### ANNALES

## UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XXVIII, 11

#### SECTIO AA

1973

Instytut Chemii UMCS Zakład Chemii Nieorganicznej i Ogólnej Kierownik: prof. dr Włodzimierz Hubicki

### Michalina DABKOWSKA, Hanna BOKSA

## Derywatograficzne badania termicznego rozkładu uwodnionych azotanów lantanowców. I. Termiczny rozkład azotanów La, Ce, Pr i Nd

Дериватографические исследования термического разложения гидратированных нитратов лантанидов. І. Термическое разложение нитратов La, Ce, Pr, Nd

Derivatographic Investigations of Thermal Decomposition of the Rare-Earth Metal Nitrate Hydrates. I. Thermal Decomposition of La, Ce, Pr and Nd Nitrates

Azotany pierwiastków ziem rzadkich były badane przez wielu autorów; wyniki ich prac dotyczące preparatyki, własności fizycznych, rozpuszczalności uwodnionych i bezwodnych azotanów lantanowców zostały zebrane wraz z wykazem bibliografii przez Trombego, Loriersa, Gaume-Mahn i Henry La Blanchetais [13, 17]. Również Vickery w swojej monografii dotyczącej chemii lantanowców [9] przedstawił obszerny materiał teoretyczny i doświadczalny, związany z azotanami pierwiastków ziem rzadkich i ich reakcjami termicznymi (zwłaszcza w stanie stopionym), które były proponowane do praktycznego wykorzystania w rozdzielaniu pierwiastków ziem rzadkich przez Berlina [2], Debraya [4], Marsha [8] i Vickery'ego [18].

Jednakże dane literaturowe na temat termicznej dysocjacji azotanów pierwiastków ziem rzadkich nie są jeszcze kompletne, nawet w przypadku dostępniejszych do badania pierwiastków grupy cerytowej. Moeller i Aftandilian [12] zwrócili uwagę, że ogrzewane przez nich sześciohydraty azotanów La i Ce(III) tracą w temp.  $100^{\circ}$ C po 3 drobiny wody krystalizacyjnej, a dalsze ogrzewanie tych soli do temp.  $300^{\circ}$ C nie prowadzi do uzyskania bezwodnych azotanów, lecz do zasadowych azotanów, które ogrzewane powyżej  $300^{\circ}$ C przekształcają się w tlenki. S o m i y a i H i r a n o [16], badający rozkład termiczny azotanów lantanu, prazeodymu, neodymu i samaru w atmosferze dwutlenku węgla, doszli do wniosku, że w miarę wzrostu temperatury uzyskuje się kolejno następujące produkty rozkładu azotanów lantanowców: LnONO<sub>3</sub>, Ln<sub>2</sub>O<sub>3</sub>CO<sub>2</sub> i jako końcowe produkty Ln<sub>2</sub>O<sub>3</sub>. Jedynie w przypadku rozkładu termicznego azotanu cerawego w atmosferze  $CO_2$  — autorzy ci stwierdzili odmienne zachowanie się tej soli przy ogrzewaniu i powstawanie  $CeO_2$  jako końcowego produktu rozpadu (bez przejścia przez pośredni tlenowęglan) w temperaturze o wiele niższej niż końcowe temperatury rozkładu pozostałych lantanowców, zmieniające się wraz z liczbą atomową danego lantanowca. K at o [8] podał, że La<sub>2</sub>O<sub>3</sub> uzyskuje się poniżej temp. 745°C,  $Pr_2O_3$  (!) — poniżej 690°C, a Nd<sub>2</sub>O<sub>3</sub> poniżej 720°C.

Przejściowe produkty rozpadu termicznego azotanów lantanowców grupy cerytowej badał Dutta [5, 6], który wyodrębnił je w postaci azotanów zasadowych o składzie:  $LnONO_3$  i  $Ln_2O_3 \cdot 2LnONO_3$  (azotan "ponadzasadowy"). Istnienie takich połączeń Dutta potwierdził termometrycznymi i konduktometrycznymi badaniami roztworów badanych azotanów oraz pomiarami strat ich mas podczas rozkładu termicznego w określonych temperaturach.

Z badań przeprowadzonych przez Marsha [9] wynika, że temperatury topnienia poszczególnych azotanów i ich soli zasadowych są raczej niskie, około 88—92°C. Marsh doniósł także o uzyskaniu innego typu zasadowych azotanów o składzie  $Ln_6O_5(NO_3)_8$ · 20H<sub>2</sub>O, dla których oznaczył ich gęstości i objętości molowe [11].

W e n dlandt [20], przebadawszy termogramy azotanów lantanowców lżejszych od La do Sm, wykazał, że azotany lantanowców, z wyjątkiem ceru i samaru, przechodzą przez następujące stadia:  $Ln(NO_3)_3 \cdot 6H_2O \rightarrow$  $\rightarrow Ln(NO_3)_3 \rightarrow LnONO_3 \rightarrow tlenki Ln. Hydrat azotanu cerawego rozkłada$ się według W e n dlandta wprost do CeO<sub>2</sub>, bez tworzenia zasadowejsoli, natomiast hydrat azotanu samaru nie tworzy bezwodnego azotanusamaru.

A m b r o ż i j i L u c z n i k o w a [1] wyznaczyli z uzyskanych termogramów temperatury przemian fazowych badanych azotanów lantanowców i przeprowadzili analizę ilościową produktów otrzymanych w danych temperaturach przemian. Autorzy ci doszli do wniosków, że podczas dysocjacji termicznej azotany lantanu i neodymu tworzą odpowiednie azotyny jako pośrednie produkty przed końcowym przekształceniem się w tlenki Ln<sub>2</sub>O<sub>3</sub>, natomiast azotany ceru, prazeodymu i samaru przyjmują najpierw postać soli zasadowych (tlenoazotanów), które w wyższych temperaturach tworzą odpowiednio tlenki CeO<sub>2</sub>, PrO<sub>2</sub> i Pr<sub>2</sub>O<sub>3</sub> oraz Sm<sub>2</sub>O<sub>3</sub>.

Cziżikow, Rabinowicz i Subbotina [3] również przeprowadzali badania termicznego rozkładu azotanów ceru i neodymu, stosując metody chemiczne, rentgenograficzne i magnetometryczne, na których podstawie doszli do wniosków, że proces dehydratacji azotanu ceru zachodzi w zakresie temp. 75—130°C, a azotanu neodymu w dwóch stadiach: w temp. 80—150° i 150—300°C; natomiast odpowiednie tlenki podczas izotermicznego ogrzewania badanych azotanów uzyskuje się w przypadku ceru w 170°C, a neodymu w reakcji dwustopniowej, począwszy od 310°C.

Celem naszej pracy było przeprowadzenie badań termicznego rozkładu uwodnionych azotanów lantanowców lekkich przy użyciu derywatografu typu OD 102, systemu F. Paulik — J. Paulik — L. Erdey i porównanie uzyskanych wyników z danymi w tej dziedzinie przez irnych autorów.

## CZĘŚĆ DOŚWIADCZALNA

## Preparatyka azotanów lantanowców lekkich

Jako preparaty wyjściowe stosowano tlenki  $La_2O_3$ ,  $Nd_2O_3$ ,  $Pr_6O_{11}$  oraz  $CeO_2$  (wszystkie o czystości 99,8%, produkcji Katedry Chemii Nieorganicznej UMCS), które po zwilżeniu wodą rozpuszczano w 6n HNO<sub>3</sub> (z zachowaniem stechiometrycznych ilości) i po 2-godzinnym odparowywaniu roztworów na łaźni wodnej pozostawiono w eksykatorze z wodorotlenkiem sodu do wykrystalizowania azotanów. W przypadku rozpuszczania  $CeO_2$  w kwasie azotowym do roztworu dodawano nadtlenek wodoru w celu zapewnienia całkowitej redukcji Ce(IV) do azotanu cerawego. Azotany prazeodymu i neodymu pozostawiono przez dwie doby w suszarce próżniowej w temp.  $20^\circ$  i próżni 0,05 atm.

Analitycznie stwierdzono, że uzyskane tym sposobem krystaliczne azotany lantanowców stanowią następujące hydraty: La( $NO_3$ )<sub>3</sub>· 6H<sub>2</sub>O, Ce( $NO_3$ )<sub>3</sub>· · 6H<sub>3</sub>O, Pr( $NO_3$ )<sub>3</sub>· 4H<sub>2</sub>O oraz Nd( $NO_3$ )<sub>3</sub>· 5H<sub>2</sub>O.

#### Aparatura i tok postępowania

Badania termicznego rozkładu poszczególnych azotanów lantanowców wykonano przy pomocy derywatografu typu OD 102, systemu F. Paulik — J. Paulik — L. Erdey, produkcji MOM-Budapeszt.

Próbki badanych lantanowców o masie od 200 do 700 mg, lekko utarte w moździerzu porcelanowym dla rozdrobnienia kryształów, umieszczano w tygielkach platynowych, przykrywano szklanką kwarcową i ogrzewano w piecu, podwyższając równomiernie temperaturę z szybkością  $1,5^{\circ}$ ;  $3^{\circ}$ ;  $4,5^{\circ}$  lub 6°C na minutę. Pomiary derywatograficzne wykonywano z zastosowaniem czułości TG zależnych od masy próbki, DTG — 1:5 lub 1:10 a DTA — 1:10, 1:15 lub 1:20. Podczas pomiarów produkty lotne odprowadzano za pomocą włączonej pompy wodnej.

Kilka uzyskanych przez nas derywatogramów przedstawiają ryc. 1– 4; dane liczbowe, dotyczące termicznej dysocjacji poszczególnych azotanów lantanowców, oraz skład uzyskiwanych produktów pośrednich w odpowiednich zakresach temperatur, zawierają tabele 1—4. Masy pozostalych produktów w tyglu obliczano procentowo, przy tym dla ujednolicenia wyników — masy bezwodnych azotanów danych lantanowców przyjęto za 100%.

#### OMÓWIENIE WYNIKÓW

### Termiczna dysocjacja azotanu lantanu

Z krzywych derywatograficznych (ryc. 1) wynika, że sześciowodny azotan lantanu ogrzewany w badanych przez nas warunkach najpierw to-



pi się (pik na krzywej DTA), następnie w dalszym ciągu reakcji endotermicznej traci stopniowo wodę (dwa piki na krzywych DTA i DTG oraz lekkie załamanie obniżającej się krzywej TG), przechodząc w temp. ok.  $300^{\circ}$ C przez trójwodnik w nietrwały bezwodny azotan lantanu.

122

Wyodrębnienie bezwodnego azotanu lantanu przez zwykłe ogrzewanie substancji nie jest możliwe, co zostało już stwierdzone przez Moellera i Aftandiliana [12].

Trwalszym pośrednim produktem termicznego rozkładu badanego azotanu lantanu w naszych warunkach okazał się tlenoazotan lantanu, uzyskany w zakresie temp. 460-510°C (tab. 1).

| Zakres temp. <sup>0</sup> C | $\Delta m$ mg | Masa<br>pozost.<br>% | Skład substancji                  | Teoret. % |
|-----------------------------|---------------|----------------------|-----------------------------------|-----------|
| 20- 65                      | 0             | 131,5                | $La(NO_3)_3 \cdot 6H_2O$          | 133,2     |
| 65-108                      | 11            | 128,7                | $La(NO_3)_3 \cdot 5H_2O$          | 127,7     |
| 108-200                     | 82            | 115,2                | $La(NO_3)_3 \cdot 3H_2O$          | 116,6     |
| 200—280                     | 84            | 101,8                |                                   |           |
| 280-330                     | 4             | 101,2                |                                   |           |
| 330-370                     | 5             | 100,4                | La(NO <sub>3</sub> ) <sub>3</sub> | 100,0     |
| 370—460                     | 188           | 69,6                 |                                   |           |
| 460-510                     | 7             | 68,5                 | LaONO <sub>3</sub>                | 66,8      |
| 510-595                     | 70            | 57,3                 |                                   |           |
| 595-610                     | 0             | 57,3                 | $La_2O_3 \cdot 2LaONO_3$          | 57,0      |
| 610—630                     | 43            | 50,2                 |                                   |           |
| powyżej 630                 | 0             | 50,2                 | $La_2O_3$                         | 50,2      |

# Tab. 1. Termiczna dysocjacja azotanu lantanu $(m_0 = 800 \text{ mg})$

Dalsze ogrzewanie zasadowego azotanu lantanu prowadzi do utworzenia się produktu o składzie  $La_2O_3$ .  $2LaONO_3$  w zakresie temp. 595—610°C i od 630°C uzyskuje się trwały tlenek lantanu, który ogrzewany nawet do 1000°C nie zmienia swojej masy, jedynie ulega przemianie polimorficznej ok. 900°C.

A m b r o żij i Ł u c z n i k o w a [1] na temat dysocjacji termicznej La(NO<sub>3</sub>)<sub>3</sub>·  $6H_2O$  donieśli, że w ich warunkach pomiaru w temp.  $100^{\circ}C$  istniał czterohydrat, w  $250^{\circ}C$  — dwuhydrat, w  $425^{\circ}$  — jednohydrat i w  $440^{\circ}C$  następowało całkowite odwodnienie, z tym że ślady rozkładu azotanu już pojawiły się od  $250^{\circ}$ . W zakresie temp.  $450-600^{\circ}C$  następuje, według tych autorów, rozkład azotanu do azotynu lantanu z wydzieleniem tlenu i z kolei azotyn, wydzielając dwutlenek azotu, przekształca się w tlenek lantanu o stałej masie od  $610^{\circ}C$ .

Jak widać z porównania tych wyników z naszymi, temperatury od-

wodnienia azotanu lantanu są wyższe od przedstawionych przez nas, jedynie temperatura całkowitego rozkładu do  $La_2O_3$  pokrywa się z naszym wynikiem. Temperatury odszczepiania wód krystalizacyjnych badanej substancji zależą w znacznym stopniu od czasu i od szybkości ogrzewania substancji. Friend i Hall [7] donoszą, że uzyskali częściowe odwodnienie sześciohydratu azotanu lantanu do jednohydratu wprost przez przechowywanie tej substancji w eksykatorze nad stężonym kwasem siarkowym w ciągu jednego roku. Quill i Robey [14] uzyskali czterohydrat azotanu lantanu z sześciohydratu przez pozostawienie go w eksykatorze nad  $P_2O_5$  w ciągu 72 godz.

Zasadniczą różnicę między wynikami Ambrożego i Lucznikowej [1] oraz naszymi stanowi pośredni produkt rozkładu — azotyn lantanu, którego my w oparciu o krzywe derywatograficzne potwierdzić nie możemy.

Uzyskane przez nas pośrednie produkty o składzie LaONO<sub>3</sub> i La<sub>2</sub>O<sub>3</sub>· 2LaONO<sub>3</sub> zgadzają się z uzyskanymi przez Dutta [6], jedynie w tym przypadku istnieją różnice w zakresach trwałości tych związków. Temperatury oznaczone przez nas są wyższe od temperatur podanych przez Dutta, który np. podał, że tlenek lantanu uzyskiwał już w 400°C. Powstawanie zasadowego azotanu lantanu wykazali także Wendlandt [20] i Moeller [12]. Temperatura całkowitego przekształcenia się azotanu w tlenek lantanu oznaczona przez Kato [8] jest jeszcze wyższa od podanej przez nas.

# Termiczná dysocjacja azotanu cerawego

Pomiary derywatograficzne termicznego rozkładu sześciohydratu azotanu ceru zostały przeprowadzone z różnymi szybkościami ogrzewania próbek, które były umieszczone w zwykłym tygielku platynowym lub w tygielku złożonym z 5 płaskich talerzyków platynowych, warstwowo nałożonych na cienką rurkę platynową, wewnątrz której znajdowała się termopara. Pomimo różnych warunków pomiarów uzyskane wyniki są raczej do siebie zbliżone, stadia pośrednie zdecydowanie bardzo krótkotrwałe i z tego powodu trudne do wyjzolowania i oznaczenia ich danych.

Przytaczamy dla ilustracji derywatogram azotanu cerawego, którego próbka o masie 700 mg była umieszczona w tygielku pięciotalerzowym i ogrzewana z szybkością 1,5°C na minutę do 600°C.

W warunkach tych uzyskano najwyraźniej zaznaczone przejściowe produkty pośrednie: trójwodnik w temp. ok. 160°C po stopniowo oddawanych drobinach wody i także stopniowo zmieniających się reakcjach endotermicznych; dalsze ogrzewanie wywoływało ostre przejście w endo-



termicznej reakcji do stanu bezwodnego azotanu ceru w zakresie temp. 210—220°C.

Ryc. 2. Derywatogram  $Ce(NO_3)_3 \cdot 6H_2O$ m=700 mg; szybkość ogrzewania  $V=2^{\circ}C/min$ . czułości: TG=500 mg, DTG=1:5, DTA=1:20

Uzupełnić tu jednak należy, że w kilkunastu wykonanych przez nas pomiarach w podobnych warunkach zawsze uzyskiwałyśmy bardzo wyraźne załamanie na krzywej TG w tym zakresie temperatur, przy prawie niezmienionych pozycjach DTA i DTG, ale zawartość procentowa pozostałej w tyglu masy substancji wahała się w granicach od 93 do 97% i zawsze była niższa od 100%, co dowodzi, że w danym zakresie temperatur zaczynał się jednocześnie dalszy rozkład bezwodnego azotanu cerawego. Michalina Dąbkowska, Hanna Boksa

|                 |               | $(m_0 = 700 \text{ mg})$ |                                                        |           |  |
|-----------------|---------------|--------------------------|--------------------------------------------------------|-----------|--|
| Zakres temp. °C | $\Delta m$ mg | Masa<br>pozost.<br>%     | Skład substancji                                       | Teoret. % |  |
| 20- 40          | 0             | 133,0                    | Ce(NO <sub>3</sub> ) <sub>3</sub> · 6 H <sub>2</sub> O | 133,1     |  |
| 40— 90          | 19            | 129,4                    |                                                        |           |  |
| 90—160          | 69            | 116,3                    | Ce(NO <sub>3</sub> ) <sub>3</sub> · 3 H <sub>2</sub> O | 116,6     |  |
| 160—210         | 119           | 93,7                     |                                                        |           |  |
| 210-223         | 1             | 93,5                     | bezwodny azotan (*                                     | ?) 100,0  |  |
| 223-290         | 192           | 57,0                     |                                                        |           |  |
| 290—380         | 15            | 54,1                     |                                                        |           |  |
| 380—500         | 12            | 52,8                     | CeO <sub>2</sub>                                       | 52,8      |  |

Tab. 2. Termiczna dysocjacja azotanu cerawego  $(m_0=700 \text{ mg})$ 

Ogrzewanie azotanu cerawego powyżej 220°C wywoływało bardzo gwałtowny rozkład substancji z równoczesną reakcją utlenienia ceru do CeO<sub>2</sub> już od temp. ok. 280—300°C, zależnie od stosowanej szybkości ogrzewania.

A m brożij i Lucznikowa [1] w wyniku swoich badań doszli do wniosku, że w przypadku Ce(NO<sub>3</sub>)<sub>3</sub>· 6H<sub>2</sub>O podczas jego termicznej dysocjacji uzyskuje się w temp. 90°C trójwodnik, w 230°C odwodnioną sól, która w zakresie temp. 230—335°C rozkłada się do CeONO<sub>3</sub> i następnie do Ce<sub>2</sub>O<sub>3</sub> utleniającego się w końcowym etapie do CeO<sub>2</sub>.

Porównanie z naszymi wynikami wykazuje dużą zgodność, z wyjątkiem tworzenia się zasadowego azotanu ceru CeONO<sub>3</sub>, którego nie udało się nam uchwycić, nawet w śladowych ilościach, w żadnym z licznych pomiarów derywatograficznych. W e n d l a n d t [20] również nie uzyskał tlenoazotanu cerawego jako produktu przejściowego dysocjacji termicznej azotanu cerawego.

Cziżikow, Rabinowicz i Subbotina [3] w końcowych wnioskach swej pracy cytują o wiele niższe w stosunku do naszych wyników temperatury procesu dehydratacji azotanu cerawego oraz powstawania tlenku cerowego; są to jednak temperatury, w których pojawiają się w nieznacznych ilościach dane produkty rozpadu termicznego, ale całkowite przekształcenie substancji następuje w temperaturach wyższych. Czas ogrzewania badanej próbki nie wchodzi tutaj w rachubę, bowiem autorzy zastosowali szybkość ogrzewania o wiele większą ( $10^{\circ}C/min$ .) niż w naszych pomiarach. Cziżikow i współprac. [3] wyjaśnili, że endotermiczny efekt, zaznaczony na krzywej DTA z minimum w 260°C, związany jest z całkowitym przeobrażeniem azotanu w CeO<sub>2</sub>, co zostało potwierdzone przez nich rentgenograficznie. Pod tym względem wyniki nasze wykazują dużą zgodność.

## Termiczna dysocjacja azotanu prazeodymu

W wyniku przeprowadzonych badań derywatograficznych czterowodnego azotanu prazeodymu (ryc. 3 i tab. 3) można wnioskować, że w badanych warunkach ogrzewany  $Pr(NO_3)_3$ ·4H<sub>2</sub>O ok. 95°C topi się z częściową utratą wody krystalizacyjnej.





Trójwodnik azotanu prazeodymu tworzy się w zakresie temp. 125–130°C (lekkie załamanie na krzywej TG przy równoczesnym utrzymaniu poziomu na krzywych DTG i DTA).

W zakresie ok. 310—400°C następuje rozkład azotanu w ten sposób, że część azotanu prazeodymu przekształca się w tlenoazotan, część zaś przechodzi w tlenek, wskutek czego skład substancji można przedstawić wzorem  $2Pr(NO_3)_3$ ·  $2PrONO_2$ ·  $Pr_2O_3$ . Powyżej 450°C uzyskuje się  $Pr_6O_{11}$ jako końcowy produkt rozpadu termicznego.

|                             |               | $(m_0 = 300 \text{ mg})$ |                                                                  |           |
|-----------------------------|---------------|--------------------------|------------------------------------------------------------------|-----------|
| Zakres temp. <sup>0</sup> C | $\Delta m$ mg | Masa<br>pozostała<br>%   | Skład substancji                                                 | Teoret. % |
| 20- 65                      | 0             | 121,2                    | $Pr(NO_3)_3 \cdot 4H_2O$                                         | 122,0     |
| 65-125                      | 7             | 118,3                    |                                                                  |           |
| 125—130                     | 1             | 117,9                    | $Pr(NO_3)_3 \cdot 3H_2O$                                         | 116,5     |
| 130-250                     | 42            | 101,0                    |                                                                  |           |
| 250-310                     | 2             | 100,1                    | Pr(NO <sub>3</sub> ) <sub>3</sub>                                | 100,0     |
| 310-400                     | 65            | 73,9                     | Pr <sub>6</sub> O <sub>5</sub> (NO <sub>3</sub> ) <sub>8</sub> * | 72,7      |
| 400-450                     | 50            | 53,7                     |                                                                  |           |
| 450—600                     | 4             | 52,1                     | Pr <sub>6</sub> O <sub>11</sub>                                  | 52,07     |
|                             |               |                          |                                                                  |           |

# Tab. 3. Termiczna dysocjacja azotanu prazeodymu $(m_0=300 \text{ mg})$

\*  $2Pr(NO_3)_3 + 2PrONO_3 + Pr_2O_3 = Pr_6O_5(NO_3)_8$ .

Wyniki nasze pokrywają się w dużym stopniu z wynikami Ambrożego i Lucznikowej [1], którzy przedstawili rozkład termiczny azotanu prazeodymu zachodzący w temp. 450°C trzema równaniami chemicznymi, w wyniku których tworzą się tlenoazotan, trójtlenek i dwutlenek prazeodymu.

Uzyskany przez nas złożony produkt w zakresie temp.  $310-400^{\circ}$ C posiada skład związku  $Pr_6O_5(NO_3)_8$  otrzymanego w temp.  $320^{\circ}$ C przez S a rk a r a [15].

W badanych przez nas warunkach nie dało się natomiast uchwycić oddzielnych form zasadowego i "ponadzasadowego" azotanu prazeodymu, o których powstawaniu zasygnalizował D u t t a [5], przytaczając również zakresy trwałości tych dwóch form: 325-345°C dla PrONO<sub>3</sub> oraz 365-390°C dla Pr<sub>2</sub>O<sub>3</sub>· 2PrONO<sub>3</sub>. Krzywe derywatograficzne DTG i DTA wykazują możliwość przebiegu reakcji rozkładu w dwóch stadiach, ale wyodrębnienie tych dwóch form w naszych warunkach było niemożliwe; krzywa TG wykazuje tylko lekkie, bardzo nieznaczne wygięcie (ryc. 3).

128



Ryc. 4. Derywatogram  $Nd(NO_3)_3 \cdot 5H_2O$ m=300 mg; szybkość ogrzewania V=4,5°C/min. czułości: TG=200 mg, DTG=1:10, DTA=1:15

Termiczna dysocjacja azotanu neodymu

Pięciowodny azotan neodymu, poddany analizie termicznej, wykazuje w miarę wzrostu temperatury stopniową utratę wody i równocześnie topnienie substancji w temp. ok. 80°C; nie tworzy jakichś trwalszych hydratów pośrednich. Całkowita dehydratacja azotanu neodymu następuje ok. 270°C (częściowo rozłożony — tab. 4).

W zakresie temp. 270-300°C w badanych warunkach pomiaru utrzy-

Michalina Dąbkowska, Hanna Boksa

|                             |               | $(m_0 = 300 \text{ mg})$ |                                                       |           |  |
|-----------------------------|---------------|--------------------------|-------------------------------------------------------|-----------|--|
| Zakres temp. <sup>0</sup> C | $\Delta m$ mg | Masa<br>pozostała<br>%   | Skład substancji                                      | Teoret. % |  |
| 20- 60                      | 0             | 127,2                    | $Nd(NO_3)_3 \cdot 5 H_2O$                             | 127,3     |  |
| 60—120                      | 9             | 123,4                    | $Nd(NO_3)_3 \cdot 4H_2O$                              | 121,8     |  |
| 120-205                     | 36            | 108,1                    | $Nd(NO_3)_3 \cdot 2H_2O$                              | 110,9     |  |
| 205-270                     | 28            | 96,3                     |                                                       |           |  |
| 270-305                     | 1             | 95,8                     | Nd(NO <sub>3</sub> ) <sub>3</sub>                     | 100,0     |  |
| 305-425                     | 76            | 63,6                     | NdONO3                                                | 70,3      |  |
| 425-435                     | 2             | 62,7                     | Nd <sub>2</sub> O <sub>3</sub> · 2 NdONO <sub>3</sub> | 59,1      |  |
| 435-520                     | 21            | 53,5                     |                                                       |           |  |
| 520-580                     | 1             | 53,4                     | Nd <sub>2</sub> O <sub>3</sub> · NdONO <sub>3</sub>   | 57,4      |  |
| 580-680                     | 6             | 50,9                     |                                                       |           |  |
| powyżej 630                 | 0             | 50,9                     | $Nd_2O_3$                                             | 50,9      |  |
|                             |               |                          |                                                       |           |  |

Tab. 4. Termiczna dysocjacja azotanu neodymu  $(m_0=300 \text{ mg})$ 

muje się prawie bez zmian bezwodny azotan neodymu, który w wyższej temperaturze ulega stopniowym, ale nieuchwytnym przekształceniom poprzez tlenoazotan neodymu i  $Nd_2O_3$ ·  $2NdONO_3$  w "ponadzasadowy" azotan neodymu o składzie  $Nd_2O_3$ ·  $NdONO_3$  o nieco trwalszej postaci w zakresie 520—580°C, a ten z kolei zaczyna się rozkładać do tlenku neodymu, osiągając stałą masę powyżej 680°C.

Według Ambrożego i Lucznikowej [1] podczas dysocjacji termicznej azotanu neodymu tworzy się jako przejściowy produkt azotyn neodymu, analogicznie jak w przypadku azotanu lantanu; czego nasze pomiary nie mogą potwierdzić.

Wydaje się, że największe różnice pomiędzy wynikami poszczególnych autorów występują w przypadku omawiania dysocjacji termicznej właśnie azotanu neodymu.

A m b r o żij i L u c z n i k o w a [1] stwierdzili utrzymanie się bezwodnego azotanu neodymu jeszcze w temp.  $400^{\circ}$ C. Według D u t ta [5] rozkład następuje o wiele wcześniej — w zakresie temp.  $325-345^{\circ}$ C tworzy się NdONO<sub>3</sub> i następnie przekształca się w Nd<sub>2</sub>O<sub>3</sub>· 2NdONO<sub>3</sub>, trwały w temp.  $365-395^{\circ}$ C.

Nasze wyniki zbliżone są do wyników Dutta, również i Wendlandta [20], wykazując rozkład azotanu neodymu od ok. 300°C i tworzenie się zasadowych azotanów neodymu. Natomiast temperatura całkowitego przekształcenia się substancji w tlenek neodymu, podana przez tych autorów, naszym zdaniem, jest jednak zbyt niska. Pod tym względem zgodny jest wynik Kato [8]. Potwierdzony jest także badaniami rentgenograficznymi Cziżikowa, Rabinowicza i Subbotiny [3], którzy w swej pracy stwierdzili, że proces dehydratacji azotanu neodymu zachodzi do temp.  $300^{\circ}$ C; rentgenogramy uzyskane w temp.  $350^{\circ}$  i  $420^{\circ}$ C przez tych autorów różniły się wyraźnie od siebie; na rentgenogramie w temp.  $590^{\circ}$ C występowały jeszcze resztki linii azotanu. W  $700^{\circ}$ C autorzy ci uzyskali czysty tlenek Nd<sub>2</sub>O<sub>3</sub>.

Pragniemy jednak dodać, że wnioski samych autorów przedstawione w ich pracy, dotyczące zakresu temperatury 480-550°C są inne, mianowicie Cziżikow i współprac. [3] tłumaczą zaobserwowany w tym zakresie efekt endotermiczny procesem tylko przekształcania się siatki krystalicznej Nd<sub>2</sub>O<sub>3</sub>, który powstał już wcześniej w temperaturze nieco wyższej od 400°C. Ci sami autorzy przedstawili w swojej publikacji także wynik analizy chemicznej produktu uzyskanego w 420°C (75,7% Nd oraz 0,49% N). Jednak, naszym zdaniem, pomimo tego, że zawartość procentowa azotu w danym produkcie jest bardzo mała, w tej temperaturze jednak nie wytworzył się jeszcze Nd<sub>2</sub>O<sub>3</sub>, w którym procent Nd powinien wynosić przecież około 86%. Badany produkt jest bardziej zbliżony swoim składem procentowym do Nd2O3. NdONO3, wykazanego w naszych badaniach (77,8% Nd i 2,5% N), tym bardziej że sami badacze rentgenogramów stwierdzili, że w 420°C jeszcze obserwowali linie NO3. Drugim dowodem potwierdzenia naszej tezy jest fakt, że podczas dysocjacji termicznej powyżej 480°C występuje równocześnie z efektem endotermicznym także i ko-. lejny ubytek masy badanej substancji, co można łatwo zaobserwować na jednocześnie wykreślonych krzywych derywatograficznych DTA, DTG i TG, którymi nie dysponowali nasi poprzednicy.

#### PIŚMIENNICTWO

- Амброжий М. Н., Лучникова Е. Ф.: [в:] Труды II совещения по термохимии в г. 1957, Москва 1961, стр. 304—308.
- 2. Berlin N.: Svenska Akad. Handl. 1835, 212; [cyt.] Vickery [19].
- Чижиков Д. М., Рабинович Б. Н., Субботина Е. А.: Ж. неорг. хим. 10, 2527—2534 (1965).
- 4. Debray H.: Compt. rend. 96, 828 (1883).
- 5. Dutta N. K.: Science and Culture 9, 166-167 (1943).
- Dutta N. K.: J. Indian Chem. Soc. 22, 97-101 (1945); [cyt.] Chem. Abstr. 40, 33537 (1946).
- 7. Friend J. N., Hall D. A.: J. Chem. Soc. 1938, 1920-1921.
- 8. Kato T.: J. Chem. Soc. Japan 52, 774-777 (1931); [cyt.] Pascal [13] s. 960.
- 9. Marsh J. K.: J. Chem. Soc. 1941, 561-562.
- 10. Marsh J. K.: J. Chem. Soc. 1946, 17-20.
- 11. Marsh J. K .: J. Chem. Soc. 1947, 1084-1086.

#### Michalina Dąbkowska, Hanna Boksa

12. Moeller T., Aftandilian V. D.: J. Am. Chem. Soc. 76, 5249-5250 (1954).

- 13. Pascal P.: Noveau Traité de Chimie Minérale. T. VII, Paris 1959.
- 14. Quill L., Robey R. F.: J. Am. Chem. Soc. 59, 2591 (1937).
- Sarkar N.: Bull. Soc. Chim. 42, 185 (1927); [cyt.] Trombe F. i współprac. [17] s. 967.
- 16. Somiya T., Shizo H.: J. Soc. Chem. Ind. Japan Suppl. Binding 34, 11, 459, 461 (1931); [cyt.] Pascal P. [13] s. 960.
- Trombe F., Loriers J., Gaume-Mahn F., Henry La Blanchetais Ch.: Éléments de terres rares [w:] Pascal P. [17] t. VII, cz. II, ss. 568-975.
- 18. Vickery R. C.: J. Chem. Soc. 1949, 2508.
- 19. Vickery R. C.: Chemistry of Lanthanons, London 1953.
- 20. Wendlandt W. W.: Anal. Chim. Acta 15, 435 (1956).

### PESIOME

Приводятся результаты исследований по термическому разложению гидратированных легких лантанидов: La(NO<sub>3</sub>)<sub>3</sub> · 6H<sub>2</sub>O, Ce(NO<sub>3</sub>)<sub>3</sub> · 6H<sub>2</sub>O, Pr(NO<sub>3</sub>)<sub>3</sub> · 4 H<sub>2</sub>O, Nd(NO<sub>3</sub>)<sub>3</sub> · 5 H<sub>2</sub>O.

Исследования проводились при помощи дериватографа типа OD 102, системы F. Paulik — J. Paulik — L. Erdey.

Полученные результаты сравнивались с соответствующими данными других авторов, занимающихся исследованиями в этой области.

#### SUMMARY

The results of the research on the thermal dissociation of hydrated nitrates of light lanthanides:  $La(NO_3)_3 \cdot 6H_2O$ ,  $Ce(NO_3)_3 \cdot 6H_2O$ ,  $Pr(NO_3)_3 \cdot 4H_2O$  and  $Nd(NO_3)_3 \cdot 5H_2O$ , were presented in the paper. The research was carried out with the use of a OD 102 type derivatograph of F. Paulik's — J. Paulik's — L. Erdey's system.

The obtained results were discussed in comparison with corresponding data of other authors in this field.