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Dokładna diagonalizacja oddziaływania pairing dla protonów i neutronów 
w sprzężeniu j-j. I. Jądra parzyste, powłoki d3/2— f7/2

Точная диагонализация парного взаимодействия для протонов и нейтронов 
в связи j—j. I. Нечетные ядра, уровни d3/2—/7/2

Pairing interaction as a model residual interaction in the frame of 
nuclear shell model has a rather long history. Racah [1] gave an 
exact formulae for pairing energy in a degenerated case in L-S coupling. 
So-called seniority scheme in L-S was generalised by Flowers [2], 
and Edmonds and Flowers [3] for j-j coupling where the same 
concept was introduced. Application of unitary, orthogonal (L-S) and 
symplectic (j-j) groups enlarged and made easier theoretical treatment. 
There were, however, some limitations imposed by the mathematical 
apparatus of group theory. Every shell has to be connected with a group 
of different dimension and this does not allow to consider more than 
one degenerated level. Since 1958 the situation has been improved as 
the well-working superconductivity approximation, introduced at first 
by Bardeen, Cooper and Schrieffer [4] in a solid state 
theory, has been applied to nuclear theory by Mot telson [5], Bie­
la j e v [6] and others. This approximation works, however, for one 
kind of nucleons only. A further progress was made when the so-called 
quasi-spin method was applied to the theory of pairing interactions. 
Wada, Takano and F о к u d a [7] were the first to notice the 
simple commutation relations among the fermion creation and annihila­
tion operators taken in second order combinations. This was a clue for 
development of the ,quasi-spin method.
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Since then the quasi-spin formalism together with orthogonal groups 
connected with it has been widely exploited. Identification of groups 
generated by infinitesimal operators taken from the pairing Hamiltoniari 
was done in the works of Ichimura [8—9], Lipkin [10] and of 
[11—12]. Calculation of matrix elements of generators in the constructed 
basis was done by Hecht [13]. The same but for special representa­
tions in which physical operators with good quantum numbers were 
used, was performed in the works [14—15]. Equivalent results but with 
the use of a different method were obtained by Richardson [16—17]. 
The great number of published papers devoted both to mathematical 
and physical applications of the quasi-spin method have not been men­
tioned here. From the point of view of the present work it has to be 
stressed that Kerman et al. [18] was the first to calculate the energy 
levels for several one-particle shells with one kind of nucleons correlated 
by the pairing forces. The similar problem but for two shells pnly was 
considered in the paper [19]. Quite recently Hecht and Pang [20] 
have overcome mathematical difficulties in the R8 group connected with 
pairing interactions in L-S coupling and have been able to calculate 
the pairing energy for the system of protons and neutrons and for 
several shells in L-S coupling.

The present work deals with the pairing interactions for both protons 
and neutrons in some realistic case of two shells: 3/2+ and 7/2_. 
Pairing interactions in j-j coupling work only for two-particle state 
with T=l, excluding, by the symmetry principle, states with T—0. 
In that respect those interactions can be placed between two extremes: 
1) interactions without correlations proton-neutron and 2) interactions 
with correlations and with T=0;l so, as it is in L-S coupling. In this 
paper we have taken an even number of protons and neutrons with senio­
rity zero. For such representations only three quantum numbers are 
needed for classifying the states under R5 [15] symmetry specific for j-j 
coupling. The set of physical quantum numbers consists of the isospin T, 
its third component To and the number of nucleons modified by a con­
stant.

In the first part of the work we have briefly presented the obtained 
results and in the second part we have dealt with some details of the 
group-theoretical classification of representations considered in this 
paper.

I. DIAGONALISATION OF THE PAIRING HAMILTONIAN
We follow here the notation of the paper [11].
Let us consider n nucleons in a certain configuration with seniority 

zero on the ji=3/2 and 32—1/2 levels separated by the energy e. If we 
take the energy of the system relatively to the lower one-particle
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level ji, the pairing Hamiltonian for both, protons and neutrons, will 
have the form

H = z s a+ a.
Ш2

(1)

where S± operators are suitable quasi-spin operators, and j, j take on 
the values j1; j2. The first part of the Hamiltonian has zero-matrix 
elements between states of different configurations. Diagonal elements 
of this part are simply equal to n2f, where n2 is the number of particles 
on the level j2.

The matrix elements of the operators S± have been calculated in 
the work [15] for a given j with the help of orthogonal group R5 in the 
five-dimensional abstract space. In the case of two j's we face the 
problem of the Kronecker product of two irreducible representations 
of the ,R5 group. Taking as a basis the simple products of states

|пТТо>я |nTTo>j2 = |(nTTo)31 (nTTo)j2 (2)

we can easily calculate matrix elements of all the products S+S-. 
The dimension of the matrix H depends on the total n=n1+n2. Table 1 
gives these numbers for several discussed cases.

Table 1. Dimensions of the matrix H for given values of the number of particles

Total n 4 6 8 10 12

dim. H 7 11 21 24 30

It is, however, more convenient to change the basis, taking as good 
quantum numbers the total isospin T, its third component To, and 
isospins Tn T2 for ji and j2, respectively. The transformation can be 
done with the help of Clebsch-Gordan coefficients:

;nin2(Jil2)> — S (ЛЛо;2,2^о^’’о)х|("Т^1(^^2> (3)
Toi Tos

The transformation (3) gives us two advantages. As the matrix 
elements of H are equal to zero between the states of different total T, 
the problem of a given number of particles is divided into several 
problems of fixed T. This allows to assign to each calculated energy 
the state of a given isospin.

The Hamiltonian H is invariant under the transformation of the 
orthogonal isospin group R3. Consequently, the energies do not depend
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0.1 0.2 0.3 G/S

Fig. 1. Energies of the ground and excit­
ed states for four nucleons on ^=3/2 and 
j2=7/2 levels correlated by pairing forces, 
as functions of the strength parameter 
G. e is one particle energy of the 7/2 level 

relatively to the 3/2 level

0.2 0.3 0/e

Fig. 2. Energies of the ground and excit­
ed states for six nucleons. For explana­

tion see Fig. 1

Fig. 3. Energies of the ground and excit­
ed states for eight nucleons. For explana­

tion see Fig. 1

Fig. 4. Energies of the ground and excit­
ed state for ten nucleons. For explana­

tion see Fig. 1
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Table 2. Eigen-vectors of four nucleons with T = O. The last three columns give 
the expansion coefficients in the base | TiiTj ; n2T2 ; T > as functions of the strength 

parameter G and the eigen-values E

G/e E/2e 1 40; 00; 0 > 1 21 ; 21 ; 0 > 1 00; 40; 0 >

0.05
-0.138 0.993 -0.113 0.020

0.850 0.113 0.987 -0.113
1.787 0.007 0.113 0.994

0.1
-0.301 0.975 -0.223 0.026

0.700 0.223 0.946 -0.236
1.602 0.027 0.236 0.971

0.2
-0.700 0.909 -0.406 0.096

0.378 - 0.402 0.789 -0.464
1.322 0.113 0.460 0.881

0.3
-1.177 0.829 -0.528 0.184

0.028 0.516 0.599 -0.612
1.149 0.213 0.603 0.769

Table 3. Eigen-vectors of four nucleons with T = 2 (see Table 2)

G/e E/2e 1 42; 00; 0> 1 21 ; 21 ; 0> 1 00; 42; 0>

0.05
-0.056 0.997 0.078 0.0035

0.848 -0.078 0.993 0.086
1.858 -0.0032 0.086 -0,996

0.1
-0.125 0.985 0.165 0.016

0.695 0.173 —0.971 -0.167
1.729 0.013 -0.167 0.986

0.2
— 0.323 0.915 0.397 0.080

0.410 0.401 —0.865 -0.303
1.513 0.051 -0.309 0.950

0.3
-0.620 0.786 0.592 0.179

0.181 0.609 -0.690 -0.391
1.339 0.107 -0.415 0.903
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on the total Tc of the system with protons and neutrons with fixed T, 
within a given irreducible representation of the R5 group. This means 
that for a given T there are 2T+1 degenerated in energy states of 
different To.

In Fig. 1—4 there are given the calculated energies for the strength 
parameter G (in unit e) equal to 0.05; 0.1; 0.2 and 0.3, and for the total 
number of particles n=4, 6, 8, 10. The calculations have been done on the 
computer Odra 1013 in the Computer Center at M. Curie-Sklodowska Uni­
versity in Lublin. There have been also calculated the state vectors belong­
ing to energy levels. They are the linear combinations of the vectors 
given by (3) with the same total T but with different ПуТ^, n2T2. Using 
the shortened notation, namely |n1'/’i, n2T2, T>, we have presented in 
Table 2 and 3 the examples of state vectors for a fixed value of n and 
for several values of the G.

II. GROUP-THEORETICAL DISCUSSION

Irreducible representations of the Rs group are denoted by D(ÀjÀ2) 
where and À2 stand for the numbers of two fundamental representa­
tions of the group (see for example [21]). According to the results of [15], 
these fundamental representations can be drawn, in quasi-spin picture, as 

with states

and | * * | with states

where each block consists of four one-particle states with the same | m |.
Sets of states on the 3/2 and 7/2 levels form bases for irreducible 

representations D(0.2) and 0(0.4) in the case of seniority zero. Mixed 
states of both 3/2 and 7/2 form the basis for the direct product 
D (0.2) ® D (0.4) which is presented in [15]:

D (0.2) © О (0.4) = D (0.2) © D (0.4) © D (0.6) © D (2.2) © D (2.4) © D (4.2) (4) 
The dimension of every irreducible representation is given by

N = 4-+ 1 j U2 + 1 j (^1 + ^2 4“ 2) p-i 2^24" Si (5)

Equalizing the dimensions according to (4) and (5) one gets 
14X55=14 + 55 + 140 + 81 + 260 + 220=770.
With the help of the rule of adding two isospins we have found the 
values of the total T for each irreducible representation under considera­
tion (Table 4).
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Table 4. Allowed values of T for particular representations D (Zb Z2) of the Rs group

D (Zi, Z2) Number 
of particles

± So T

(0,2)
0; 8 2 0

2; 6 1 1

4; 0 0 2

0; 16 4 0
2; 14 3 1

(0,4) 4; 12 2 0 2
6; 10 1 1 3

8; 0 0 2 4
0; 24 6 0
2; 22 5 1
4; 20 4 0 2

(0,6) 6; 18 3 1 3
8; 16 2 0 2 4

10; 14 1 13 5

12; 0 ° 2 4 6

2; 14 3 4
4; 12 2 0 1 2

6; 10 1 1 (2x) 2 3

8; 0 0 1 2 (2x) 3

2; 22 5 1
4; 20 4 0 1 2
6; 18 3 1 (2x) 2 3

(2
8; 16 2 0 1 2 (2x) 3 4

10; 14 1 1 (2x) 2 3 (2x) 4 5
12; 0 0 1 2 (2x) 3 4 (2x) 5
4; 20 4 2
6; 18 3 1 2 3

(4,2) 8; 16 2 0 1 2 (2x) 3 4
10; 14 1 1 (2x) 2 (2x) 3 (2x) 4
12; 0 0 1 2 (3x) 3 (2x) 4
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The number So is equal, following [11], to 1/2 (n-ß).
As an example for further discussion, let us consider a case with 

n=6 particles. States with six particles can be composed of the states 
of both D(0.2) and D(0.4) representations given in Table 5.

Table 5. Mixed states with six particles on the 3/2 and 7/2 levels

D (0.2) D (0.4)
Total T

П1 «2 T2

6 1 0 0 1

4 0; 2 2 1 1, 1, 2, 3

2 1 4 0; 2 1, 1, 2, 3
0 0 6 1; 3 1, 3

Every state has the total So equal to minus three. The problem is an 
eleven-dimensional one. If we, however, couple the states to the 
total T, the matrix elements between the states of different T will 
vanish, and the whole problem will consist of three problems with T— 1 
(6-dimensional), T = 2 (2-dimensional), and T = 3 (3-dimensional). 
We want to assign to each state its group-theory classification numbers. 
This means that we have to divide the eleven states into states belonging 
to a given irreducible representation of the Clebsch-Gordan series (4). 
Taking the states of Table 4 with six particles we get, however, the set 
of states with different T, as compared to the states given in Table 5. 
This interesting disagreement is caused by the fact that the pairs of 
particles with seniority equal two, and with reduced isotopic spin equal 
to zero are like scalars under transformations of the orthogonal group 
R5 [15], and may be added to the states of a given irreducible repre­
sentation without any change in transformational properties. This means 
that the number of particles is not a good criterion of choosing the 
proper states from Table 4. On the other hand the good and additive 
quantum number is given by So. Taking the states from Table 4 yith 
So= —3 we get the right set of the total T. In order to retain the total 
number of particles we have to add to the representations, the pairs 
of particles with s=2; t=0, in such a way as to obtain a number of 
particles equal to six. Following the above considerations we divide the 
set af the total T among the irreducible representations of (4) (Tables 6). 
Calculated energies of all the eleven states have to be divided into states 
belonging to the given irreducible representations according to Table 6.
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Table 6. Classification of states of six nucleons according to (4)

Ui, X2) s t T

(0, 4) 4 0 1

(0, 6) 0 0 1, 3
(2, 2) 6 1 1
(2, 4) 2 1 1, 1, 2, 3
(4, 2) 4 2 1, 2, 3

Let us begin with the degenerated case when G is so great that we can 
abandon the value of e as compared with G. In such a case the energy 
is given by the exact formulae [11]:

F = n-s) 2ß +2-^-4)-2T(T + l) + 2t(t+l)

where ß = ßj -f- ß2

and ßt = j,-[-y Q2==ja_|__Ł

Taking the quantum numbers from Table 6 we obtain the levels of all 
the states (Fig. 5).

e/g ( x,.x2 ) s I

0 ---------------------- (2,2) 6 1

-2 ( 4,2 ) 4 3

( 0, 4 ) 4 1

-5 ---------------------- (4,2) 4 2
-6 ---------------------- (2,4) 2 3
-7 ---------------------- (4,2) 4 1

-9 ---------------------- (2,4) 2 2

• -11 ------------ (2,4) 2 1 (2x)
-12 ----------- ----------- (0,6) 0 3

-17 ----------- ----------- (0,6) 0 1

Fig. 5. Ground and excited states with six particles on 3/2 and 7/2 levels 
in the degenerated case of e/G -> 0
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E GTaking as a parameter the—(or—) in a range (o, oo), we obtain
Cr Ł

the energies of excited levels as functions of the parameter. The starting 
points of curves are taken from Fig. 5. On the other ends of curves 
E—->oo) we have also well known points, because for the case of G=0 О
we have only the single-particles excitation energies (Fig. 6).

e/g t
6 ------------------------ 1, 3

4 ----------------------- 1, 1, 2, 3

2 ----------------------- 1, 1, 2, 3

0 ----------------------  1

Fig. 6. Energies and isotopic spins for G=0 in the case of six particles on the 
levels 3/2 and 7/2

|(2,2), 6,1>

I (4,2),4,3>

I (0,4|,4,1> 

l(4,2),4,2> 
|(2,4|, 2,3> 
l(4.2l,4,1>

l(2,4),2,2>

H2,4), 2,1>2i
I (0, G ). 0. 3>

I (0,6), 0,1>

0 0.2 0.4 06 0.8 1.0 08 06 0.4 6.2 0

Fig. 7. Energies for the system with six nucleons and for 0 G < oo. On the left 
hand side there are given vectors | (XjZ2) sT > belonging to particular states, and 
on the right hand side, for G—0 there are given pure states with 7^=0, 2, 4, and

6 nucleons on the higher 7/2 level
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Between these two extremes we have calculated the energies for several 
points which are given in Fig. 7—8.

e/g
|(2,2),6,1>

I ( 4,2 ), 4, 3>

KO, 4 I, 4,1 >

I (4, 2I, 4, 2> 

| (2, 4 ), 2,3>

KM), 4,1> 

X

|(2,4),2,2>

|(2,4),2,1> 

|(0,6),0, 3>

E/e

nj ■ 6

П,- 4

r>j- 2

n:= о

0 02 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0

1(0,6 1, 0, 1>

Fig. 8. The same energies as in Fig. 7 but relatively to the ground state energy 
taken as Eo=0

III. CONCLUSIONS

The obtained results are considered as the preliminary ones to a large- 
-scale work. We would like to consider the problem more thoroughly 
taking all possible configurations on two shells under the seniority 
scheme and with the help of the R5 group. Then, it will be possible 
to interpret certain 0, 3/2, and 7/2 levels in the discussed region of 
nuclei. However, the present results throw some light on the contro­
versial problem of excited 0+ states. Taking, as a starting point, seniority 
zero states separately on the jj level and on the j2 level, and forming 
linear combinations of such seniority-zero states, we have obtained not 
only seniority-zero product, but also the states with seniority 2, 4, 6, ...
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This result obtained without any approximation may explain contra­
dictory remarks concerning two quasi-particle excited states within the 
superconductivity model. In order to deal with 0+ excited states in this 
model it is neccessary to create two quasi-particles with the same |m|. 
Some authors consider such a state as a seniority-two 0+ state, others 
assign to this state seniority equal to zero. From the point of view of the 
exact results obtained in this work, it seems that such a state is a mixed 
one in respect to seniority scheme.

Another connection of our work with the superconductivity model 
has resulted from the so-called pairing vibrations [22—23]. In fact, 
we have dealt in the present paper, without any approximation, with 
the pairing vibrations in a wider sense than in the works [22—23], 
because we have considered the system of protons and neutrons, which, 
so far, has not been possible within the frame of the superconductivity 
model. This problem will be still of our concern.

We wish to express our thanks to Professor A. Bielecki and Doc. 
S. Ząbek for their kind attention toward our calculations in the Center 
of Numerical Methods at M. Curie-Sklodowska University.
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STRESZCZENIE

W oparciu o wyliczone wcześniej elementy macierzowe operatorów, 
wchodzących w skład hamiltonianu pairing, dokonano diagonalizacji tego 
hamiltonianu dla przypadku parzystej liczby protonów i neutronów 
na poziomach d2/3 oraz f7/2. Otrzymane energie wyrażone zostały w za­
leżności od stałej sprzężenia, całkowitego izospinu oraz liczby cząstek. 
Dokonano także analizy teoriogrupowej jednego z rozważanych przy­
padków w oparciu o grupę ortogonalną R5, która związana jest z oddzia­
ływaniem pairing. Otrzymano następujący obraz: wychodząc z układu 
cząstek o seniority 0 na obu poziomach 3/2 i 7/2 otrzymano poprzez 
rozłożenie iloczynu Kroneckera dwóch nieprzywiedlnych reprezentacji 
grupy Rs zarówno stany o seniority 0, jak i stany o seniority 2, 4, 6, ... 
Daje to istotny przyczynek do interpretacji stanów dwukwasicząstko- 
wych 0+ w teroii nadprzewodnikowej jądra atomu.

РЕЗЮМЕ

Опираясь на раньше вычисленные матричные элементы операто­
ров, входящих в состав гамильтониана для модели оболочек с пар­
ными силами, диагонализировали этот гамильтониан для случая чет­
ного числа протонов и нейтронов на уровнях d, и f7/ . Полученные 
энергии были выражены в зависимости от постоянного сопряжения, 
полного изоспина и числа частиц. Провели также теоретически груп­
повой анализ одного из исследованных случаев, используя ортого­
нальную группу К5. Получили следующее: исходя из системы ча­
стиц с сеньоритой 0 на уровнях 3/2 и 7/2, получили через разложение 
произведения Кронекера двух неприводимых представлений группы 
R5, как состояния с сеньоритами 0, так и с сеньоритами 2, 4, 6 ... Это 
дает существенный дополнительный материал к вопросу интерпре­
тации двуквазиочастичных состояний 0+ в сверхпроводниковой тео- 
рииядра.
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