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ABSTRACT. In 2015, Goebel and Bolibok defined the initial trend coefficient
of a mapping and the class of initially nonexpansive mappings. They proved
that the fixed point property for nonexpansive mappings implies the fixed
point property for initially nonexpansive mappings. We generalize the above
concepts and prove an analogous fixed point theorem. We also study the
initial trend coefficient more deeply.

1. Introduction. Let X be a Banach space, C' be a nonempty subset of
X, and T be a mapping from C' into itself. The mapping T is known as
k-Lipschitz (k > 0) if

[Tz — Tyl <k |z —yl

for every x, y € C'. The minimal k, for which the above condition holds,
is called the Lipschitz constant of 7" and is denoted by &k (T). If & (T) < 1
(resp. k (T) < 1), then T is said to be a contraction (resp. a nonexpansive
mapping). By L¢ (k) (or £ (k) in short) we denote the set of all k-Lipschitz
mappings from C' into itself. The mapping T is Lipschitz if it is k-Lipschitz
for some k.

Given vectors u,v € X and z,y € C such that z # y, we define functions
Euv:R—=>X,Gyyp:R—1[0,00), g4 : R—[0,00) and 1), : R — [0, 00)
by the formulas

Ey v (t)=(1—1t)u+to,
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Guo () = [ EBu, o O] = [[(1 = ) u + o],
P,y (1) :foy,Tmey(): 11 =1) (z —y) +t(Te =Ty,

d

- P 0=y +i(Te =Ty
o = yll = yll

In [1] (see also [3]) the following coefficients were defined
(1.1) (T) = sup {0192,y (0) : @,y € C, x #y},
and
(12) T (T) = Sup {a*d}x,y (1) T, Y € 07 €T 7& y}a

where 01 and O_ denote one-sided derivatives. The expression 0414, 4 (0)
can be seen as the directional right derivative of the norm at the point x —y
along the vector Tz — Ty — (x — y). The coefficients ¢ (T') and 7 (T) are
known as the initial and the final trend constants of T', respectively. The
mapping 7T is said to be an initial contraction if ¢(7") < 0, and initially
nonexpansive if ¢ (T) < 0.

We extend the above notion in the following way. The trend constant
(more precisely the right trend constant) of the mapping T" at a point o € R
is given by the formula

Lo (T) = Sup{6+¢:r,y (a) T,y € 07 x 7& y} .
We say that T : C — C is a pre-initial contraction (resp. pre-initially
nonexpansive) if it is a k-Lipschitz mapping, where k£ > 1, and there exists
o € (74,0] such that 1o (T') < 0 (resp. 1o (T) < 0). Note that the initial
trend coefficient of T' is equal to ¢y (7).
The mapping T is said to be firmly nonexpansive if for all z,y € C the
function ¢, , (t) is nonincreasing on the interval [0,1]. The mapping T is

firmly nonexpansive if and only if 7 (7") < 0.
The fixed point set for T is defined as

FixI'={zx e C : Te =x}.
2. General trend of mappings. In this section, we generalize results
obtained in [1]. Let u, v € X. The function ¢t — G, (t) is convex, so it is

a semi-differentiable function at every real number ¢. Assume that a < .
The following inequalities are obvious

O_Gy,v (@) SO_Gy,v (B),
8+Gu,v( )< aJrGu v(ﬁ)a
0-Gu v (a) <0.Gy v ().

b

Claim 2.1. Let u, v € X, a, b, t; € R, where a < b, and t3 = (1 —t1) a+t1b.
We have

(2.1) O0-G (1—ayutav, (1=byustby (t1) = (b —a) O-Gy o (t2) .
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Proof. Putting w (s) = (1 — s) u + sv, where s € R, we obtain

a*C;(l—a)u—‘rav, (1-b)u+bv (tl) = a*Gw((l),w(b) (tl)
[(L—t1 —h)w(a) + (t1 +h)w (B)|| — [[(1 = t1) w(a) + trw (b)]|

= 3
_ (b a) tim MOt = b= @Jut (t2+ (b= @)l = (1 = to)u + tav]
h—0— h(b—a)

= (b—0a)0_Gu,v (t2) -
O

Let C be a nonempty closed convex and bounded subset of X. Assume
that T' : C' — C is k-Lipschitz for £ > 1. Let a € (k_—}l, ] Choose A > k
such that A;—ll < «. Given z € C, consider the equation

1 1
(2.2) Yy = <1 — A) x+ ZTy.

Since the right hand side is a %—Lipschitz mapping and % < 1, this equation
has a unique solution. Denoting this solution by Fx, we obtain the function
F : C — C such that

(2.3) Fx = (1_il>x+ilTFx'
Rearranging the above equality, we obtain

(2.4) z= %Fm + A;_llTFx,
and

(2.5) TFx=AFz — (A—1)z.
Since

1 1
IFa = Full < (1= 3 ) o —oll+ 5 ITFa = TFy]

1 k
<(1-=)|z- Z\Fz - F
< (1= ) le =l + 5§ 1Pe = Ful.

Fisa ﬁ—Lipschitz mapping. For every z € C we define
(2.6) Fox=(1—a)Fz+ oTFu.
Observe that F,z belongs to the line segment [z, Fx], which is a subset of
C, so F, is a mapping from C into itself.

Let zy € C. If Fxg = x9, then from (2.3) we obtain Txy = zg. Con-
versely, if Txg = xg, then

1 1
To = (1 — A> xo + ZTCL‘Q
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This is an equality of the (2.2) form. We know that the equality (2.2) has
a unique solution, so Fzg = xg.
Assume that F,zg = xg. It is equivalent to

(1 —a)Fzy+ oTFxy = xp.
Applying the equality TFxg = AFzy — (A — 1) xg, we obtain
(1 —Oz)Fxo—i-Oz(AF.%o - (A— 1)1‘0) = Xg,

which is equivalent to Fxg = zg. We have proved that FixF, = FixF =
FixT.
Given distinct x, y € C, we have

A -1

and

1
- 2 Fy+ TRy
V=gt tattY

Observe that Fx # Fy. Putting a = A_—jl, b=ua t1 =1, t3 = «,
u= Fx — Fy, and v =TFx — TFy in the equality (2.1), we obtain

0-— Gm—y, Fox—Fuoy (1)

|z =yl
_ 0-GUa)(Fe—Fy) ta(@Fa—TFy), 1 -b)(Fa—Fy)tb(TFa—TFy) (1)
|z =yl
_ <a+ 1 > 0_GFy—Fy TF2—TFy (@)
A-1 lz —yll
_ <a+ 1 ) [Fz — Fy|| 0-Gra—ry,ra—1Fy ()
A-1) |z—yl |Fz — Fy||
1 A—-1 0_pz 4 ()
< ! :
1 A—1 Oy Pa,y (@)
Therefore
T (Fa) — Sup{a—Gl‘_nyaI—Fay (]‘) . :1:, y c C, T # y}
|z —yll
1 A—-1 0492,y (@)
< S e Y

1 A—-1
_<a+A—1>A—kLa(T)'
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As a special case, if @ = 0, we obtain

O0_Gy—y Fro— 1
T(F):sup{ H:F_Oyfoy():x,yec,x#y}
1 0+¢z,y (0) 1
< — I A T
_A_ksup{ Tz gl v, yeCatyr=——0n(l),

and if A = k+ 1, then 7 (F) < +(T). From the above consideration, we
obtain the following corollaries.

Corollary 2.2. If T : C — C is pre-initially nonexpansive, then there
erists o € (k_ll,O] such that the mapping F, given by (2.6) is firmly non-
exTpansive.

We say that a subset C' C X has the fixed point property for nonexpansive
mappings if every nonexpansive mapping T : C' — C has a fixed point.
The space X has the fixed point property for nonexpansive mappings if
all nonempty closed convex and bounded subsets of X have this property.
Similarly we define the fixed point properties for pre-initially nonexpansive
mappings.

Corollary 2.3. If a nonempty closed convexr and bounded set C C X has
the fized point property for nmonexpansive mappings, then it has the fized
point property for pre-initially nonexpansive mappings.

3. Formulas for trend constants. In this section, we provide a few for-
mulas for trend constants of a mapping T : C' — C', where C' is a nonempty
subset of a Banach space X. Let us recall some basic facts about the sub-
differential of the norm. Let z,y € X. The function R 3 ¢t — ||z + ty| is
convex, so the following limits exist

I ] el I

0 =1
el ) = i 12
|z + tyl| — [[=||
Nzl (y) = lim —F——.
t—0 t

The subdifferential of the norm is defined by
Ozl ={z" € X* : Vyex 0 |lzl| (y) < 2™ (y) < Oy [zl ()} -
We have also the following formulas
dlle = {a* € X* ¢ a* (2) = [all, "l =1} ifx #£0,
Oy [lzf| (y) = max {z” (y) : 2" € 0|z},
|zl (y) = min{z" (y) = 2" € |=|]}.

Claim 3.1. Let u : [a,b] — X be a differentiable function at to € [a, b]. Then
the function v (¢) = ||u (¢)|], t € [a, ] is differentiable on the left at ty € (a, b]
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and on the right at ¢y € [a,b). Moreover, we have the following chain rules
(3.1) 047(to) = 0+ [[u(to) |l (v (t0)) = max{z™ (u'(to)) : 2™ € 9 |ulto)ll},
(3.2) 0_~(to) = O_ |Ju(to)| (v/(to)) = min {a:* (u’ (to)) szt e du (t0)||} )

For further details about subdifferentials of norms, see for example [2].
Let u(t)=(1—1t)(z —y) +t(Tx — Ty) and « € R. Then, by (3.1),

D402,y (o) =max {z* (v (a)) : 2" € D |u(a)|}
= max{z* (Tex =Ty — (z —y)) : 2" € 0u(a)}

for every a € R. As a consequence, we obtain a new formula for the trend
constant of T" at a.

Corollary 3.2. For every o € R,
(Tm—Ty—(w—y))}

:E*
ta (1) = S“p{ R

where the supremum is taken over all distinct vectors x, y € C and func-
tionals x* € 0||(1 — a) (x —y) + a(Tx — Ty)||. In case of the initial trend
coefficient, this formula takes the following form

x* (Tz —Ty)
(3.3) ¢(T) =sup {
|z =yl
Theorem 3.3. Let z, y € C' be distinct vectors, and o € R. If
Ef € 0||Ey—y, mo—1y (t)]|

—1:x,yeC,x#y,x*e@Hw—yH}.

for every t > «, then
(3.4) Osny (@) = lim B} (Ta Ty — (@ —y)).
t—at

Proof. Let ty) > t; >ty = o, and let E (t) = Ey—y, 170—1y (t) for t > a. We
obtain

1B @l = 1B ()] _ 1B @I = || B [L1E ()]

th —ta B t1 — 1o
(3.5) C B (B(0) - B (B() _ . (E(tl)—E(tg)>
- b=t - t1 —t2
=B}, (Ta — Ty — (z —y))
and
Ef (Tx — Ty — (¢ —y)) = E}, (W)
(3.6) _ B (E(t)) — B (E (1))

lo—t1
< EG) =B @)
- to — t1 '
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The equality (3.4) follows from the above inequalities and the following

equalities
O IE@I-IEG) L B @) - B 0]

ti—at t1 — to to—at t;—at to —t1

= 8—#-90;10,2/ (Oz) .
O

From the above theorem we obtain another formula for the trend constant
of the mapping 1" at .

Corollary 3.4. If Ef € 0||Ey—y 1o—1y (t)| for t > «, then

Lo (T) = sup {hmt—>a+ Et (|f’T.’L‘ B Yij B (SU B y))
r—y

In [1] the formula for the initial trend coefficient for Hilbert spaces is
given. Using the equality (3.3), we can calculate formulas for this coefficient
in some spaces. Here we will deal with the space C'la,b]. In order to
prove such a result, we can use the characterization of the subdifferential of
the norm in C'[a,b] given in [2]. Note that in the literature, one can find
similar characterizations for some other spaces (see for example [2] and [4]).
Another approach is to apply a formula for the directional right derivative
of the norm. Such a formula for C [a,b] is given in [5]. Using one of the
above methods, we obtain the following claim.

:x,yeC’,aﬁ;«éy}.

Claim 3.5. Let C be a nonempty subset of the space C [a, b], and let M (z) =
{t € [a,b] : |z2(t)] = |2|}, z € Cla,b]. Given a mapping T : C — C,
67 =y { OOy )

where the supremum is taken over all distinct vectors z, y € C' and all s in
Mo (z —y).

Example 3.6. In the two-dimensional Euclidean plane R? we consider the
k-Lipschitz mapping

Ty (x,y) =k (xcos S —ysin B, xsin f + ycos 3),

where £ > 1, 5 € R. One can easily compute the initial trend constant of
T} g and the trend constant at o > k_—_ll:

(T (2,9)) = keos § — 1,
a—14 (1 —2a)kcosf + ak?

ta (Th,p (2,y)) = - .

\/(1 —a)"+2(1 - a)akcosf + a?k?

Taking £k = 5, 8 = arccos%, and a = —%, we obtain ¢ (T 3) = 3, and

to (Ti,3) = 0. Therefore, in this case T} g (z,y) is pre-initially nonexpansive
but isn’t initially nonexpansive.
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4. Remarks about the initial trend coefficient. We say that the norm
||-]| of a Banach space X is Gateaux differentiable at a point x € X if for
every h € X the limit

Ll o] o]

t—0 t
exists. If, moreover, this limit is uniform for x, h € Sx, then we say that the
norm is uniformly Fréchet differentiable. We say that the norm is Gateaux
differentiable if it is Gateaux differentiable at every point x € Sx.

Theorem 4.1. Let X be a Banach space whose norm is uniformly Fréchet
differentiable and C' be a nonempty and convex subset of X. If T : C — C
is a Lipschitz mapping such that  (T') < 0, then there exists 0 € (0, 1) such
that the mapping (1 —to) I + toT is a contraction, where I is the identity
on C and ty € (0, 0).

Proof. Assume that 7' € L (k). Let ¢ = LD Gince the norm of X is

2(k+1)"
uniformly Fréchet differentiable, there exists 7 > 0 such that
th|| —
(4.1) A T

for every t € (0, 7) and z, h € Sx, where z* € 9]|z|. Note that 0|z is
a one-element set, because the norm of X is Gateaux differentiable. We
choose tg € (0, HLk)’ and define the mapping T3, : C' = C by the formula
Tiox = (1 —to) x + toT .

Given distinct elements x, y € C, we have x — y # Tx — Ty. Otherwise,
g,y (t) =1 for t € [0,1], and ¢ (T') > 0414, (0) = 0, which contradicts our
assumption. Put u =z —y, and v = T'x — T'y. Note that

tollo—ull _ to(ITz — Ty|| + [l — yl)

§t0(1+k‘)<7’.

Jul -~ [z =y
Using this inequality and putting z = ﬁ, h= = t= % in (4.1),
we obtain
[Thox = Thoyll = [lu+to (v — v
o+ ]l
[[ul flwll [lv—ull flwll

= tolv—ull + [lull

tollv—ul|
[

o UT(E“* (i) +1a
< <to ('L(Q Ny (W)) + 1) Jul
e )
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u

[l

where z* € 0 HHUTHH Since 8)

) = 0||z — y||, applying Corollary 3.2, we

get
v (T
Tigz = Tiggl < (10 (5L +2@) +1) o -
(T t()
= (145 - .
Since 1 + 4D o 1, the mapping T}, is a contraction. O
2 0

Let C be a nonempty subset of a Banach space X. Consider a Lipschitz
mapping T' : C — C. Let p(t) = sup{¢,, 4 (t) : 2,y € C,z #y}, t € R.
The function p is convex. We define the coefficient

K (T) = 04 (0),
which is similar to the initial trend coefficient (1.1), but the derivative and
the supremum are swapped. This coefficient is greater than or equal to
the initial trend coefficient of 7. Indeed, given ¢ > 0, there exist distinct
elements x,y € C such that

J(T) < lim Y21

= +eée
t—0+ t ’

and therefore

T t—0t t

o B8O
t—0+ t

=k(T) +e.

+e

Since € > 0 is arbitrary, ¢(T') < x(T). In the linear case we have the
equality.

Theorem 4.2. For any linear bounded mappingT : X — X, +(T) = (T).
Proof. Observe that, by the assumptions of the theorem,
u(t) =sup {[|(1 — t) 2 + ¢Ta] : z € Sx},
and according to Corollary 3.2,
t(T)=sup{z* (Tz)—1:z€Sx,z" €d|z|}.
In case of T' = 0, we have ¢(T') = k(T) = —1. Now we can assume that

T #0. Let e >0 and tg € (O, min {4IIT||(1€+HTH)’ 1+iT|I }) There exists an
element zy € Sx such that

K (T) < pto) = p(0) _ |I(1 = to) w0 + toTwo| + 5 —
< - < i

(4.2)
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Let w = (1 —to) xo + toTxo and u* € I ||u|. Then

[ull = [|(1 = to) zol| — [[toToll =1 —to (1+[[T']]) > 0.

We obtain
* —_— —_
H(T) < u ((1 t(]).%'o +t0T$0) 1 E
to 2
(1 — tg) u* (SCQ) + t()u* (T:UQ) -1 9
= + —
to 2
% €
<u* (Tzo)— 1+ 3

T T
:u*< u>—1+u* <Tu—u>+u*(T:U0—Tu)+;

[l [l

o (o) -em

S
< o (T) + Tl = 2]+t TN A+ 1T + 5

g
< o(T) + N7 lw = zoll + o [ TN A+ T + 5

9
<o (T)+ 20 [T (4TI + 5

<u(T) +e.

Since ¢ is an arbitrary positive number, x (T') < ¢ (7).

u e
u— |+ T [[to (o — Txo)| + 5
[ H 2

O

The next claim gives us the characterization of mappings such that x (7') <
0. Since for a linear bounded self-mappings T' we have ¢ (T') = k(T), this

claim also applies to the linear initial contractions.

Claim 4.3. Let T : C — C be such that «(7T) < 0. Then there exist a
contraction R : C — C and § > 0 such that Tx = %Ra:Jr (1 — %) x for every

zel.
Proof. There exists 6 > 0 such that
t)—1 T
BOZ1_ ] < D)

for t € (0, 9]. Therefore,

For every z,y € C, x # y we get
|1 —0)(z —y)+6(Tz —Ty)|

[z = yll - 2
Putting Rz = (1 — §) x + 0Tz for x € C, we obtain

wk(T)d
||RscRy||s<1+ D )uxyn,

2
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where 1 + @ < 1, so R is a contraction. ]

Let C be a subset of the space X = C'[0,1]. We define the Hammerstein
operator T : C' — X by the following formula

1
(T) (s):/k‘(s, B u)d, selo, 1],
0

where k, f are continuous functions on [0,1]%, ¢ — f (to, t) is a ks (to)-
Lipschitz mapping on the interval [0, 1], and the function &y : [0, 1] — [0, 00)
is Lebesgue integrable.

Claim 4.4. If C = Bx or C = X, then for the above mapping T', + (T) =
k(T) — 1.

Proof. The inequality ¢ (T) < k(T') — 1 is true in general (see [1]), so it is
enough to prove the opposite inequality.

Let U > max {|k (s, t)| : s, t €[0,1]}. Given € > 0, there exist distinct
elements x, y € C such that

[Tz — Ty||

g
>k(T)— —.
|z —yll 2

For z € X we put My (z) = {t € [a,b] : |z(t)] = ||z]|}. We choose an arbi-
trary so € Mo (z —y) and s € [0,1]. By the absolute continuity of the
Lebesgue integral there exists 6 > 0 such that [, k¢ (t)du(t) < ;7 if
p(A) < 26. For each h € C'[0,1] and v € R we define F}, , € C[0,1]

as follows

h(t), tef0, 1\ (s—4, s+9),
Fro(t) =4 = (4 _g) 4o, te(s—0 N[0, 1],
hst)=v (4 — ) 10, te s, s+6)NJ0,1].
0

For i € {0,1} we define functions z;, y; € C'[0, 1] by the formulas
To (t) = F w(so) (1) 5
Yo (1) = Fy,y(so) (1) 5
21 (t) = Fiy y(s0) (1)

n (t) = Fy,I(So) (t).
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Setting L = max {0,s — 0} and R = min {1, s + ¢}, we obtain

[(Tz; = Tys) — (Tx — Ty)) ()]

R
/ B (s, 8) ((F (6 2 (0) — £ (6 2 (D)) = (F (6 ws (1) — F (£, y (1)) dt
L

R
< [ o 017 i (60) = £ s O]+ 15 0, 6) = £ 6, 0)])
L

< / Uk (t) (|zi (8) = yi O] + |2 (8) =y ()]) dpa (2)

(L, R]

< / Uk () (las — il + e — gl du (0
[L, R]
— ol —yl)U / by (1) d (1)
[L, R]
el -yl
- 2
Since s € My (x; — y;) for i € {0,1}, by the equality (3.3),

((m — (Ty:) ( ) sgn (z; (s) — yi (5)) — 1
(=

| \

‘xz yz“

(Tz;) (s) — (Tys) ( i
H:r —l ) (—1)"sen ( (s0) — y (s0)) — 1

(T2)(5) = (T ()Y o) = &
> (VL= E ) 1y o (s0) = () = 5~ 1.

Because i € {0, 1} is arbitrary, we obtain

(T2)(5) = (T) ()] ¢,
[ =yl 2

L (T) >

The number s € [0, 1] is also arbitrary, thus

Tz - Tyl <
oyl 2 ZFIDmet

o (T) >

and finally we apply the fact that € > 0 is arbitrary, therefore ¢ (7)) >
k(T) — 1. 0

At the end, we will study some examples from [1].
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Example 4.5. Let C = [a,bland f : C — C, f € L(k), k > 1. Tt is known

that
) =sup { FOZIO) oy et o) -1
The Lipschitz constant of f is given by
k(f):sup{‘fW‘ cx,y € la,b], x #y o,

so the initial trend coefficient of f can be smaller than k(f) — 1. Let
€(0,1),b>x>y>aand g(t) = ?c_Tof (t) + kJ,gj‘r‘Ilt, t € [a,b]. Note
that g : C' = C. We have

22—« k+a-—1

g(x)—g(y)—k+1(f(x)—f(y)) F (x—y)
2 -« k+a-—1
_k_i_l(b(f)"‘l)(x—y)‘f‘ki_i_l(x—y)
2 —«
(1455 @)
and
9@ -9 ) 2 T (W) -y + T (g
=(a—1)(z —y)

Therefore, g € E(max{l + Z_TOI‘L (f),1— a}). Thus f is the following affine
combination of g and the identity:
E+1 k+a—1
t) = t) — ————
Fy =Sty - BT
and g is a nonexpansive mapping (resp. a contraction) provided that ¢ (f) <
0 (resp. ¢(f) < 0).

Example 4.6. Let X = Ca,b], » >0 and B(0,r) = {x € X : |jz| <r}.
Assume that the function f : [—r,r] — [—r,7] is of class £ (k). It is known
that the composition operator F' : B (0,7) — B (0,7) defined by

Fr(t) = f(x(t))
has the initial trend coefficient given by
) = { L0
=Yy
We define o and ¢ as in the previous example. Consider the composition
operator G : B(0,7) — B (0,r) defined by

2 — k -1
— @)

t

:x,ye[a,b],x;&y}—l.

x(t).
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Let z,y € B(0,r), s € [a,b]. By symmetry, we can assume that z (s) > y (s).
We obtain

G (5) = Gy () = T (F (2 () = F () + "+ (2 ()~ y ()
< 2O F) + 1)) — yls) + o (als) — ()
< (142250 el

and
2 —« k+a—1

Gu(s) =Gy (s) 2 7= (k) (@ (s) —y(s)) +

=(a=1)(z(s) —y(s))
> (a=1) [z -yl

Thus, G € E(max{l—i—%b (F),1—a}) and F is an affine combination of G
and the identity, where G is a nonexpansive mapping (resp. a contraction)
provided that ¢ (F) <0 (resp. ¢ (F') < 0).
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