LUBLIN-POLONIA

Department of Mashematics
 Indian Institute of Technology.

S. PONNUSAMY

On Bazilevic Functions

O funkcjach Barilevica

Abstract

The author uses the notation of Differential Subordinations to obtain same new sufficient conditions for a normalized regular function, in the unit dise $U=\{z:|z|<1\}$ to be dose to canvex (univalent) in U. Further sume of our results generalize and inmprove the results obtained in different directions by author and others.

1. Introduction. Let f and g be regular in the unit $\operatorname{disc} U=\{z:|z|<1\}$. We say that f is subordinate to g, written $f<g$ or $f(z)<g(z)$, if there exists a function orgular in U which satisfies $m(0)=0,|w(z)|<1$ and $f(z)=g(x(z))$. If g is univalent in U then $f<g$ if and only if $f(0)=g(0)$ and $f(U) \subset g(U)$.

We use \boldsymbol{H} to represent the class of all (normalized) functions $f(z):=z+a_{2} z^{2}+\cdots$ regular in U. Suppose that the function f is regular in U. The function f, with $f^{\prime}(0) \neq 0$ is convex (univalent) in U if and only if Re $\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right]>0, z \in U$. The function $f, f^{\prime}(0) \neq 0$ and $f(0)=0$, is starlike (univalent) in U if and only if $\operatorname{Re}\left\{z f^{\prime}(z) / f(z) \mid>0, z \in U\right.$. The function f is close to convex (univalent) in U if and only if there is a starlike function g such that Refz $\left.f^{\prime}(z) / g(z)\right\}>0, z \in U$. The function f is λ-spirarlike of order ρ in U if and only if $\operatorname{Re}\left[e^{\lambda \lambda} z f^{\prime}(z) / f(z) \mid>\rho \cos \lambda\right.$, $z \in U$ for some real λ such that $|\lambda|<\pi / 2$ and $\rho<1$. We denote the class of such functions by $S^{\lambda}(\rho)$. If $0 \leq \rho<$, then $S^{\lambda}(\rho)$ is the well-known subclass of the class of univalent functions.

A function $f \in \boldsymbol{B}$ is said to be in the class $M(\mu ; h)$ if and only if

$$
\begin{equation*}
z f^{\prime}(z) f^{\mu-1}(z) / g^{\prime \prime}(z)<h(z), \quad z \in U \tag{1}
\end{equation*}
$$

for some $\mu(\mu>0)$, where $g \in E$ and h convex in U with $h(0)=1$.
Furthermore we define $B(\mu, \beta)$ to be the class of functions in $M(\mu ; h)$ ior which $h(z)=\left(1+(1-2,)^{2}\right) /(1-z)$ and g starlike in U. The class $B(\mu, \beta)$ for $0 \leq \beta<1$ is the subclass of Barilevic functions of type $\mu(1,9,14)$.

All of the inequalities invalving functions of z, such as (1), hold uniformly in U. So the condition "for all z in $U^{\prime \prime}$ will be omitted in the remainder of the paper since it is understood to hold.

The aim of this paper is to give some sufficient conditions for a function $f \in B$ to be close to convex in U and to improve and generalize some of the well-known results concerning Bavilevic functions etc.
2. Preliminaries. For the proof of our results we need the following Lemmas

Lemma A. Let p be regular in U and q be regular in \bar{U} with $p(0)=q(0)$. If p is not subordinate to q then there exist points $z_{0} \in U$ and $s_{0} \in \sigma U$, and an $m \geq 1$ for which $p\left(|z|<\left|z_{0}\right|\right) \subset q(U)$,

$$
\begin{equation*}
p\left(z_{0}\right)=q\left(s_{0}\right) \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{0} p^{\prime}\left(z_{0}\right)=s_{0} q^{\prime}\left(s_{0}\right) \tag{b}
\end{equation*}
$$

Lemma B. Let Ω be a set in the complex plane C. Suppose that the function ψ : $C^{2} \times U \rightarrow C$ satisfies the condition $\psi\left(i u_{2}, v_{1} ; z\right) \notin \Omega$, for all real $u_{2}, v_{1} \leq 2^{-1}\left(1+u_{2}^{2}\right)$ and all $z \in U$.

If p is regular in U, with $p(0)=1$ and $\phi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$, when $z \in U$, then Re $P(z)>0$ in U.

More general form of the above lemma may be found in [6].
In the case when $\phi(v, v ; z)=v+v \gamma^{-1}(\gamma \neq 0$, Re $\gamma \geq 0)$, it $[3,6]$ is known that if p is regular in U, h is convex in U and $h(0)=p(0)$ then the best subordination relation

$$
\begin{equation*}
p(z)+z p^{\prime}(z) \gamma^{-1}<h(z) \text { implies } p(z)<q(z)<h(z), \tag{2}
\end{equation*}
$$

holds, where $q(z) \equiv \gamma z^{-\gamma} \int_{0}^{2} h(t) t^{\gamma-1} d t$. Further in [15], for $\phi(z, v ; z)=0$, it is shown that if p is regular in U, and ϕ is starike in U then

$$
\begin{equation*}
z p^{\prime}(z)<\phi(z) \text { implies } p(z)<q_{1}(z)<\phi(z), \tag{3}
\end{equation*}
$$

is true, where $q_{1}(z) \equiv \int_{0}^{2} \phi(t) t^{-1} d t$.

3. Main results.

Lemma 1. Lee h be convex function in U, with $h(0)=c$ and let $r(z)$ be regular function in U with $\operatorname{Re}\{r(z)\}>0$. If $p(z)=c+p_{1} z+\cdots$ is regular in U; and satisfies the differential subordination

$$
\begin{equation*}
p(z)+z p^{\prime}(z)(r(z))<h(z), \tag{4}
\end{equation*}
$$

then

$$
p(z)<h(z) .
$$

Proof: Let us first suppose that all the functions under consideration are regular in the closed disc \bar{U}. For that we shall first show that if $p(z)$ is not subordinate to $h(z)$, then there is a $z_{0}, z_{0} \in U$, such that

$$
\begin{equation*}
p\left(z_{0}\right)+z_{0} p^{\prime}\left(z_{0}\right)\left(r\left(z_{0}\right)\right) \notin h(U) \tag{5}
\end{equation*}
$$

which would contradict the hypothesis.
If $p(s)$ is not subordinate to $h(z)$, then, by Lemma A, we conclude that there are $z_{0} \in U, s_{0} \in \sigma U$, and $m, m \geq 1$, such that

$$
\begin{equation*}
p\left(z_{0}\right)+z_{0} p^{\prime}\left(z_{0}\right) r\left(z_{0}\right)=h\left(s_{0}\right)+m_{s_{0}} h^{\prime}\left(s_{0}\right) r\left(z_{0}\right) \tag{6}
\end{equation*}
$$

Now Re\{r(z)\}>0 in U implies $|\arg (r(z))|<\pi / 2$, and $s_{0} h^{\prime}\left(s_{0}\right)$ is in the direction of the outer normal to the convex domain $h(U)$, so that the right-hand member of (6) is a complex number ontside $h(U)$, that is, (5) holds. Bocause this contradicts the hypothesis namely (4), we conclude that $p(z)<h(z)$, provided all functions under consideration are regular in U.

To remove this restriction, we need but replace $p(z)$ by $p_{p}(z)=p(p z)$ and $h(z)$ by $h_{p}(z)=h(p z), 0<p<1$. All the hypotheris of the theorem are satisfied, and we conclude that $p_{0}(z) \prec h_{p}(s)$ for each, $0<p<1$. By letting $p \rightarrow 1^{-}$, we obtain $p(x)<h(x)$ in U.

Lemma 2. Let F be regular function in U with $\operatorname{Re}\{r(z)\}>\delta>0$ for $z \in U$. If p is regular in U with $p(0)=1, \beta<1$ and

$$
\begin{equation*}
\left.\operatorname{Re} p(z)+z p^{\prime}(z)(r(z))\right\}>\beta, \tag{7}
\end{equation*}
$$

then

$$
\operatorname{Re} p(z)>\frac{2 \beta+\delta}{2+\delta}
$$

Proof. Let $\beta_{1}=(2 \beta+\delta) /(2+\delta), \psi(x, v ; z)=\varepsilon+v(\gamma(z))$ and $P(z)=$ $=\left(1-\beta_{1}\right)^{-1}\left(p(z)-\beta_{1}\right)$. From (7) we obtain that $\operatorname{Re}\left\{\phi\left(P(z), z P^{\prime}(z) ; z\right)\right\}>-\frac{6}{3}$ in U. The conclusion of the lemme follows from Lemina B if we can show that for each $z \in U, \operatorname{Re} \psi\left(z_{3} i, v_{1} ; z\right) \leq-\frac{6}{2}$ when $v_{1} \leq 2^{-1}\left(1+\Sigma_{2}^{2}\right)$. But in this case we have $\operatorname{Re} \psi\left(v_{2} i, v_{1} ; z\right)=|\operatorname{Re}(r(z))| v_{1} \leq-\frac{\delta}{2}$. This shows that $\operatorname{Re} P(z)>0$ and hence Re $p(z)>\beta_{1}$ in U.

Remark. Let M and N be regular in U with $M(s)=z^{n}+\cdots, N(z)=z^{n}+\cdots$ and β be real.

If $N(s)$ maps U onto a (possibly mule-shoeted) region which is starlike with respect to origin then, with $h(z)$ convex in U and $h(0)=1, p(z)=M(z) / N(z)$, $r(s)=N(x) / s N^{\prime}(z)$ and from Lemma 1, we get
(8)

$$
\frac{M^{\prime}(z)}{N^{\prime}(z)}<h(z) \text { implies } \frac{M(z)}{N(z)}<h(z) .
$$

On the other hand, from Lemma 2 we obtain

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{M^{\prime}(z)}{N^{\prime}(z)}\right\}>\beta \text { implies } \operatorname{Re}\left\{\frac{M(z)}{N(z)}\right\}>\frac{2 \beta+\delta}{2+\delta} \geq \beta, \tag{9}
\end{equation*}
$$

whenever $N(z)=z^{n}+\cdots$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{N(z)}{z N^{\prime}(z)}\right\}>\delta, \quad z \in U \quad\left(0 \leq \delta<\frac{1}{n}\right) \tag{10}
\end{equation*}
$$

Here it is interesting to observe that if $N(z)=z /(1+z)^{2}$ (and hence N satisfies $\operatorname{Re}\left(z N^{\prime}(z) / N(z)\right)>0$ in $\left.U\right)$ and M is determined by $M^{\prime}(z) / N^{\prime}(z)=(1+(1-$ $2 \beta) z) /(1-z)$ then $M(z) / N(z)=(1-\beta)(1+z)+\beta$. This shows that the bound in the relation (9) for $\delta=0$ cannot be improved, there by establishing that the results of MacGregor [5] and Libera [4] are the best possible ones. Some applications of (9) are given in [11]. The relation (8) generalizes a result of (12, Lemma 1] in a different method.

Theorem 1. Let $f \in H$ and $\beta<1$. If α, λ be complex numbers with Re $a>0$ and $|\lambda| \leq \frac{R e \alpha}{|\alpha|}$, then

$$
\begin{equation*}
\operatorname{Re}\left\{(1+\lambda z)\left[(1+\alpha \lambda z) f^{\prime}(z)+\alpha(1+\lambda z) z f^{\prime \prime}(z)\right]\right\}>\beta \tag{11}
\end{equation*}
$$

implies $\operatorname{Re}\left\{(1+\lambda z) f^{\prime}(z)\right\}>\frac{2 \beta+\operatorname{Re} \alpha-|\alpha \lambda|}{2+\operatorname{Re} \alpha-|\alpha \lambda|}$.
Proof. Let $p(z)=(1+\lambda z) f^{\prime}(z)$ and $r(z)=\alpha(1+\lambda z)$. Then $(1+\lambda z)\left[(1+\alpha \lambda z) f^{\prime}(z)+\alpha(1+\lambda z) z f^{\prime \prime}(z)\right]=p(i)+r(z) z p^{\prime}(z)$ and so by Lemma 2 and (11) we obtain

$$
\operatorname{Re}\left\{(1+\lambda z) f^{\prime}(z)\right\}>\frac{2 \beta+\delta}{2+\delta} \text { whenever } \delta<\operatorname{Re}(\alpha+\alpha \lambda z)
$$

But δ can be chosen as near $\operatorname{Re} \alpha-|\alpha \lambda|$ as we please and so by allowing $\delta \rightarrow \operatorname{Re} \alpha-|\alpha \lambda|$ from below, we establish our claim.

Theorem 2. Let $f \in H$ and $\beta<1$. If α is real and λ is such that $|\lambda| \leq 1$, then

$$
\begin{equation*}
\operatorname{Re}\left\{e^{-\lambda z}\left[\left(1-\frac{\lambda \alpha z}{1+\lambda z}\right) f^{\prime}(z)+\frac{\alpha z}{1+\lambda z} f^{\prime \prime}(z)\right]\right\}>\beta \tag{12}
\end{equation*}
$$

implies $\operatorname{Re}\left\{e^{-\lambda z} f^{\prime}(z)\right\}>\frac{2 \beta(1+|\lambda|)+\alpha}{2(1+|\lambda|+\alpha}$.
Proof. If we let $p(z)=e^{-\lambda z} f^{\prime}(z)$ and $r(z)=1 /(1+\lambda z)$ then (12) is equivalent to $\operatorname{Re}\left\{p(z)+r(z) s p^{\prime}(z)\right\}>\beta$, and so by Lemma 2 we obtain $\operatorname{Re}\left\{e^{-\lambda s} f^{\prime}(z)\right\}>\frac{2 \beta+\delta}{2+\delta}$ whenever $\delta<1 /(1+|\lambda|)$. Now Theorem 2 follows by allowing $\delta \rightarrow 1 \mu(1+|\lambda|)$ from below.

If we take α real and positive, $\beta=0$ and set

$$
\begin{aligned}
& v_{1}(z)=(1+\alpha \lambda z)\left\{\left(\frac{1}{\alpha}+\lambda z\right) f^{\prime}(z)+(1+\lambda z) z f^{\prime \prime}(z)\right] \\
& v_{2}(z)=e^{-\lambda z}\left[\left(\frac{1}{\alpha}-\frac{\lambda z}{1+\lambda z}\right) f^{\prime}(z)+\frac{z}{1+\lambda z} f^{\prime \prime}(z)\right]
\end{aligned}
$$

then by letting $\alpha \rightarrow \infty$, the above theorems for $|\lambda| \leq 1$ are seen to be equivalent to

$$
\begin{align*}
& \operatorname{Re}\left\{v_{1}(z)\right\}>0 \text { implies } \operatorname{Re}\left\{(1+\lambda z) f^{\prime}(z)\right\} \geq 1 \text {, and } \tag{13}\\
& \operatorname{Re}\left\{w_{2}(z)\right\}>0 \text { implies } \operatorname{Re}\left\{e^{-\lambda z} f^{\prime}(z)\right\} \geq 1 \tag{14}
\end{align*}
$$

where

$$
\begin{aligned}
& w_{1}(z)=(1+\lambda z)\left[\lambda z f^{\prime}(z)+(1+\lambda z) z f^{\prime \prime}(z)\right] \text { and } \\
& w_{z}(z)=e^{-\lambda z}\left[-\frac{\lambda z f^{\prime}(z)}{1+\lambda z}+\frac{z}{1+\lambda z} f^{\prime \prime}(z)\right]
\end{aligned}
$$

The relations (13) and (14) cannot be true for fonctions respectively other than $f(z)=$ $=\lambda^{-1} \log (1+\lambda z)$ and $f(z)=\left(e^{\lambda z}-1\right) / \lambda$.

In the following theorem we extend the results (13) and (14) as follows:
Theorem 3. Let $f \in H$ and $\beta<0$. Then for $|\lambda|<1$

$$
\begin{equation*}
\operatorname{Re}\left\{(1+\lambda z)\left[\lambda z f^{\prime}(z)+(1+\lambda z) z f^{\prime \prime}(z)\right]\right\}>\beta \tag{15}
\end{equation*}
$$

implies $\operatorname{Re}\left\{(1+\lambda z) f^{\prime}(z)\right\}>\frac{2 \beta+1-|\lambda|}{1-|\lambda|}$, and for $|\lambda| \leq 1$,

$$
\begin{equation*}
\operatorname{Re}\left\{e^{-\lambda z}(1+\lambda z)^{-1}\left[-\lambda z f^{\prime}(z)+z f^{\prime \prime}(z)\right]\right\}>\beta \tag{16}
\end{equation*}
$$

implies $\operatorname{Re}\left\{e^{-\lambda z} f^{\prime}(z)\right\}>1+2 \beta(1+|\lambda|), z \in U$.
Proof. Let $\beta_{1}=[2 \beta+(1-|\lambda|)] /(1-|\lambda|)$ and $p(z)=\left(1-\beta_{1}\right)^{-1}\left[(1+\lambda z) f^{\prime}(z)-\beta_{1}\right]$, then p is regular in $U, p(0)=1$ and (15) is equivalent to

$$
\operatorname{Re}\left[(1+\lambda z) z p^{\prime}(z)\right]>\beta /\left(1-\beta_{1}\right) \equiv-2^{-1}(1-|\lambda|) .
$$

For real $\varkappa_{2}, v_{1} \leq-\left(1+u_{2}^{2}\right) / 2$ and all $z \in U$, we have

$$
v_{1} \operatorname{Re}(1+\lambda z) \leq-\frac{1}{2}(1-|\lambda|) .
$$

Therefore by Lemma B with $\phi(u, v ; z)=(1+\lambda z) v$ and $\Omega=\{v \in C:$ Re $\infty>$ $\left.-2^{-1}(1-|\lambda|)\right\}$, we deduce Re $p(z)>0$ in U. This completes the proof of part (a).

Part (b) follows on the similar lines.
Corollary 1. Let $f \in B$ and $B<0$. Then for $|\lambda|<1$

$$
\begin{equation*}
\operatorname{Re}\left\{(1+\lambda z)\left[-\frac{f(z)}{z}+(1+\lambda z) f^{\prime}(z)\right]\right\}>\beta \tag{17}
\end{equation*}
$$

implies $\operatorname{Re}\left\{(1+\lambda z)^{2} f^{\prime}(z)\right\}>\frac{\beta(3-|\lambda|)+1-|\lambda|}{1-|\lambda|}$
and for $|\lambda| \leq 1$,

$$
\begin{equation*}
\operatorname{Re}\left\{e^{-\lambda z}\left[-\frac{f(z)}{z}+\frac{f^{\prime}(z)}{1+\lambda z}\right]\right\}>\beta \tag{18}
\end{equation*}
$$

implies $\operatorname{Re}\left\{e^{-\lambda z}(1+\lambda z)^{-1} f^{\prime}(z)\right\}>1+\beta(3+2|\lambda|)$.
The proof of the above corollary easily follows from Theorem 3, replacing $f^{\prime}(s)$ by $f(z) / z$.

Remark 3. Since the functions $g_{i}(i=1,2,3,4)$, defined by $g_{1}(z)=z /(1+\lambda z)$; $g_{z}(z)=z e^{\lambda_{z}} ; g_{8}(z)=z /(1+\lambda z)^{2} ; g_{4}(z)=z^{c^{\lambda z}}(1+\lambda z)$; are all starlike in $U_{\text {, }}$ (11) with $-\frac{(\operatorname{Re} \alpha-|\alpha \lambda|)}{2} \leq \beta<1$, (12) with $-\alpha / 2(1+|\lambda|) \leq \beta<1$, (15) with $-\frac{(1-|\lambda| \mid}{2} \leq \beta<0,(16)$ with $-\frac{1}{2(1+|\lambda|)} \leq \beta<0$, (17) with $-\frac{(1-|\lambda|)}{3-|\lambda|} \leq \beta<0$ and (18) with $-\frac{1}{3+2|\lambda|} \leq \beta<0$ are respectively necessary conditions for a function $f \in E$ to be close to convex in U.

Similary using Lemma 1 and considering a real, non-negative and choosing r(s) and $h(z)$ appropriately, one may get many such results as stated in Theorem 1 and 2.

Using (2) and (3) we next prove the following.
Theorem 4. Let $f \in H, f \neq 0$ in $0<|\lambda|<1$.
(a) Let h be conver function in \bar{U} with $h(0)=1, \mu>0$ and $a \neq 0$ with Re $a \geq 0$. If f satisfies.

$$
\begin{equation*}
(1-\alpha)\left(\frac{f(z)}{z}\right)^{\mu}+\alpha f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}<h(z) \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\frac{f(x)}{z}\right)^{\mu}<\frac{\mu}{\alpha} z^{-(\mu / \alpha)} \int_{0}^{2} h(t) t^{(\mu / \alpha)-1} d t<h(z), \tag{20}
\end{equation*}
$$

(b) Let ϕ be starlike in U with $\phi(0)=0$. If f satisfies

$$
f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}-\left(\frac{f(z)}{z}\right)^{\mu}<\phi(z),
$$

then $\left(\frac{f(z)}{z}\right)^{\mu}<\mu^{-1} \int_{0}^{x} \phi(l) t^{-1} d \ell$.

These results are sharp.

Proof. (a) Consider $p(z)=\left(\frac{\ell(s)}{s}\right)^{\mu}$. Then p is regular in $U, p(0)=1$, and a simple calculation yields

$$
\begin{equation*}
(1-\alpha)\left(\frac{f(z)}{z}\right)^{\mu}+\alpha f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}=p(z)+\frac{\alpha}{\mu} x p^{\prime}(z) \tag{21}
\end{equation*}
$$

From (19) and (21) we obtain $p(z)+\frac{a}{\mu} z p^{\prime}(z) \prec h(z)$. Hence by (2) we obtain the conclusion (20).

The proof of part (b) follows on the similar lines from (3). Hence the theorem
Choosing h and ϕ appropriately and taking $\mu=0$ we obtain

Corollary 1. Let $f \in B$.
(22) $\operatorname{Re}\left\{f^{\prime}(z)\right\}>\beta, \beta<1$ implies $f(z)<\beta+(1-\beta) \left\lvert\,-1-\frac{2}{8} \log (1-z)\right.$;
(23) $\left|f^{\prime}(z)-1\right|<1$ implies $\left|\frac{f(z)}{z}-1\right|<\frac{1}{2}$;
(24) $f^{\prime}(z)<e^{\lambda z},|\lambda| \leq 1$ implies $\frac{f(z)}{z}<\frac{e^{\lambda z}-1}{2}$;
(25) z $f^{\prime \prime}(z) \prec z e^{k z}$ implies $f^{\prime}(z)-1<\frac{e^{k x}-1}{k}$ for k real $0<k \leq 1 / 2$;
(26) $z f^{\prime \prime}(z) \prec \frac{2 z}{(1-z)^{2}}$ implies $f^{\prime}(z)<\frac{1+z}{1-z}$;
(27) $z f^{\prime \prime}(z)<z$ implies $f^{\prime}(z)-1<z$;
(28) $z f^{\prime \prime}(z)<\frac{z-(k /(k+1)) z^{2}}{1-z}$ implies $f^{\prime}(z)-1<(k+1)^{-1}[k z-\log (1-z)]$, for all $k:|k-1 / 8| \leq 3 / 8$.

Since the function ε defined by $\xi(z)=-1-\frac{2}{z} \log (1-z)$ is convex (univalent) in U, the coefficients are all positive, $\xi(U) \subset \Omega=\{w \in C$: |arg $\oplus \mid<\pi / 3\}$ and $\operatorname{Re} \xi(z)>2 \ln 2-1$ in U, we obtain the following interesting result from (22)

$$
\operatorname{Re} f^{\prime}(z)>0 \text { implies } \frac{f(z)}{z} \in \Omega_{1}=\{w: \operatorname{Re} \gg 2 \ln 2-1\} \cap \Omega
$$ and Re $f^{\prime}(z)>-\frac{(2 \ln 2-1)}{2(1-\ln 2)}$ implies $\operatorname{Re}\left\{\frac{f(z)}{z}\right\}>0$ in U.

Corollary 2. Let $f \in B(n, \beta), n$ is a positive integer, and $\beta<1$. Then

$$
\left(\frac{f(z)}{z}\right)^{n}<\pi z^{-n} \int_{0}^{z}[(1+(1-2 \theta) t) /(1-t)] t^{n-1} d t
$$

The result is sharp.

Proof. Take $a=1$ and $h(z)=(1+(1-2 \beta) z) /(1-z)$ in Theorem 4.
According to a result obtained in [11, Corollary 3], we deduce

$$
\operatorname{Re}\left[n z^{-n} \int_{0}^{z}[(1+(1-2 \beta) t) /(1-t)] t^{n-1} d t\right]>\frac{(2 \beta n+1)}{2 n+1} \text { in } U
$$

and so Conollary 2 improves the result of [11 and 14, Lemma 1].

Corollary 3. Let $f \in H$. Then forn a positive integer, we have

$$
\operatorname{Re}\left\{(1-n)\left[\frac{f(z)}{z}\right)^{n}+n f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{n-1}\right\}>\beta
$$

implies $\left(\frac{f(z)}{z}\right)^{n}<\beta+(1-\beta)\left\{-1-\frac{2}{z} \log (1-z)\right\}$ and for $\alpha \neq 0$, Re $\alpha \geq 0$ and $A \neq 0$, comples, we have

$$
(1-\alpha) \frac{f(z)}{z}+\alpha f^{\prime}(z)<1+A z
$$

implies $\frac{f(z)}{z}<1+\left(\frac{A}{a+1}\right) z$.
Proof. Proof of the first part follows from Theorem 4 by taking $h(z)=$ $=(1+(1-2 \beta) z) /(1-z)$ and considering $\mu=\alpha=n$ and proof of the second part follows by taking $h(z)=1+A z$ and $\mu=1$.

Let $\{f, z\}$ denote the Schwarrian derivative

$$
\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}, \quad f \in E .
$$

The following theorem relates the Schwarzian derivative of f to the starlikeness and convexity (and univelency) of f, can be proved in a manner similar to that of Theorem 4. It is illustrated as follows:

Theorem 5. Let $f \in B$. Then for $a \neq 0$ with $R e a \geq 0$,
(a)

$$
(1+\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha z^{2}\left[\left\{\int_{0}^{z} f, z\right\}+\frac{1}{2}\left(\frac{f^{\prime}(z)}{f(z)}\right)^{2}\right]<h(z)
$$

implies $\frac{z f^{\prime}(z)}{f(z)}<\frac{1}{\alpha} z^{-1 / a} \int_{0}^{x} h(t) t^{1 / a-1} d t$ and
(b)

$$
1+(1+\alpha) \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\alpha z^{2}\left[\{f, z\}+\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]<h(z)
$$

implies $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<\frac{1}{a} z^{-1 / a} \int_{0}^{x} h(\ell) \ell^{1 / a-1} d \ell$, where h is convex in $\|$ with $h(0)=1$;
(c)

$$
\frac{z f^{\prime}(z)}{f(z)}+z^{2}\left[\left\{\int_{0}^{z} f, z\right\}+\frac{1}{2}\left(\frac{f^{\prime}(z)}{f(z)}\right)^{2}\right] \prec \phi(z)
$$

implies $\frac{z f^{\prime}(z)}{f(z)}-1<\int_{0}^{z} \frac{\phi(l)}{!} d t$ and
(d)

$$
\frac{z f^{\prime \prime \prime}(z)}{f^{\prime}(z)}+z^{2}\left[\{f, z\}+\frac{1}{2}\left\{\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}^{2}\right] \prec \phi(z)
$$

implies $\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<\int_{0}^{z} \frac{\frac{\varepsilon(t)}{t} d l}{}$ where ϕ is starlike in U.
Remark 4. With appropriate choices of h and ϕ, respectively as convex and starlike in the above theorem, one can obtain sufficient conditions for different subclasses of convex and starlike functions.

Using the result of Mocanu [7. Theorem 2] and Lemma 1 we improve and generalize the results of $[9$, Theorem 1], etc.

Theorem 6. Let $f \in H$ and h be a convex function with $h(0)=1$. Let μ be a real number with $\mu>0$ and c be a complex number with $\operatorname{Re}(\mu+c)>0$ and $g \in \mathbb{B}$ satisfies the property that

$$
\begin{equation*}
\frac{\mu z g^{\prime}(z)}{g(z)}+c<Q_{\mu+c}(z) \tag{29}
\end{equation*}
$$

Then for $F(z) / z \neq 0$ in U, we have

$$
\begin{align*}
& \frac{z f^{\prime}(z)}{g^{\mu}(z) f^{s-\mu}(z)}<h(z) \tag{30}\\
& \text { implies } \frac{z F^{\prime}(z)}{G^{\mu}(z) F^{1-\mu}(z)}<h(z), \text { where } \\
& F(z)=\left[\frac{\mu+c}{z^{c}} \int_{0}^{z} f^{\mu}(l) \ell^{c-1} d t\right]^{1 / \mu}, \\
& G(z)=\left[\frac{\mu+c}{z^{c}} \int_{0}^{z} g^{\mu}(t) t^{c-1} d t\right]^{1 / \mu} \tag{32}
\end{align*}
$$

and $Q_{\mu+c}(z)$ is the function that maps U conformally onto the complex plane slit along the haf-lines $R e=0$,

$$
|\operatorname{Im} w| \geq|\operatorname{Rc} \cdot(\mu+c)|^{-1}| | \mu+c\left|(1+2 \operatorname{Re}(\mu+c))^{1 / 2}-I m c\right| .
$$

Proof. From the result of Mocanu [7. Theorem 2], (29) implies that $G(\ell)$ is analytic, $G(z) / z \neq 0$ in U and $\operatorname{He}\left[\mu \frac{G^{\prime}(z)}{G(z)}+c\right]>0$ in U. Now if we let

$$
P(z)=\frac{z F^{\prime}(z)}{G^{\mu}(z) F^{1-\mu}(z)} \text { and } r(z)=1 /\left\{\mu \frac{z G^{\mu}(z)}{G(z)}+c\right],
$$

from (31) and (32) we easily obtain

$$
p(z)+r(z) z p^{\prime}(z)=\frac{z f^{\prime}(z)}{g^{\mu}(z) f^{1-\mu}(z)}
$$

and so (30) is equivalent to

$$
p(z)+r(z): p^{\prime}(z)<h(z) .
$$

Now the conclasion of the theorem follows from Lemma 1.
Taking $\mu=1, h(z)=[1+(1-2 \beta) z] /(1-z) \quad(\beta<1)$, and replacing $g(z)$ by $z g^{\prime}(z)$ in the above theorem we obtain

Corollary Let $\int \in H$ and e be a complex number with $\operatorname{Re}(e+1)>0$ and $g \in B$ satiafies the property

$$
\operatorname{Re}\left[\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}+1\right]-\operatorname{Re}(c)
$$

Then we have

$$
\operatorname{Re} \frac{f^{\prime}(z)}{g^{\prime}(z)}>\beta \text { implies } \operatorname{Re} \frac{F^{\prime}(z)}{G^{\prime}(z)}>\beta
$$

This improves and generalizes the result of Libera [4, Theorem] and others.
Next, given F, the function f satisfying (31) is written such that

$$
\begin{equation*}
f(z)=F(z)\left\{\left(c+\mu z F^{\prime}(z) / F(z) /(c+\mu\}^{1 / \mu}\right.\right. \tag{33}
\end{equation*}
$$

When μ tends to zero, the subordination relation (30) becomes $\left(z f^{\prime}(z) / f(z)<h(z)\right.$, and at the same time the relation (33) reduced to

$$
\begin{equation*}
f(z)=F(z) \exp \left\{e^{-1}\left(z F^{\prime}(z) / F(z)-1\right)\right\} . \tag{34}
\end{equation*}
$$

for $c \neq 0$. It follows from (34) that

$$
\begin{equation*}
F(z)=f(z) \exp \left\{-z^{e} \int_{0}^{z} t^{e}\left(f^{\prime}(t) / f(l)-t^{-1}\right) d t\right\} \tag{35}
\end{equation*}
$$

for Re $c \geq 0$ and $c \neq 0$.
With $p(z)=\frac{z F^{\prime}(z)}{F(z)}$ and asing (34) we get

$$
\frac{z f^{\prime}(z)}{f(z)}=p(z)+\frac{x p^{\prime}(z)}{c}
$$

and so by (2) we obtain

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}<h(z) \text { implies } \frac{z F^{\prime}(z)}{F(z)}<c z^{-e} \int_{0}^{z} h(t) t^{e-1} d t \tag{36}
\end{equation*}
$$

where $f \in E$ and h is convex function in U with $h(0)=1$ and the result is the best possible. From (36) we see that we can improve and generalize the result of Yoshikawa and Yoshikai [16, Theorem 4] and the author [10, Theorem 8] to

$$
\begin{equation*}
e^{i \lambda} \frac{z f^{\prime}(z)}{f(z)}<e^{i \lambda} h(z) \tag{37}
\end{equation*}
$$

implies $e^{i \lambda} \frac{z F^{4}(z)}{F(z)}<e^{i \lambda} e z^{-c} \int_{0}^{\pi} h(l) \ell^{c-1} d \ell$ by choosing

$$
\begin{equation*}
h(z)=\frac{1-e^{-i \lambda}\left(2 p \cos \lambda-e^{-i \lambda}\right) z}{1-z} \tag{38}
\end{equation*}
$$

With the above h defined (38), we deduce that (37) is equivalent to saying $f \in S^{\lambda}(p)$. In particular for $c=1$,

$$
\begin{equation*}
f \in S^{\lambda}(\rho) \text { implies } e^{i \lambda} \frac{z F^{\prime}(z)}{F(z)}<e^{i \lambda!}\left[\beta+(1-\beta)\left(-1-\frac{2}{2} \log (1-z)\right]\right. \tag{39}
\end{equation*}
$$

where $B=\left[1+e^{-i \lambda}\left(2 p \cos \lambda-e^{-i \lambda}\right)\right] / 2$. Thus for $p=0$, (39) gives

$$
f \in S^{\lambda}(0) \text { implies } e^{i \lambda} \frac{z F^{\prime}(z)}{F(z)}<i \sin \lambda+\cos \lambda\left(-1-\frac{2}{2} \log (1-2)\right)
$$

and so $F \in S^{\lambda}(2 \ln 2-1)$.
Theorem 7. Let β be a real number with $\mu>0$ and e be a complex number with $\operatorname{Re}(\beta+c)>0$. Suppose that $f \in \mathbb{B}$ and h be a conver function in U with $h(0)=1$. Then for $F(z) / z \neq 0$ in U, we have

$$
\begin{equation*}
\frac{f^{\prime}(z)}{\left(\frac{f(z)}{z}\right)^{1-\mu}}<h(z) \text { implies } \frac{F^{\prime}(z)}{\left(\frac{F(z)}{z}\right)^{1-\mu}}<\frac{\beta+e}{z^{\mu+c}} \int_{0}^{x} t^{\mu+e-1} h(t) d t \tag{40}
\end{equation*}
$$

where F is defined by (23). The result is the best possible.
Proof. If we set $p(z)=F^{\prime}(z)\left(\frac{F(z)}{z}\right)^{p-t}$, then p is regular in $U, p(0)=1$ and $f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}=p(z)+(\mu+c)^{-1} z p^{\prime}(z), z \in U$. Now the conclusion follows from (2). Hence the theorem

Remark 5. Acoording to an earlier result (11, Theorem 2) it can easily seen that for $h(s)=\mid 1+(1-2 \beta) s) \mid /(1-s)$,

$$
\operatorname{Re}\left[\frac{\beta+c}{s^{\mu+1}} \int_{0}^{x} t^{\mu+e-1} h(l) d \ell\right] \frac{2 \beta(\mu+c)+1}{2(\mu+c)+1}, \quad z \in U .
$$

For $h(z)=1+A z, A \neq 0$ the relation (40) leads to

$$
f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}<1+A z \text { implies } F^{\prime}(z)\left(\frac{F(z)}{z}\right)^{\mu-1}<1+\left(\frac{\beta+c}{\mu+c+1}\right) A s
$$

REPERENCES

[1] Basilevic. IE . On a case of integrability in guodrateres of the Lowner-Kryares equation Mat. Sb 37 (79) (1955), $47-476$ (Ruadan).
[2] Chichre, P.N. . Nev subdasser of the dow of clow-lo-conser fenctions, Proc Amer. Math. Soc 64 (1977), 37-43.
[3] Hallenbeck, D.J., Ruscheweyh, S. Sulardination by conces fractione, Proc Amer. Math. Soc. 52 (1975), 191-185.
[1] Libera, R J. . Some dasse of reghlar animelent functivens, Proc. Arow. Soc. 18 (1895), 735-739.
[B] MecGregor, T.E. . A eubordination for conses fenctions of onder \mathcal{A}, J. Loodon Math. Soc. 9 (1975), 830-536.
[6) Miller, S.S. Mocanu, P.T. Dificrential aubordinatione and mavalent flactione. Mehiga Math. J. 28 (1981), 157-17.
[7] Mocanu, P.T. , Some insegral operatore and sertike fenction, Rov. Pournine Mith. Purw Appl. 31 (1986), 231-235.
[8] Mocanu, P.T., On starikences of Libere thangorm, Mhthernatica (Cuj) 23 (51) (1886), 153-155.
(8) Owa, S. , Obradovic, M, Carloin abderees of Bavilevic funtion of type \mathbb{C}, Interme. J. Math. Math. Sci. 9 (1836), 347359.
(10] Ponnuearay, S. On a subdas of λ-apirallike functions, Matheretica (Cuj), To appees.
[1.1] Ponnusamy, S. , Karunakeran. V. Diferential mbordination and conformal mappings, Complex Variables, Theory and Appliention, (1888).
[12] Reddy, G.L. .Padmanabhan, K.S. , On andytic function vith references to the Barnardib integral operator, Bull. Austrel. Mith Soc. 25 (1982), 387-396.
(13j Ruscheweyh, St. . Bive Invariansigemechafi der Basileric-Pubtiomam, Mnth. 2. 134 (1973), 215-219.
[14] Singh, R, On Berilevic funactions, Proc. Arox. Math. Soc. 38 (1073), 261-27.
[18] Sulfridge.T.J. , Some remarke on comees mape of the srit disc, Duke Math. J. 37 (1970),
[16] Yoshikana, H. Yoshikaj. T. , Sorme notes on Basikvic functions, J. London Mith Soc. 20 (1979), 79-85.

STRESZCZENIE

 in to, by funkie snocrenlisowans rogularas whole jednortbowym $U=\{z:|\varepsilon|<1\}$ byte prawie
 wesofricj.

