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Abstract. In this note we establish an advanced version of the inverse func-
tion theorem and study some local geometrical properties like starlikeness and
hyperbolic convexity of the inverse function under natural restrictions on the
numerical range of the underlying mapping.

1. Introduction

Let D1 and D2 be domains in the complex plane C. By Hol (D1, D2) we
denote the set of holomorphic mappings of D1 into D2. If D is a domain in
C, then the set Hol (D) := Hol (D,D) forms a semigroup with composition
being the semigroup operation.

For r > 0, we denote ∆r := {z ∈ C : |z| < r} and ∆ := ∆1.
The classical inverse function theorem states the following:

Theorem 1.1. Let function Φ be holomorphic in a neighborhood of the
origin with Φ(0) = 0 and Φ′(0) 6= 0. Then there exist positive numbers r
and ρ such that for all z ∈ ∆ρ equation

(1.1) Φ(w) = z
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has a unique solution w = Φ−1(z) in the disk ∆r and such that Φ−1 ∈
Hol (∆ρ,∆r).

Assuming that Φ is holomorphic in the open unit disk ∆, the numbers ρ
and r are often called the Bloch radii [6, 7]. So, the natural problem is:
• To obtain qualified estimates for the Bloch radii for all functions Φ ∈

Hol (∆,C).
Standard methods of complex analysis for the Bloch radii problem in-

clude, for instance, employment of the maximum modulus of |Φ(z)| in the
unit disk. Also, one can estimate the radius of convergence in the familiar
Bürmann–Lagrange theorem. The last approach involves the consideration
of the minimum of

∣∣∣Φ(z)
z

∣∣∣ on some subsets of ∆ or on the whole unit disk

(see, for example, [1, 13]).
In this connection, we observe that if a function Φ ∈ Hol (∆,C), Φ(0) = 0,

satisfies the condition

Re [Φ(z)z] ≥ |z|2, z ∈ ∆,

then by the argument principle, Φ covers the open unit disk ∆ and for every
z ∈ ∆ there is a unique solution w of the equation Φ(w) = z.

In fact, this observation links to a notion, which comes from operator
theory and nonlinear analysis. Namely, for a mapping Φ, the numerical
range of Φ is the set NR(Φ), given by

NR(Φ) := {ζ ∈ C : ζ = Φ (z) z, z ∈ ∆} .

Recall that traditionally one-sided estimates mean that the numerical range
NR(Φ) of a mapping Φ lies in the left (right) half-plane.

Our goal in this paper is to study the following problem:
• Whether the Bloch radii can be given by using one-sided estimates in

the spirit of Krasnoselskii?
Due to the maximal principle, for a function Φ satisfying Φ(0) = 0 this

can be written in the form

(1.2) ±Re
Φ(z)

z
≥ 0, z ∈ ∆.

In other words, the problem above is the using of conditions of type (1.2)
to get an appropriate estimates for the Bloch radii.

Note in passing that classical results of Marx [8] and Strohhäcker [12]
state that any normalized convex function Φ satisfies Re Φ(z)

z > 1
2 . In

the converse direction, it was shown by Noshiro [10] that if Φ(0) = 0 and
Re Φ(z)

z ≥ 0 , then the function Φ is univalent and starlike in the disk ∆r with
r =
√

2 − 1. Obviously, by the Koebe Quarter Theorem one immediately
obtains an estimate for the second Bloch radius ρ, namely, ρ =

(√
2− 1

)
/4.

We show below that the inverse function Φ−1 is starlike in the disk ∆ρ.
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Another relevant question which arises in this connection is:
•Which conditions provide the equality of the numbers ρ and r? In other

words, does there exist a disk centered at the origin invariant for Φ−1? If
yes, what is the radius of the maximal invariant disk?

As soon as we know the last radius, we can find the radius of the disk
centered at the origin such that Φ−1 is a starlike of order 1

2 self-mapping of
this disk.

We should emphasize that, in fact, we study the above problems under a
weaker restriction that NR(Φ) lies in an arbitrary half-plane, which is not
necessarily vertical. Our results (see Section 3), in particular, imply the
following conclusions.

Assertion 1.2. Let Φ ∈ Hol (∆,C) satisfy |Φ′(0)| > 1 and Re Φ(w)
Φ′(0)w > 0.

Then Φ−1 ∈ Hol (∆R1 ,∆
√

2−1), where R1 = (3− 2
√

2)|Φ′(0)|. Furthermore,
the inverse function Φ−1 preserves the disk ∆R invariant, where

R =


|Φ′(0)|−1
|Φ′(0)|+1 , if |Φ′(0)| <

√
2 + 1,

(3− 2
√

2)|Φ′(0)|, if |Φ′(0)| ≥
√

2 + 1.

Assertion 1.3. Let Φ ∈ Hol (∆,C) satisfy Re Φ′(0) > 1 and Re Φ(w)
w > 0.

Then Φ−1 ∈ Hol (∆R1 ,∆
√

2−1), where R1 = (3 − 2
√

2)Re Φ′(0). Further-
more, the inverse function Φ−1 preserves the disk ∆R invariant, where

R =


Re Φ′(0)−1
Re Φ′(0)+1 , if Re Φ′(0) <

√
2 + 1,

(3− 2
√

2)Re Φ′(0), if Re Φ′(0) ≥
√

2 + 1.

Assertion 1.4. Let Φ ∈ Hol (∆,C) satisfy Re Φ′(0) > 1 and Re Φ(w)
w >

1
2Re Φ′(0). Then Φ−1 ∈ Hol (∆R1 ,∆), where R1 = 1

2Re Φ′(0). Furthermore,
the inverse function Φ−1 preserves the disk ∆R invariant, where

R =


1
2Re Φ′(0), if Re Φ′(0) ≥ 2,

Re Φ′(0)− 1, if Re Φ′(0) < 2.

2. Preliminary notions and auxiliary results

We start this section with the following definitions.

Definition 2.1. Let D be a domain in C and let h ∈ Hol (D,C). One says
that h satisfies the range condition on D if for each λ ≥ 0 the following
condition holds (I + λh) (D) ⊃ D and the equation

(2.1) w + λh(w) = z

has a unique solution

(2.2) w = Jλ(z)
(

= (I + λh)−1 (z)
)
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holomorphic in D.

Usually the family {Jλ}λ≥0 ∈ Hol (D) is called the resolvent family of h
on D.

Definition 2.2. Let D = ∆r be the open disk of radius r > 0 centered at
the origin. A mapping h ∈ Hol (D,C) is said to be holomorphically accretive
if there exists ε > 0 such that

(2.3) Reh(z)z ≥ 0

for all z satisfying r − ε < |z| < r.

It can be easily seen that if h(0) = 0, then h is holomorphically accretive
if and only if its numerical range NR(h) lies in the right half-plane. More
detailed study of the numerical range of holomorphic mappings and its
applications to different problems of analysis can be found in the recent
book [3]. For our purpose we need the following fact.

Proposition 2.3. A mapping h ∈ Hol (∆r,C) is holomorphically accretive
on ∆r if and only if it satisfies the range condition on ∆r.

We now recall the notion of hyperbolically convex functions that has been
studied by many authors; see, for example, [9].

Definition 2.4. A subdomain D ⊂ ∆r is said to be a hyperbolically convex
domain if for every pair of points w1, w2 ∈ D, the hyperbolic geodesic
segment joining w1 and w2 in ∆r lies entirely in D.

Concerning geometric properties of the mappings Jλ in the case of the
open unit disk ∆, the following assertion was recently proved in [4].

Proposition 2.5. Let h ∈ Hol (∆,C) with h(0) = 0 satisfy the range con-
dition and let the family {Jλ}λ>0 be defined by (2.2). Then for each λ > 0,

ReJ ′λ(z) > 0, z ∈ ∆,

and Jλ(∆) is a hyperbolically convex domain. Consequently, the function
Jλ is starlike of order 1

2 . If, in addition, h′(0) = β > 0, then

(2.4) Re
Jλ(z)

z
>

1

2(1 + βλ)
, z ∈ ∆.

We proceed with some technical lemmata that will be used in the proof
of our main results.

Lemma 2.6. Let function φ be defined by

φ(θ, S, t, r) =
cos θ

t
+

2Sr2

t(1− r2)
− 2Sr

|t|(1− r2)
− 1

on the domain
{
θ ∈ (−π

2 ,
π
2 ) ∪

(
π
2 ,

3π
2

)
, S > 0, t ∈ R \ {0}, r ∈ (0, 1)

}
. As-

sume that one of the following conditions holds:
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(a) θ ∈
(
−π

2 ,
π
2

)
, S < cos θ, t ∈ (0, cos θ − S];

(b) θ ∈
(
−π

2 ,
π
2

)
, t ∈ (0, cos θ) , r ≤ cos θ−t

2S−(cos θ−t) ;

(c) θ ∈
(
π
2 ,

3π
2

)
, t ∈ (cos θ, 0), r ≤ t−cos θ

2S+t−cos θ .
Then

(2.5) φ(θ, S, t, r) ≥ 0

Proof. If θ ∈
(
−π

2 ,
π
2

)
and t > 0, then inequality (2.5) is equivalent to

(2.6)
cos θ

t
− 1− 2Sr

t(1 + r)
≥ 0,

which coincides with (1 + r)(cos θ− t) ≥ 2rS. The last inequality obviously
holds for all r ∈ (0, 1) in case (a). So, we proceed with t > cos θ − S. Then
(2.6) is equivalent to r ≤ cos θ−t

2S−(cos θ−t) . Thus (2.5) holds in case (b).

Let now consider the case θ ∈
(
π
2 ,

3π
2

)
and t < 0. Similarly to the above,

condition (2.5) is equivalent to the inequality cos θ
t − 1 + 2Sr

t(1−r) ≥ 0. This
implies that (2.5) holds in case (c) too. �

Lemma 2.7. Let function u be defined by

u(θ, S, t) =

t, as S < cos θ, 0 < t ≤ cos θ − S,
(cos θ−t)t

2S+t−cos θ , otherwise

on the domain
{
θ ∈ (−π

2 ,
π
2 ), S > 0, t ∈ (0, cos θ)

}
. Then for a fixed θ ∈

(−π
2 ,

π
2 ) and S > 0,

max
t∈(0,cos θ)

u(θ, S, t) =

cos θ − S, as S < 2 cos θ
3 ,

4S − cos θ − 2
√

(2S − cos θ)2S , as S ≥ 2 cos θ
3 .

Proof. First we note that u is a continuous function and that the function
(cos θ−t)t

2S+t−cos θ with S ≤ cos θ
2 is decreasing. For the case S > cos θ

2 , the last
function is increasing as t < t0 :=

√
(2S − cos θ)2S − 2S + cos θ and is

decreasing otherwise.
We now use these facts to analyse the behavior of u. If S ≤ cos θ

2 , then
u(θ, S, ·) is increasing as t < t1 := cos θ − S and decreasing as t > t1.
Therefore, its maximum is u(θ, S, t1).

If S ∈
(

cos θ
2 , 2 cos θ

3

)
, then t0 < t1. Therefore, the same conclusion holds

in this case.
If S ∈

[
2 cos θ

3 , cos θ
)
, then t1 ≤ t0, and hence maxu(θ, S, t) = u(θ, S, t0).

Obviously, the last relation holds whenever S ≥ cos θ. Computation of the
values u(θ, S, t1) and u(θ, S, t0) completes the proof. �

Lemma 2.8. Let function v be defined by

v(θ, S, t) =
(t− cos θ)|t|

2S + t− cos θ
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on the domain
{
θ ∈ (π2 ,

3π
2 ), S > 0, t ∈ (cos θ, 0)

}
. Then for fixed θ ∈

(π2 ,
3π
2 ) and S > 0,

max
t∈(cos θ,0)

v(θ, S, t) = 4S − cos θ − 2
√

2S(2S − cos θ) .

Proof. Since the function v(θ, S, ·) attains its maximum at the point t0 =√
(2S − cos θ)2S − 2S + cos θ ∈ (cos θ, 0), the assertion follows. �

3. Main results

Recall the main problem studied in this paper. Let Φ ∈ Hol (∆,C) satisfy
Φ(0) = 0. We are interested in the study of the inverse function Φ−1, in
particular, in its domain and geometric properties. Therefore, it is natural
to assume that α := Φ′(0) 6= 0; then the inverse function exists in a neigh-
borhood of zero. Our additional assumption is that the function Φ(w)

αw takes
values in some not horizontal half-plane.

Our main result is the following assertion.

Theorem 3.1. Let Φ ∈ Hol (∆,C) satisfy Φ(0) = 0 and α := Φ′(0) 6= 0.
Assume also that for some positive S and some θ ∈

(
−π

2 ,
π
2

)
∪
(
π
2 ,

3π
2

)
, the

following inequality holds:

(3.1) Re eiθ
Φ(w)

αw
> cos θ − S.

For t ∈ R such that t cos θ > 0 and |t| < | cos θ|, denote

(3.2) r(θ, S, t) =


1, as θ ∈

(
−π

2 ,
π
2

)
, t ∈ (0, cos θ − S],

cos θ−t
2S+t−cos θ , as θ ∈

(
−π

2 ,
π
2

)
, t∈(cos θ − S, cos θ), t>0,

t−cos θ
2S+t−cos θ , as θ ∈

(
π
2 ,

3π
2

)
, t ∈ (cos θ, 0).

Then for any t the inverse function Φ−1 is holomorphic in the disk ∆ρ with
ρ = r(θ, S, t)|tα| and maps ∆ρ into ∆r with r = r(θ, S, t).

Proof. Under the above assumptions, one can write Φ(w) = wq(w) with
q(0) = α and Re eiθ q(w)

α > cos θ − S. Then the function q1 defined by

q1(w) :=
1

S

[
eiθ
q(w)

α
− cos θ + S

]
is of the Carathéodory class and hence satisfies∣∣∣∣q1(w)− 1 + |w|2

1− |w|2

∣∣∣∣ ≤ 2|w|
1− |w|2

(see, for example, [5, Remark 2.1.4]). Denote r := |w|. The last inequality
is equivalent to the following one:∣∣∣∣eiθq(w)

tα
− cos θ

t
− 2Sr2

t(1− r2)

∣∣∣∣ ≤ 2Sr

|t|(1− r2)
,
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where t is an arbitrary nonzero real number. In turn, this implies

(3.3) Re

[
eiθq(w)

tα
− 1

]
≥ cos θ

t
+

2Sr2

t(1− r2)
− 2Sr

|t|(1− r2)
− 1.

By Lemma 2.6, the right-hand side of this inequality is positive if one of
the cases (a), (b) or (c) of that lemma holds. Consequently, Re

[
eiθq(w)
tα − 1

]
≥ 0 whenever |w| < r(θ, S, t), where the function r(θ, S, t) is defined by (3.2).

Then the function Q, defined by Q(w) := eiθq(r(θ,S,t)w)
tα − 1, has a positive

real part in the unit disk. Thus, by Definition 2.2, the function wQ(w) is a
holomorphically accretive mapping in ∆, and consequently, by Lemma 2.3,
satisfies the range condition (see Definition 2.1). Therefore, for any positive
λ and for any ẑ ∈ ∆, there is a solution ŵ = wλ(ẑ) of the functional equation

(3.4) ŵ + λŵQ(ŵ) = ẑ,

which is holomorphic with respect to ẑ ∈ ∆ and satisfies |wλ(ẑ)| < 1.
Obviously, for λ = 1 the last equation gets the form

Φ(r(θ, S, t)ŵ) = r(θ, S, t)tαẑ.

Denoting w = r(θ, S, t)ŵ and z = r(θ, S, t)tαẑ, we complete the proof. �

Despite its generality, it is not convenient to apply Theorem 3.1 directly
because its conclusion contains an arbitrary parameter t. So, our next
purpose is to obtain readable results without additional parameters.

Corollary 3.2. Let Φ ∈ Hol (∆,C) satisfy Φ(0) = 0 and α := Φ′(0) 6= 0.
Assume that inequality (3.1) holds for some S > 0 and θ ∈

(
−π

2 ,
π
2

)
. The

inverse function Φ−1 is holomorphic in the disk ∆R1(θ,S), where

R1(θ, S) =

|α|(cos θ − S), as S < 2 cos θ
3 ,

|α|
(

4S − cos θ − 2
√

(2S − cos θ)2S
)
, as S ≥ 2 cos θ

3 ,

and maps it onto a hyperbolically convex subdomain of the disk ∆R2(θ,S),
where

R2(θ, S) =

1, as S < 2 cos θ
3 ,

2S√
(2S−cos θ)2S

− 1, as S ≥ 2 cos θ
3 .

Proof. Indeed, the statement of Theorem 3.1 involves the real parameter
t. Therefore, we can maximize r(θ, S, t)|tα| as the function of variable t ∈
(0, cos θ). This was done in Lemma 2.7. The hyperbolic convexity follows
from Theorem 2.5. �

Similarly, using Lemma 2.8 instead of Lemma 2.7, we get the following
assertion.
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Corollary 3.3. Let Φ ∈ Hol (∆,C) satisfy Φ(0) = 0 and α := Φ′(0) 6= 0.
Assume that inequality (3.1) holds for some S > 0 and θ ∈

(
π
2 ,

3π
2

)
. The

inverse function Φ−1 is holomorphic in the disk ∆R1(θ,S), where

R1(θ, S) = |α|
(

4S − cos θ − 2
√

(2S − cos θ)2S
)

and maps it onto a hyperbolically convex subdomain of the disk ∆R2(θ,S),
where

R2(θ, S) = 1− 2S√
(2S − cos θ)2S

.

Corollary 3.4. If in the hypotheses of Theorem 3.1, either θ = 0 or θ = π,
then the inverse function satisfies the following inequality:

Re
αΦ−1(z) cos θ

z
>

1

2
, |z| < R1(θ, S),

where the function R1(θ, S) is defined in Corollaries 3.2–3.3.

Proof. Let us return to equation (3.4) and consider the function h(ŵ) =
ŵQ(ŵ). If either θ = 0 or θ = π, then β := h′(0) = cos θ

t − 1 > 0. It follows
from Theorem 2.5 that the function ŵ = w1(ẑ) satisfies
Re ŵ

ẑ >
t

2 cos θ , ẑ ∈ ∆. This is equivalent to the inequality Re αΦ−1(z) cos θ
z >

1
2 in the disk |z| < r(θ, S, t)|tα|. Now Corollaries 3.2–3.3 imply the conclu-
sion. �

Concerning invariant disks, it is clear that they exist whenever |α| > 1.
At the same time, the classical Theorem 1.1 does not answer how to es-
timate the size of such disks. Under the stronger condition |α cos θ| > 1,
Theorem 3.1 enables us to do this. Indeed, the disks described in this the-
orem are invariant whenever |tα| ≥ 1 while |t| < | cos θ|. Furthermore, in
order to find maximal invariant disks, we have, on the way similar to Lem-
mata 2.7–2.8, maximize the functions u and v with respect to t, |t| ≥ 1

|α| .
Repeating the above considerations, we get the following conclusion.

Corollary 3.5. Let Φ ∈ Hol (∆,C) satisfy Φ(0) = 0 and α = Φ′(0). Assume
that for some θ ∈

(
−π

2 ,
π
2

)
∪
(
π
2 ,

3π
2

)
and S > 0, the inequalities |α cos θ| > 1

and (3.1) hold. Then the inverse function Φ−1 preserves the disk ∆R(θ,S)

invariant, where R(θ, S) is defined as follows. Denote G = 4S − cos θ −
2
√

(2S − cos θ)2S , t0 =
√

(2S − cos θ)2S − 2S + cos θ and t1 = cos θ − S.
In the case θ ∈

(
−π

2 ,
π
2

)
,

R(θ, S) =



|α|t1, if S < 2 cos θ
3 , 1

|α| ≤ t1,

|α| cos θ−1
|α|(2S−cos θ)+1 ,

if either S < 2 cos θ
3 , 1

|α| > t1,

or S ≥ 2 cos θ
3 , 1

|α| > t0,

|α|G, if S ≥ 2 cos θ
3 , 1

|α| ≤ t0.
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In the case θ ∈
(
π
2 ,

3π
2

)
,

R(θ, S) =

|α|G, if 1
|α| ≤ t0,

1−|α| cos θ
|α|(2S−cos θ)+1 , if 1

|α| > t0.

To complete the paper we mention that one can obtain Assertions 1.2–1.4
above, choosing appropriate values of the parameters S and θ with cos θ > 0
in the statements of this section. Similarly, one can explore the case where
cos θ < 0.
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