_c , zmierzone wyżej podanymi metodami, można określić wielkość oporu R_0 . Pozwala to rozstrzygnąć, który z modeli warstwy otaczającej wodniczkę jest słuszny, model RC (ryc. 1a), czy też model RCR_0 (ryc. 1c).

Opracowanie pomiarów

1. Z otrzymanych z pomiarów wartości natężenia prądu I i napięcia U

na badanym układzie wyliczano całkowitą zawadę układu $Z_c \left(Z_c = rac{U}{I}
ight)$.

2. Od zawady Z_c odejmowano opór l_0R_i wnętrza komórki.

3. Wartość $Z_c - l_0 R_i$ dzielono przez 2, przyjmując wartości zawad Z

w obu naczyniach A i B za jednakowe $\left(Z = \frac{Z_c - l_o R_i}{2}\right)$.

4. Posługując się wykresami równania opisującego efekt kablowy, wyliczano z otrzymanej wartości Z zawadę Z'_m jednostki długości warstwy otaczającej wodniczkę. W skład tej warstwy wchodzi również ciecz w naczyniu pomiarowym. Jako wartość R_i , potrzebną do wyliczenia Z'_m z wykresu (ryc. 11), przyjmowano $1/2R_i$ zmierzonego w sposób opisany wyżej, uwzględniając w ten sposób zmniejszanie się oporu wnętrza komórki

w części zanurzonej w cieczy. Efekt ten analizowany był we wcześniejszej publikacji [9].

5. Od wartości Z'_m odejmowano wartość oporu cieczy w naczyniu pomiarowym. Obliczona w ten sposób zawada Z_m była zawadą jednostki długości warstwy oddzielającej wodniczkę komórki od zewnętrznego ośrodka. Dla wysokich częstości $Z_m = R_0$.

WYNIKI POMIARÓW

Wyniki pomiarów R_i przeprowadzonych dwiema metodami zestawiono w tab. 1. R_i^a oznacza opór jednostki długości wnętrza komórki uzyskany

Nr komó	rki R_i^{a} [k Ω cm]	R_i^b [k Ω cm]	i porte
1	38	36	-
2	48	45	
3	34	30	
4	48	49	
5	63	60	
6	50	48	12.2
an vnorwa 7 be	35	38	(b) BIC
8	49	50	der an
nd e Z peduleu	36	C stat ob 36 b 1	opó
10	45	48	1 300
Wartości śre	dnie $R_i^{a_{\text{sr}}} = 44,6$	$R \frac{b}{i \text{sr}} = 44,0$	

Tab. 1. Wyniki pomiarów oporu wnętrza komórki

Tab. 2. Wyniki pomiarów zawady Z oraz obliczeń Z_m dla jednej z komórek *Chara brauni* przy różnych częstościach prądu

f [Hz]	$\frac{Z_c}{2}$ [kΩ]	Z [kΩ]	Z'_m [k Ω cm]	Z_m [k Ω cm]
10	212	180	151	143
20	183	151	129	121
40	169	137 0	104	96
60	127	95	77 9 1-	69
80	106	77	61	53
100	102	70	. 52	rioain 44 an Lic
200	87	55	36	28
300	77	45	28	20
500	67	S 9535	22	amits 14 x one
700	64	32	19	11
1000	55	23	13	5
3000	51	19	9	1
5000	50	18	8	0

metodą I, R_i^{b} — opór jednostki długości wnętrza komórki uzyskany metodą II. Wartości R_i^{a} oraz R_i^{b} nie zależały od ω . Zgodność wyników R_i uzyskanych obiema metodami świadczy, że uproszczenie stosowane przy obliczaniu R_i^{a} , wynikające z posługiwania się wzorem (4), nie wprowadza istotnego błędu w wartości oporu wnętrza komórki. Pomiary Z_c i obliczenia Z, Z'_m i Z_m wykonano na 23 komórkach Chara brauni. Pomiar Z_c każdej komórki przeprowadzono dla 13 różnych częstości w zakresie od 10 Hz do 5000 Hz. Zmiany $\frac{Z_c}{2}$, Z, Z'_m i Z_m w zależności od częstości przepływającego prądu w jednej z badanych komórek ilustrują tab. 2 i ryc. 6. Wy-

Ryc. 6. Zależność zawady od częstości prądu; $1 - \frac{Z_c}{2}$ uzyskana bezpośrednio z pomiaru, $2 - \frac{Zc - lR_i}{2}$ po wyeliminowaniu oporu wnętrza komórki, $3 - Z'_m$ po uwzględnieniu efektu kablowego, $4 - Z_m$ – po odjęciu oporu cieczy w naczyniach A i B

Nr komórki	Z_{5000} [k Ω]	Z'm* [kΩ]	<i>R</i> c [kΩ]	$\begin{array}{c} (R_{c}-Z_{m}) \\ [k\Omega] \end{array}$
1	17,5	9 9	10,8	1,8
2	12,8	7,7	10,8	3,1 0000
3	15,0	9,4	10,8	1,4
4	18,0	9,4	10,8	1,4
5	14,5	9,2	10,8	1,6
6	15,5	9,0	10,8	1,8
7	14,0	5,5	10,8	5,3
8	15,0	5,5	10,8	5,3

Гаb.	3.	Wartości	oporu	cieczy	W	naczyn	niu po	miarowyn	n oraz
za	wad	y komóre	k Char	a brau	ni	przy c	zestośc	f = 500	Hz

Z₅₀₀₀ — Z zmierzone przy częstości 5000 Hz.

* Z_m posiada wymiar [kΩ], a nie [kΩ cm] jak w innych tabelach, ponieważ zostało pomnożone przez długość zanurzenia komórki l = 1 cm.

niki pomiarów oporu cieczy R_c w naczyniach A i B oraz wyniki pomiarów zawady Z i Z'_m komórek *Chara brauni* przy częstości prądu f=5000 Hz zestawiono w tab. 3. Pomiar R_c przeprowadzono dla trzech częstości metodą wyżej opisaną. Dane w tab. 3 wyliczono ze wzoru (8b). Uzyskana z tych pomiarów wartość oporu polaryzacyjnego R_p (patrz wzór 8a) zgadza się z wartością R_p uzyskaną inną metodą we wcześniejszych pomiarach [3], co świadczy o dużej dokładności pomiaru R_c . Zawadę, mierzoną przy częstości f=5000 Hz, przedstawiono w tab. 3 dla 8 komórek *Chara brauni*.

DYSKUSJA

Porównując kolumny Z'_m i R_c z tab. 3, można zauważyć, że wartość Z'_m nie przekracza nigdy wartości R_c . Oznacza to, że $R_0=0$, ponieważ według modelu z ryc. 3 dla dużych częstości prądu wartość $Z'_m=R_c+R_0$. Wynik tego eksperymentu wskazuje, że właściwym modelem elektrycznym warstwy otaczającej wodniczkę jest model a z ryc. 1. Przyjmując taki model, szukamy wartości oporu R_m i pojemności C_m , które przy połączeniu równoległym utworzą zawadę równą Z_m . Wartości R_m C_m odpowiadają wartościom R i C z modelu a ryc. 1, odniesionych do jednostki długości komórki. Obliczenia R_m C_m można wykonać kilkoma sposobami.

Jeden ze sposobów opiera się na analizie wykresu równania (16) (patrz przypis 1). Dla czterech komórek sporządzono wykresy zależności $\frac{1}{Z_m^2} =$ $= f(\omega^2)$. Dane do wykresów zestawiono w tab. 4, wykresy przedstawiono na ryc. 7. Punkty przecięcia prostych z ryc. 7 z osią y odpowiadają wartościom $\frac{1}{R_m^2}$. Tangensy nachylenia prostych do osi x równają się wartoś-

Holem Yak

1	Nr komórki		1	vy nos	2	1.0205	3	bbs	4
(98)	ω²	Z_m [k Ω cm]	$ \begin{bmatrix} 10^4 Z_m^{-2} \\ [k\Omega^{-2} \\ cm^{-2}] \end{bmatrix} $	Z_{m} [k Ω cm]	$\begin{vmatrix} 10^4 Zm^{-2} \\ [k\Omega^{-2} \\ cm^{-2} \end{bmatrix}$	Z_m [k Ω cm]	$ \begin{bmatrix} 10^4 \ Zm^{-2} \\ [k\Omega^{-2} \\ cm^{-2}] \end{bmatrix} $	Z_m [k Ω cm]	$ \begin{array}{c} 10^4 \ Zm^{-2} \\ [k\Omega^{-2} \\ cm^{-2}] \end{array} $
	4 103	142	0,54	116	0,74	50	3,43	139	0,51
(d0)	16 10 ³	121	0,67	98	1,04	46	4,72	109	0,84
	64 10 ³	95	1,10	79	1,60	39	7,30	73	1,87
	144 103	68	2,13	60	2,77	33	10,5	52	3,70
-7537	256 103	52	3,61	49	4,16	28	12,3	38	6,90
	400 103	44	5,15	41	6,10	24	16,9	31	9,15
	1600 103	27	13,3	21	18,8	14	41,6	16	27,5
			1	1.1					

(601)

Tab. 4. Opracowanie danych do wyliczenia z wykresu oporu i pojemności jednostki długości błony komórkowej

ciom C_m^2 . Dokładność odczytu R_m i C_m z wykresu jest niewielka. Dużym błędem obarczona jest przede wszystkim wartość R_m , ponieważ proste przecinają oś y blisko osi x.

Inna metoda określania R_m i C_m polega na wyliczeniu tych wielkości z wartości Z_m zmierzonych przy dwóch różnych częstościach ω_1 i ω_2 . Zawada układu R_m C_m dla częstości ω_1 wynosi

$$Z_{m1} = \frac{R_m}{\sqrt{1 + \omega_1^2 C_m^2 R_m^2}}$$
(9a)

a dla częstości ω₂

$$Z_{m2} = \frac{R_m}{\sqrt{1 + \omega_2 C_m^2 R_m^2}}$$
(9b)

(wzór (15) z przypisu 1, w którym wielkości Z, C i R zastąpiono przez Z_m , C_m i R_m). Rozwiązując układ równań (9a) i (9b) względem R_m i C_m , otrzymamy

$$R_{m} = Z_{m2} \sqrt{\frac{\omega_{1}^{2} - \omega_{2}^{2}}{\omega_{1}^{2} - \frac{Z_{m2}}{Z_{m1}} \omega_{2}^{2}}}$$
(10a)

$$C_{m} = \frac{1}{Z_{m2}^{2}} \left[\sqrt{\frac{\left(\frac{Z_{m2}}{Z_{m1}}\right)^{2} - 1}{\frac{\omega_{1}^{2} - \omega_{2}^{2}}{\omega_{1}^{2} - \omega_{2}^{2}}} \right]$$
(10b)

20172

Najdokładniejszą metodą obliczania wartości R_m i C_m jest obliczanie tych wielkości z otrzymanych eksperymentalnie krzywych $Z_m(\omega)$ przez dopasowanie tych krzywych do krzywych teoretycznych (15) o ściśle określonych wartościach R_m i C_m . Dopasowanie to przeprowadza się za pomocą maszyny matematycznej. Obliczone tą metodą wartości R_m i C_m dla 5 komórek *Chara brauni* przedstawia tab. 5. Opracowanie wyników

Tab. 5.	0	trzymane	wartości	oporu	jednostki	powierz	chni
pojemno	ści	jednostki	powierzo	chni dl	a komórek	chara	brauni

Nr komórki	R _m [kΩcm]	$\begin{array}{c} C_m \\ [\mu F \ cm^{-1}] \end{array}$	r [kΩcm²]	с [µF cm ⁻²]
1	132,4	0,0387	19,6	0,257
2	163,7	0,0383	21,4	0,292
3	116,5	0,0466	14,6	0,374
4	148,0	0,0412	17,6	0,346
5	177,9	0,0487	30,2	0,286

dla wszystkich 23 komórek podano w tab. 6. Opór $r [k\Omega \text{ cm}^2]$ jest oporem jednostki powierzchni warstwy otaczającej wodniczkę; pojemność c[µF cm⁻²] jest pojemnością jednostki powierzchni tej warstwy. Wartości $r=18,6 \text{ k}\Omega \text{ cm}^2$ i $c=0,31 \text{ µF cm}^{-2}$ zgadzają się z wartościami oporu i pojemności plazmalemmy komórek *Characeae* podanymi w piśmiennictwie [6, 10, 11; 1, 4].

Liczba	Średnia	Średnia	Odchylenie	Odchylenie
przebadanych	wartość <i>r</i>	wartość c	standardowe r	standardowe o
komórek	[kΩcm]	[µFcm ⁻²]	$S_r[k\Omega cm^2]$	S _c [µFcm ⁻²]
23	18,6	0,31	1,22	0,017

Tab. 6. Opracowanie wyników pomiarów oporu i pojemności błon komórek Chara brauni

PODSUMOWANIE WYNIKÓW

1. Stwierdzono, że modelem warstwy otaczającej wodniczkę jest układ R C o stałych, niezależnych od częstości wartościach oporu i pojemności.

2. Określono wartości oporu i pojemności błony komórek *Characeae*. Po przeliczeniu na jednostkę powierzchni $r=18.6 \text{ k}\Omega \text{ cm}^2 \text{ c}=0.31 \text{ }\mu\text{F} \text{ cm}^{-2}$.

3. Wykazano, że przy pomiarach impedancji komórek *Characeae* metodą elektrod zewnętrznych dopuszczalne są znaczne uproszczenia wzorów określających parametry elektryczne komórek oraz możliwe jest stosowanie uproszczonych metod rozwiązywania niektórych równań. W pracy podano uproszczenie równania na efekt kablowy, graficzną metodę rozwiązania tego równania i wykazano, że opór wnętrza komórki może być wyliczony z różnicy zawad.

PRZYPISY

scego sie z równolegie polęczonych

1. Zawada jako liczba zespolona. W układzie oporowo-pojemnościowym istnieje przesunięcie fazowe między napięciem i natężeniem prądu zmiennego. Zapisanie zawady takiego układu w postaci liczby zespolonej pozwala nie tylko określić wartość stosunku napięcia do natężenia, ale i ująć wartość przesunięcia fazowego. Zawada jako wielkość zespolona wyraża się wzorem:

$$z=x+iy$$

gdzie x — opór rzeczywisty, y — opór urojony (reaktancja), $i = \sqrt{-1}$. Wielkość uzyskiwana z pomiaru napięcia U i natężenia prądu I określana jako Z=U/I jest równa modułowi zawady Z

$$Z = \sqrt{x^2 + y^2} \tag{12}$$

Przesunięcie fazowe między napięciem a natężeniem prądu wyliczamy ze wzoru:

$$tg\varphi = \frac{y}{x}$$
(13)

Zapisanie zawady w postaci liczby zespolonej umożliwia stosowanie praw Kirchhoffa w obwodach prądu zmiennego, np. stosowanie wzorów na szeregowe lub równoległe łączenie oporów.

Rozpatrzmy układ R C, składający się z połączonych równolegle opornika R i pojemności C (ryc. 1a). Opór pojemnościowy R_e wyraża się w liczbach zespolonych

61

(11)

jako $R_e = \frac{1}{i\omega c}$. Stosując wzór na połączenie równoległe oporów R i R_e otrzymamy $\frac{1}{Z} = \frac{1}{R} + \frac{1}{R_e} = \frac{1}{R} + i\omega c$ po przekształceniach:

$$\overline{Z} = \frac{R}{1 + \omega^2 R^2 C^2} - i \frac{\omega R^2 C}{1 + \omega^2 R^2 C^2}$$
(14)

moduł tej zawady wyliczamy korzystając ze wzoru (12)

$$Z = \frac{R}{\sqrt{1 + \omega^2 C^2 R^2}} \tag{15}$$

Przekształcając wzór (15) otrzymamy

$$\frac{1}{Z^2} = \frac{1}{R^2} + C^2 \omega^2 \tag{16}$$

Wykres równania (16) we współrzędnych $x=\omega^2$ i $y=\frac{1}{Z^2}$ przedstawia linię prostą (ryc. 8). Punkt przecięcia prostej z osią y odpowiada wartości $1/R^2$, tangens nachylenia prostej względem osi x równa się C^2 .

Ryc. 8. Zależność $\frac{1}{Z^2}$ od ω^2 dla układu składającego się z równolegle połączonych opornika R i kondensatora C

Jeżeli do układu R C dołączymy szeregowo opór R_1 , to zawada Z_1 , przedstawiona w postaci liczby zespolonej, wyrazi się jako

$$Z_1 = Z + R_1$$

Podstawiamy \overline{Z} ze wzoru (14) i po przekształceniach otrzymamy:

$$\overline{Z}_{1} = \frac{R + R_{1} + R^{2}R_{1}C^{2}\omega^{2}}{1 + R^{2}C^{2}\omega^{2}} - i\frac{R^{2}C\omega}{1 + R^{2}C^{2}\omega^{2}}$$
(17)

Moduł zawady Z_1 wynosi:

$$\overline{Z}_{1} = \sqrt{\left(\frac{R+R_{1}+R^{2}R_{1}C^{2}\omega^{2}}{1+R^{2}C^{2}\omega^{2}}\right)^{2} + \left(\frac{R^{2}\omega^{2}C}{1+R^{2}C^{2}\omega^{2}}\right)^{2}} = \sqrt{\frac{R(R+2R_{1})}{1+R^{2}C^{2}\omega^{2}} + R_{1}^{2}}$$
(18)

Przesunięcie fazowe na zawadzie wynosi:

$$tg\varphi = \frac{\omega R^2 C}{R + R_1 + R_1 R^2 C \omega^2}$$
(19)

Układ, w którym dwa identyczne elementy R C są połączone oporem R_1 (ryc. 3c), posiada zawadę \overline{Z}_c wyrażoną wzorem:

$$\overline{Z}_{c} = \overline{Z}_{1} + R_{1} + \overline{Z}_{1} = 2\overline{Z}_{1} + R_{1} = 2 \frac{R}{1 + \omega^{2}C^{2}R^{2}} + R_{1} - 2i \frac{\omega R^{2}C}{1 + \omega^{2}C^{2}R^{2}}$$
(20)

Przesunięcie fazowe wyliczone ze wzoru (13) ma wartość:

$$tg\varphi = \frac{2\omega R^2 C}{2R + R_1 + \omega^2 R^2 C R_1}$$
(21)

Moduł zawady Z_c na podstawie wzoru (12) wynosi:

$$Z_{c} = \sqrt{\left(\frac{2R}{1+\omega^{2}R_{2}C^{2}}+R_{1}\right)^{2}+\frac{4\omega^{2}R^{4}C^{2}}{(1+\omega^{2}R^{2}C^{2})^{2}}}$$
(21a)

2. Analiza przesunięcia fazowego napięcia względem natężenia. Przesunięcie fazowe φ w układzie przedstawionym na ryc. 2 zależy dla określonych wartości R C i R_1 od częstości prądu ω . Analizujemy zmiany tg φ określonego wzorem (21) w zależności od częstości prądu ω

$$tg \varphi = \frac{2\omega R^2 C}{2R + R_1 + \omega^2 R^2 C R_1}$$
(21)

Dla $\omega = 0$, tg $\varphi = 0$, dla $\omega \to \infty$ tg $\varphi \to 0$. Przy zmianie ω wartość tg φ osiąga dla pewnej częstości $\omega = \omega_m$ wartość ekstremalną. Wartość ω_m znajdziemy, obliczając pierwszą pochodną względem ω z powyższego wyrażenia i przyrównując ją do zera.

$$\frac{2R^2C(2R+R_1-2R^2C^2\omega^2R_1)}{(2R+R_1+\omega^2R^2C^2R_1)^2} = 0$$
(22)

Rozwiązanie równania (22) daje $\omega_m = \frac{1}{RC} \sqrt{\frac{2R + R_1}{2R_1}}$ Obliczenie drugiej pochodnej z tg φ względem ω i podstawienie do nie $\omega = \omega_m$ pozwala stwierdzić, że punktem ekstremalnym jest maksimum funkcji tg φ . W oparciu o wyniki pomiarów możemy przyjąć dla komórek *Chara brauni* w z**a**okrągleniu $R=10^5 \Omega$, $C=2\cdot10^{-8}$ F, $R_1=10^5 \Omega$

i oszacować ω_m . Z oszacowania tego otrzymujemy $\omega_m = 610$, czyli $f_m = \frac{\omega_m}{2\pi} = 100$ Hz.

Ryc. 9. Zależność tg φ od częstości prądu dla układu przedstawionego na ryc. 2

Częstość f_m jest więc częstością, przy której przesunięcie fazowe między napięciem i natężeniem osiąga w mierzonej komórce wartość maksymalną. Pełny przebieg zależności tg $\varphi = f(\omega)$ przedstawia ryc. 9 (funkcja posiada punkt przegięcia dla $\omega_p = 1580$, czyli $f_p \approx 250$ Hz, ponieważ (tg $\varphi)'' = 0$ dla $\omega = \omega_p$). Maksymalne przesunięcie fazowe, wyliczone ze wzoru (21) przy podstawieniu $\omega = \omega_m$ i przyjęciu wyżej wymienionych wartości na R, R_1 i C, wynosi 0,4. Oznacza to, że opór urojony Y stanowi najwyżej 0,4 oporu rzeczywistego (wzór 13), a zatem we wzorze (12) na

moduł zawady, wyrażenie Y² możemy pominąć, nie popełniając błędu większego niż kilkanaście procent. Wartości tg φ wyliczone dla f=0,1 f_m i f=10 f_m pokazują, że Y stanowi ok. 0,1 X, czyli we wzorze (12) może być zaniedbane z błędem ok. 1%. Przy takim uproszczeniu wzór (21a) przyjmuje następującą postać:

$$Z_c = \frac{2R}{1 + \omega^2 R^2 C^2} + R_1$$
(23)

Ze wzoru (23) wynika, że jeżeli wykonamy pomiar zawady przy dwóch różnych wartościach oporu R_1 (oznaczamy je R_{101} i R_{102}), to różnica tych zawad Z_{101} i Z_{102} = różnicy oporów R_{101} i R_{102} .

$$Zl_{01} - Zl_{02} = Rl_{01} - Rl_{02}$$

Wzór (23) pokazuje również, że od wartości zawady Z możemy odejmować wartość oporu R_1 , czyli od zmierzonej wartości zawady całkowitej Z_c odejmować opór wnętrza komórki.

3. Efekt kablowy dla prądu zmiennego. Rozwiązaniem zagadnienia efektu kablowego dla prądu zmiennego jest wyrażenie:

$$\overline{Z} = \sqrt{\frac{R_i}{R_i Z'_m} \operatorname{ctgh} l} \sqrt{\frac{R_i}{\overline{Z'_m}}}$$
(24)

gdzie \overline{Z} — zawada zanurzonej części komórki, $\overline{Z'}_m$ — zawada jednostki długości warstwy otaczającej wodniczkę i cieczy w naczyniu pomiarowym, l — długość zanurzenia komórki w naczyniu. Wielkości \overline{Z} i $\overline{Z'}_m$ występujące we wzorze (24) są wyrażone w postaci liczb zespolonych. Rozwiązanie równania (24) w celu wyliczenia modułu zawady \overline{Z} , czyli wielkości otrzymywanej w pomiarach, prowadzi do następującego wyrażenia [10].

$$Z = \frac{\sqrt{R_m H_i}}{(1 + \omega^2 \tau^2)^{\frac{1}{4}}} \left(\frac{\sinh^2 k + \cos^2 n}{\sinh^2 p + \sin^2 q}\right)^{\frac{1}{2}}$$
(25)

$$k = (1 + \omega^{2}\tau^{2})^{\frac{1}{4}} \frac{l}{\lambda} \cdot \cos\left(\frac{1}{2} \arctan tg \,\omega\tau\right)$$

$$p = (1 + \omega^{2}\tau^{2})^{\frac{1}{4}} \frac{l - x}{\lambda} \cos\left(\frac{1}{2} \arctan tg \,\omega\tau\right) \qquad \tau = R_{m}C_{m}$$

$$n = (1 + \omega^{2}\tau^{2})^{\frac{1}{4}} \frac{l}{\lambda} \cdot \sin\left(\frac{1}{2} \arctan tg \,\omega\tau\right) \qquad \lambda = \sqrt{\frac{R_{m}}{R_{i}}}$$

$$q = (1 + \omega^{2}\tau^{2})^{\frac{1}{4}} \frac{l - x}{\lambda} \cdot \sin\left(\frac{1}{2} \arctan tg \,\omega\tau\right)$$

W warunkach naszych pomiarów x=0, a zatem k=p i n=q. Przeprowadzona poniżej analiza ma na celu wykazanie, że w rozwiązywaniu równania efektu kablowego dla prądu zmiennego można zastąpić skomplikowaną postać (25) rozwiązania wzoru (24) wyrażeniem:

$$Z = \sqrt{R_i Z_m} \operatorname{ctg} h l \sqrt{\frac{R_i}{Z_m}}$$
(26)

w którym Z i Z_m są odpowiednio modułami zawad Z i Z_m . Przekształcamy wzór (26), podstawiając wartość modułu Z_m ze wzoru (15). Otrzymamy:

11 Im = 2- -100 Hz

 $Z = \frac{\sqrt{R_{i}R_{m}}}{\left(1+\omega^{2}\tau^{2}\right)^{\frac{1}{4}}}\operatorname{ctg} h \frac{l}{\lambda}\left(1+\omega^{2}\tau^{2}\right)^{\frac{1}{4}}$ (27)

Zmieniamy również postać równania (25). W tym celu obliczamy wyrażenia $\cos\frac{1}{2}$ arc tg $\omega \tau$ i $\sin\frac{1}{2}$ arc tg $\omega \tau$), stosując zależności $\cos\frac{1}{2} \alpha = \sqrt{\frac{1+\cos\alpha}{2}}$ oraz $\sin\frac{1}{2} \alpha = \sqrt{\frac{1-\cos\alpha}{2}}$ i sprowadzając wyrażenia na k i n do postaci: $k = \frac{l}{\lambda} \sqrt{\frac{\sqrt{1+\omega^2\tau^2+1}}{2}}, \quad n = \frac{l}{\lambda} \sqrt{\frac{\sqrt{1+\omega^2\tau^2-1}}{2}}$ (28)

Po podstawieniu wartości k i n z (28) do (25) i wykorzystaniu zależności k=p, q=n oraz cos h² $x-\sin h^{2}x=1$ równanie (25) przechodzi w:

$$Z = \frac{\sqrt{\frac{R_m R_i}{(1+\omega^2\tau^2)\frac{1}{4}}} \left(\frac{\cosh^2 k - \sin^2 n}{\sinh^2 k + \sin^2 n}\right)^{\frac{1}{2}}}{\left(\frac{1+\omega^2\tau^2}{\lambda}\right)^{\frac{1}{4}}} = \frac{\sqrt{\frac{R_m R_i}{(1+\omega^2\tau^2)\frac{1}{4}}} \left[\frac{\cosh^2 \frac{l}{\lambda} \left(\frac{\sqrt{1+\omega^2\tau^2}+1}{2}\right)^{\frac{1}{2}} - \sin^2 \frac{l}{\lambda} \left(\frac{\sqrt{1+\omega^2\tau^2}-1}{2}\right)^{\frac{1}{2}}}{\sinh^2 \frac{l}{\lambda} \left(\frac{\sqrt{1+\omega^2\tau^2}-1}{2}\right)^{\frac{1}{2}} + \sin^2 \frac{l}{\lambda} \left(\frac{\sqrt{1+\omega^2\tau^2}-1}{2}\right)^{\frac{1}{2}}}\right]^{\frac{1}{2}}}{\sin^2 \frac{l}{\lambda} \left(\frac{\sqrt{1+\omega^2\tau^2}-1}{2}\right)^{\frac{1}{2}}} \right]$$
(29)

Wzór (29) można znacznie uprościć w zastosowaniu do pomiarów przedstawionych w tej pracy. Na podstawie danych z piśmiennictwa [5, 11] wartości na R_m i R_1 otrzymujemy $\sqrt{\frac{Rm}{R_i}} = \lambda \approx 1$ cm. Ponieważ długość zanurzenia komórki wynosiła również ok. 1 cm, zatem całe wyrażenie $\frac{1}{\lambda} \approx 1$ i można go we wzorach (27) i (29) pominąć. Wyrażenie $\sin^2 \frac{1}{\lambda} \left(\frac{\sqrt{1+\omega^2\tau^2}-1}{2} \right)^{\frac{1}{2}}$ jest zawsze dużo mniejsze niż $\cosh h^2 \frac{1}{\lambda} \left(\frac{\sqrt{1+\omega^2\tau^2}+1}{2} \right)^{\frac{1}{2}}$

Dla małych wartości $\omega \tau$ ($\omega \tau < 1,5$) jest to słuszne, ponieważ funkcja sinus jest bardzo mała, dla dużych $\omega \tau$ ($\omega \tau > 1,5$) jest to również słuszne, ponieważ funkcje cos h i sin h rosną bardzo szybko do wartości klikanaście razy większej od 1, której nigdy nie przekracza funkcja sin. Pominięcie wyrażeń z sinusami w liczniku i mianowniku wzoru (29) upraszcza ten wzór do postaci:

$$Z = \frac{\sqrt{R_m R_i}}{(1 + \omega^2 \tau^2)^{\frac{1}{4}}} \operatorname{ctg} h \frac{1}{\lambda} \left(\frac{\sqrt{1 + \omega^2 \tau^2} + 1}{2} \right)^{\frac{1}{4}}$$
(30)

Dla $\omega \tau < 1.5$ możemy pominąć $\omega \tau$ w wyrażeniu pod ctg h zarówno we wzorze (30), jak i (27). Oba wzory przyjmują wtedy wspólną postać:

$$Z = \frac{\sqrt{R_m R_i}}{(1 + \omega^2 \tau^2)_4^1} \operatorname{ctgh} \frac{1}{\lambda}$$
(31)

Dla $\omega \tau > 1,5$ argument *A* ctg h we wzorach (27) i (30) przyjmuje takie wartości, dla których ctg h *A* dąży do wartości równej 1. W obu tych wzorach możemy pominąć wyrażenie z ctg h i przechodzą one również w jednakową postać.

$$Z = \frac{\sqrt{R_m R_i}}{(1 + \omega^2 \tau^2)_4^{\frac{1}{4}}}$$
(32)

Wzory (31) i (32) pokazują, że w całym zakresie zmian ω stosowanym w pomiarach można korzystać z uproszczonej postaci (26) rozwiązania równania (24).

4. Graficzne rozwiązanie równania (10) efektu kablowego. Zakładamy kilka wartości Z_m (od 1 k Ω cm do 200 k Ω cm) oraz R_i (od 5 $\frac{k\Omega}{cm}$ do 100 $\frac{k\Omega}{cm}$) i wyliczamy ze wzoru (26) wartości Z dla wszystkich kombinacji Z_m i R_i . We współrzędnych Z R_i kreślimy zależność Z od R_i dla wszystkich założonych Z_m (ryc. 10). Na osi rzędnych z punktu odpowiadającego wartości R_i zmierzonej komórki

Ryc. 10. Zależność zawady Z od oporu wnętrza R_i dla różnych wartości Z_m

przeprowadzamy linię pionową. Wartości Z i Z_m uzyskane z punktów przecięcia tej linii z krzywymi na ryc. 10 odkładamy we współrzędnych Z Z_m (ryc. 11) i łącząc je otrzymujemy ogólny przebieg zależności Z od Z_m dla określonego R_i . Zależność przedstawiona na ryc. 10 stosuje się do wszystkich mierzonych komórek. Wykres z ryc. 11 trzeba wykonać dla każdej badanej komórki, ponieważ jego przebieg zależy od oporu wnętrza komórki. Ze względu na uniwersalność wykresu z ryc. 10 i łatwość w sporządzaniu wykresu z ryc. 11 metodą graficzną uzyskujemy szybkie rozwiązanie równania efektu kablowego dla pomiarów prądem zmiennym.

PIŚMIENNICTWO

- 1. Blinks L. R.: J. Gen. Phys. 20, 229 (1936-1937).
- 2. Bulanda W., Skierczyńska J., Żołnierczuk R.: Ann. Univ. Mariae Curie-Skłodowska, Lublin, sectio AA, 23, 29 (1968).
 - Bulanda W., Skierczyńska J.: Biuletyn Lubelskiego Towarzystwa Naukowego, wydział II, sectio C, 9 (1969).
 - 4. Cole K. S., Curtis H. J.: J. Gen. Phys. 21, 189 (1938).
 - 5. Curtis H. J., Cole K. S.: J. Gen. Phys. 21, 189, 583 (1937-1938).
- 6. Findlay G. P., Hope A. B.: Austr. J. Biol. Sci. 17, 62 (1964).
 - 7. Plicquett F.: Biophysikalische Untersuchungen von Zellen und Geweben durch Passive elektrische Verfahren. Leipzig 1969.
 - 8. Schwann H. P.: Ann. N. Y. Acad. Sci. 148, 191 (1968).
 - 9. Skierczyńska J., Śpiewla E., Bulanda W., Żołnierczuk R., Sielewiesiuk J.: J. Exp. Bot., (1971).
 - 10. Walker A. N.: Austr. J. Biol. Sci. 13, 468 (1960).
 - 11. Wiliams E. J., Johnston R. J., Dainty J.: J. Exp. Bot. 15, 1 (1964).
 - Żołnierczuk R.: Biuletyn Lubelskiego Towarzystwa Naukowego, wydział II, sectio C, 9 (1969).

РЕЗЮМЕ

В работе проведены измерения импеданса клеток *Chara brauni* на переменный ток в пределах от 10 до 5000 гц. Доказано, что моделью слоя, отделяющего центральную вакуоль от внешней среды, является параллельное соединение *R* и *C* с постоянными значениями сопротивления и емкости, независящими от частоты тока. Определены

значения сопротивления клеточной мембраны ($r = 18,6 \text{ k}\Omega \text{ cm}^2$) и емкость мембраны ($c = 0,31 \mu \text{Fcm}^{-2}$). Предложено несколько упрощений формул для вычисления импеданса клеток.

SUMMARY

Measurements of the impedance were made in the cells of *Chara* brauni using current frequencies from 10 to 5000 cycles per sec. The investigations showed that a parallel arrangement of R and C which resistance and capacity did not change with frequency, could be used as a model of the layer separating the vacuole from the outside solution. The obtained values of the membrane resistance and capacity were respectively $r=18.6 \text{ k}\Omega \text{ cm}^2$ and $c=0.31\mu\text{Fcm}^{-2}$. Some simplifications were suggested in formulae used for the calculation of the cell impedance.

```
R Skiefzynska et Spiewia E Bulanda W. Kolnierczak R. Sielewiesiuk J.: J. Exp. Bol. (1971).
Sielewiesiuk J.: J. Exp. Bol. (1971).
Wilfigma E.J., Jgbneson H.J. Darntro J.: J. Exp. Bol. (1900).
Wilfigma E.J., Jgbneson H.J. Darntro J.: J. Exp. Bol. (1900).
Section C. & Geolegical R.: Budetra Lubehtlen Towarzystwa Naukowero wydaiał R. (1988).
Section C. & Geolegical R.: Studetra Ly Sci. Darntro J.: J. Exp. Bol. 14, 1488.
Section C. & Geolegical R.: Studetra Lubehtlen Towarzystwa Naukowero wydaiał R. (1988).
Section C. & Geolegical R.: Studetra Ly Sci. Darntro J.: J. Exp. Bol. 14, 1488.
Section C. & Geolegical R.: Studetra Ly Sci. Darntro J.: J. Exp. Bol. 14, 1488.
Statistical R.: Studetra Ly Sci. Darntro J.: J. Exp. Bol. 14, 1488.
Section C. & Geolegical R.: Statistical Physical Research R. (1990).
Statistical R.: Statistical Research Researc
```

Papier druk. sat. III kl. 80 g	Format 70×100	Druku str. 20
Annales UMCS Lublin 1972	Lub. Zakl. Graf. Lublin, Unicka 4	Zam. 136. 14.I.72
600+50 egz. B-4	Manuskrypt otrzymano 14.I.72	Data ukończenia 15.I.73