ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL. XLII, 14

SECTIO A

1988

Department of Mathematics Indian Institute of Technology

S. PONNUSAMY

On Bazilevic Functions

O funkcjach Bazilevica

Abstract. The author uses the notation of Differential Subordinations to obtain some new sufficient conditions for a normalized regular function, in the unit disc $U = \{z : |z| < 1\}$ to be dose to convex (univalent) in U. Further some of our results generalize and improve the results obtained in different directions by author and others.

1. Introduction. Let f and g be regular in the unit disc $U = \{z : |z| < 1\}$. We say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a function w regular in U which satisfies w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)). If g is univalent in U then $f \prec g$ if and only if f(0) = g(0) and $f(U) \subset g(U)$.

We use *H* to represent the class of all (normalized) functions $f(z) := z + a_2 z^2 + \cdots$ regular in *U*. Suppose that the function *f* is regular in *U*. The function *f*, with $f'(0) \neq 0$ is convex (univalent) in *U* if and only if $\operatorname{Re}[1 + zf''(z)/f'(z)] > 0, z \in U$. The function *f*, $f'(0) \neq 0$ and f(0) = 0, is starlike (univalent) in *U* if and only if $\operatorname{Re}[zf'(z)/f(z)] > 0, z \in U$. The function *f* is close to convex (univalent) in *U* if and only if there is a starlike function *g* such that $\operatorname{Re}[zf'(z)/g(z)] > 0, z \in U$. The function *f* is λ -spirarlike of order ρ in *U* if and only if $\operatorname{Re}[e^{i\lambda} zf'(z)/f(z)] > \rho \cos \lambda$, $z \in U$ for some real λ such that $|\lambda| < \pi/2$ and $\rho < 1$. We denote the class of such functions by $S^{\lambda}(\rho)$. If $0 \leq \rho <$, then $S^{\lambda}(\rho)$ is the well-known subclass of the class of univalent functions.

A function $f \in H$ is said to be in the class $M(\mu; h)$ if and only if

(1)
$$zf'(z)f^{\mu-1}(z)/g^{\mu}(z) \prec h(z), z \in U$$

for some μ ($\mu > 0$), where $g \in H$ and h convex in U with h(0) = 1.

Furthermore we define $B(\mu,\beta)$ to be the class of functions in $M(\mu;h)$ for which $h(z) = (1 + (1 - 2\beta)z)/(1 - z)$ and g starlike in U. The class $B(\mu,\beta)$ for $0 \le \beta < 1$ is the subclass of Bazilevic functions of type μ [1,9,14].

All of the inequalities involving functions of z, such as (1), hold uniformly in U. So the condition "for all z in U" will be omitted in the remainder of the paper since it is understood to hold. The aim of this paper is to give some sufficient conditions for a function $f \in H$ to be close to convex in U and to improve and generalize some of the well-known results concerning Bazilevic functions etc.

2. Preliminaries. For the proof of our results we need the following Lemmas

Lemma A.Let p be regular in U and q be regular in \overline{U} with p(0) = q(0). If p is not subordinate to q then there exist points $z_0 \in U$ and $\varsigma_0 \in \sigma U$, and an $m \ge 1$ for which $p(|z| < |z_0|) \subset q(U)$,

$$p(z_0) = q(\varsigma_0)$$

and

(b)
$$z_0 p'(z_0) = \varsigma_0 q'(\varsigma_0)$$

Lemma B. Let Ω be a set in the complex plane C. Suppose that the function ψ : $C^2 \times U \to C$ satisfies the condition $\psi(u_2, v_1; z) \notin \Omega$, for all real $u_2, v_1 \leq 2^{-1}(1+u^2)$ and all $z \in U$.

If p is regular in U, with p(0) = 1 and $\psi(p(z), zp'(z); z) \in \Omega$, when $z \in U$, then Re p(z) > 0 in U.

More general form of the above lemma may be found in [6].

In the case when $\psi(\mathbf{s}, v; z) = v + v\gamma^{-1}$ ($\gamma \neq 0$, Re $\gamma \geq 0$), it [3,6] is known that if p is regular in U, h is convex in U and h(0) = p(0) then the best subordination relation

(2)
$$p(z) + zp'(z)\gamma^{-1} \prec h(z)$$
 implies $p(z) \prec q(z) \prec h(z)$,

holds, where $q(z) \equiv \gamma z^{-\gamma} \int_{0}^{\gamma} h(t) t^{\gamma-1} dt$. Further in [15], for $\psi(u, v; z) = v$, it is shown that if p is regular in U, and ϕ is starlike in U then

(3) $zp'(z) \prec \phi(z)$ implies $p(z) \prec q_1(z) \prec \phi(z)$,

is true, where $q_1(z) \equiv \int_{0}^{z} \phi(t)t^{-1} dt$.

3. Main results.

Lemma 1. Let h be convex function in U, with h(0) = c and let r(z) be regular function in U with $\operatorname{Re}\{r(z)\} > 0$. If $p(z) = c + p_1 z + \cdots$ is regular in U; and satisfies the differential subordination

$$(4) p(z) + zp'(z)(r(z)) \prec h(z)$$

then

$$p(z) \prec h(z).$$

116

Proof: Let us first suppose that all the functions under consideration are regular in the closed disc \overline{U} . For that we shall first show that if p(z) is not subordinate to h(z), then there is a $z_0, z_0 \in U$, such that

(5)
$$p(z_0) + z_0 p'(z_0)(r(z_0)) \notin h(U)$$

which would contradict the hypothesis.

If p(z) is not subordinate to h(z), then, by Lemma A, we conclude that there are $z_0 \in U$, $c_0 \in \sigma U$, and $m, m \ge 1$, such that

(6)
$$p(z_0) + z_0 p'(z_0) r(z_0) = h(\varsigma_0) + m_{\varsigma_0} h'(\varsigma_0) r(z_0)$$

Now $\operatorname{Re}\{r(z)\} > 0$ in U implies $|\operatorname{arg}(r(z))| < \pi/2$, and $\varsigma_0 h'(\varsigma_0)$ is in the direction of the outer normal to the convex domain h(U), so that the right-hand member of (6) is a complex number outside h(U), that is, (5) holds. Because this contradicts the hypothesis namely (4), we conclude that $p(z) \prec h(z)$, provided all functions under consideration are regular in U.

To remove this restriction, we need but replace p(z) by $p_{\rho}(z) = p(\rho z)$ and h(z) by $h_{\rho}(z) = h(\rho z)$, $0 < \rho < 1$. All the hypothesis of the theorem are satisfied, and we conclude that $p_{\rho}(z) \prec h_{\rho}(z)$ for each, $0 < \rho < 1$. By letting $\rho \to 1^-$, we obtain $p(z) \prec h(z)$ in U.

Lemma 2. Let r be regular function in U with $\operatorname{Re}\{r(z)\} > \delta > 0$ for $z \in U$. If p is regular in U with p(0) = 1, $\beta < 1$ and

(7)
$$\operatorname{Re} p(z) + zp'(z)(r(z)) \} > \beta,$$

then

Re
$$p(s) > \frac{2\beta + \delta}{2 + \delta}$$
.

Proof. Let $\beta_1 = (2\beta + \delta)/(2 + \delta)$, $\psi(z, v; z) = z + v(r(z))$ and $P(z) = z = (1 - \beta_1)^{-1}(p(z) - \beta_1)$. From (7) we obtain that $\operatorname{Re}\{\psi(P(z), zP'(z); z)\} > -\frac{1}{2}$ in U. The conclusion of the lemma follows from Lemma B if we can show that for each $z \in U$, Re $\psi(z_2, v_1; z) \leq -\frac{1}{2}$ when $v_1 \leq 2^{-1}(1 + z_2^2)$. But in this case we have Re $\psi(z_2, v_1; z) = |\operatorname{Re}(r(z))|v_1 \leq -\frac{1}{2}$. This shows that Re P(z) > 0 and hence Re $p(z) > \beta_1$ in U.

Remark. Let M and N be regular in U with $M(z) = z^n + \cdots, N(z) = z^n + \cdots$ and β be real.

If N(z) maps U onto a (possibly multi-sheeted) region which is starlike with respect to origin then, with h(z) convex in U and h(0) = 1, p(z) = M(z)/N(z), r(z) = N(z)/zN'(z) and from Lemma 1, we get

(8)
$$\frac{M'(z)}{N'(z)} \prec h(z) \text{ implies } \frac{M(z)}{N(z)} \prec h(z).$$

On the other hand, from Lemma 2 we obtain

(9)
$$\operatorname{Re}\left\{\frac{M'(z)}{N'(z)}\right\} > \beta \text{ implies } \operatorname{Re}\left\{\frac{M(z)}{N(z)}\right\} > \frac{2\beta+\delta}{2+\delta} \ge \beta,$$

whenever $N(z) = z^n + \cdots$ satisfies

(10)
$$\operatorname{Re}\left\{\frac{N(z)}{zN'(z)}\right\} > \delta, \quad z \in U \quad (0 \le \delta < \frac{1}{n}).$$

Here it is interesting to observe that if $N(z) = z/(1+z)^2$ (and hence N satisfies $\operatorname{Re}(zN'(z)/N(z)) > 0$ in U) and M is determined by $M'(z)/N'(z) = (1 + (1 - 2\beta)z)/(1-z)$ then $M(z)/N(z) = (1 - \beta)(1 + z) + \beta$. This shows that the bound in the relation (9) for $\delta = 0$ cannot be improved, there by establishing that the results of MacGregor [5] and Libera [4] are the best possible ones. Some applications of (9) are given in [11]. The relation (8) generalizes a result of [12, Lemma 1] in a different method.

Theorem 1. Let $f \in H$ and $\beta < 1$. If α, λ be complex numbers with Re $\alpha > 0$ and $|\lambda| \leq \frac{\operatorname{Re} \alpha}{|\alpha|}$, then

(11)
$$\operatorname{Re}\left\{(1+\lambda z)\left[(1+\alpha\lambda z)f'(z)+\alpha(1+\lambda z)zf''(z)\right]\right\} > \beta$$

implies $\operatorname{Re}\left\{(1+\lambda z)f'(z)\right\} > \frac{2\beta + \operatorname{Re}\alpha - |\alpha\lambda|}{2 + \operatorname{Re}\alpha - |\alpha\lambda|}.$

Proof. Let $p(z) = (1 + \lambda z)f'(z)$ and $r(z) = \alpha(1 + \lambda z)$. Then $(1 + \lambda z)[(1 + \alpha \lambda z)f'(z) + \alpha(1 + \lambda z)zf''(z)] = p(z) + r(z) zp'(z)$ and so by Lemma 2 and (11) we obtain

$$\operatorname{Re}\{(1+\lambda z)f'(z)\} > \frac{2\beta+\delta}{2+\delta}$$
 whenever $\delta < \operatorname{Re}(\alpha+\alpha\lambda z)$.

But δ can be chosen as near Re $\alpha - |\alpha\lambda|$ as we please and so by allowing $\delta \rightarrow \text{Re } \alpha - |\alpha\lambda|$ from below, we establish our claim.

Theorem 2. Let $f \in H$ and $\beta < 1$. If α is real and λ is such that $|\lambda| \le 1$, then

(12)
$$\operatorname{Re}\left\{e^{-\lambda z}\left[\left(1-\frac{\lambda \alpha z}{1+\lambda z}\right)f'(z)+\frac{\alpha z}{1+\lambda z}f''(z)\right]\right\} > \beta$$

implies $\operatorname{Re}\left\{e^{-\lambda z}f'(z)\right\} > \frac{2\beta(1+|\lambda|)+\alpha}{2(1+|\lambda|+\alpha}.$

Proof. If we let $p(z) = e^{-\lambda z} f'(z)$ and $r(z) = 1/(1 + \lambda z)$ then (12) is equivalent to $\operatorname{Re}[p(z) + r(z)zp'(z)] > \beta$, and so by Lemma 2 we obtain $\operatorname{Re}\{e^{-\lambda z}f'(z)\} > \frac{2\beta + \delta}{2 + \delta}$ whenever $\delta < 1/(1 + |\lambda|)$. Now Theorem 2 follows by allowing $\delta \to 1/(1 + |\lambda|)$ from below.

If we take α real and positive, $\beta = 0$ and set

$$v_1(z) = (1 + \alpha \lambda z) [\left(\frac{1}{\alpha} + \lambda z\right) f'(z) + (1 + \lambda z) z f''(z)]$$

$$v_2(z) = e^{-\lambda z} [\left(\frac{1}{\alpha} - \frac{\lambda z}{1 + \lambda z}\right) f'(z) + \frac{z}{1 + \lambda z} f''(z)]$$

then by letting $\alpha \to \infty$, the above theorems for $|\lambda| \leq 1$ are seen to be equivalent to

- (13) $\operatorname{Re}\{w_1(z)\} > 0 \text{ implies } \operatorname{Re}\{(1+\lambda z)f'(z)\} \ge 1, \text{ and }$
- (14) $\operatorname{Re}\left\{w_{2}(z)\right\} > 0 \text{ implies } \operatorname{Re}\left\{e^{-\lambda z}f'(z)\right\} \geq 1$

where

$$w_1(z) = (1+\lambda z)[\lambda z f'(z) + (1+\lambda z)z f''(z)] \text{ and}$$

$$w_2(z) = e^{-\lambda z} \left[-\frac{\lambda z f'(z)}{1+\lambda z} + \frac{z}{1+\lambda z} f''(z) \right]$$

The relations (13) and (14) cannot be true for functions respectively other than $f(z) = \lambda^{-1} \log(1 + \lambda z)$ and $f(z) = (e^{\lambda z} - 1)/\lambda$.

In the following theorem we extend the results (13) and (14) as follows:

Theorem 3. Let $f \in H$ and $\beta < 0$. Then for $|\lambda| < 1$

(15)
$$\operatorname{Re}\left\{(1+\lambda z)[\lambda z f'(z)+(1+\lambda z)z f''(z)]\right\} > \beta,$$

implies $\operatorname{Re}\left\{(1+\lambda z)f'(z)\right\} > \frac{2\beta+1-|\lambda|}{1-|\lambda|}$, and for $|\lambda| \leq 1$,

(16)
$$\operatorname{Re}\left\{e^{-\lambda z}(1+\lambda z)^{-1}\left[-\lambda z f'(z)+z f''(z)\right]\right\} > \beta$$

implies $\operatorname{Re}\left\{e^{-\lambda z}f'(z)\right\} > 1 + 2\beta(1 + |\lambda|), z \in U.$

Proof. Let $\beta_1 = [2\beta + (1-|\lambda|)]/(1-|\lambda|)$ and $p(z) = (1-\beta_1)^{-1}[(1+\lambda z)f'(z)-\beta_1]$, then p is regular in U, p(0) = 1 and (15) is equivalent to

$$\operatorname{Re}[(1+\lambda z)zp'(z)] > \beta/(1-\beta_1) \equiv -2^{-1}(1-|\lambda|).$$

For real $u_2, v_1 \leq -(1+u_1^2)/2$ and all $z \in U$, we have

$$v_1 \operatorname{Re}(1+\lambda z) \leq -\frac{1}{2}(1-|\lambda|).$$

Therefore by Lemma B with $\psi(u, v; z) = (1 + \lambda z)v$ and $\Omega = \{w \in \mathbb{C} : \text{Re } w > -2^{-1}(1 - |\lambda|)\}$, we deduce Re p(z) > 0 in U. This completes the proof of part (a). Part (b) follows on the similar lines.

Fait (0) follows on the similar lines.

Corollary 1. Let $f \in H$ and B < 0. Then for $|\lambda| < 1$

(17)
$$\operatorname{Re}\left\{(1+\lambda z)\left[-\frac{f(z)}{z}+(1+\lambda z)f'(z)\right]\right\} > \beta$$

implies $\operatorname{Re}\left\{(1+\lambda z)^{3}f'(z)\right\} > \frac{\beta(3-|\lambda|)+1-|\lambda|}{1-|\lambda|}$

and for $|\lambda| \leq 1$,

(18)
$$\operatorname{Re}\left\{e^{-\lambda z}\left[-\frac{f(z)}{z}+\frac{f'(z)}{1+\lambda z}\right]\right\} > \beta$$

implies $\operatorname{Re}\left\{e^{-\lambda z}(1+\lambda z)^{-1}f'(z)\right\} > 1 + \beta(3+2|\lambda|).$

The proof of the above corollary easily follows from Theorem 3, replacing f'(z) by f(z)/z.

Remark 3. Since the functions g_i (i = 1, 2, 3, 4), defined by $g_1(z) = z/(1 + \lambda z);$ $g_2(z) = ze^{\lambda z}; g_3(z) = z/(1 + \lambda z)^2; g_4(z) = ze^{\lambda z}(1 + \lambda z);$ are all starlike in U, (11) with $-\frac{(\operatorname{Re} \alpha - |\alpha\lambda|)}{2} \leq \beta < 1$, (12) with $-\alpha/2(1 + |\lambda|) \leq \beta < 1$, (15) with $-\frac{(1 - |\lambda|)}{2} \leq \beta < 0$, (16) with $-\frac{1}{2(1 + |\lambda|)} \leq \beta < 0$, (17) with $-\frac{(1 - |\lambda|)}{3 - |\lambda|} \leq \beta < 0$ and (18) with $-\frac{1}{3 + 2|\lambda|} \leq \beta < 0$ are respectively necessary conditions for a function $f \in H$ to be close to convex in U.

Similary using Lemma 1 and considering α real, non-negative and choosing r(s) and h(z) appropriately, one may get many such results as stated in Theorem 1 and 2.

Using (2) and (3) we next prove the following.

Theorem 4. Let $f \in H$, $f \neq 0$ in $0 < |\lambda| < 1$. (a) Let h be convex function in U with h(0) = 1, $\mu > 0$ and $\alpha \neq 0$ with Re $\alpha \ge 0$. If f satisfies.

(19)
$$(1-\alpha)(\frac{f(z)}{z})^{\mu} + \alpha f'(z)(\frac{f(z)}{z})^{\mu-1} \prec h(z),$$

then

(20)
$$\left(\frac{f(z)}{z}\right)^{\mu} \prec \frac{\mu}{\alpha} z^{-(\mu/\alpha)} \int_{0}^{z} h(t) t^{(\mu/\alpha)-1} dt \prec h(z),$$

(b) Let ϕ be starlike in U with $\phi(0) = 0$. If f satisfies

$$f'(z)(\frac{f(z)}{z})^{\mu-1}-(\frac{f(z)}{z})^{\mu}\prec\phi(z),$$

then
$$\left(\frac{f(z)}{z}\right)^{\mu} \prec \mu^{-1} \int_{0}^{z} \phi(t) t^{-1} dt$$
.

These results are sharp.

Proof. (a) Consider $p(z) = \left(\frac{f(z)}{z}\right)^{\mu}$. Then p is regular in U, p(0) = 1, and a simple calculation yields

(21)
$$(1-\alpha)\left(\frac{f(z)}{z}\right)^{\mu} + \alpha f'(z)\left(\frac{f(z)}{z}\right)^{\mu-1} = p(z) + \frac{\alpha}{\mu} z p'(z)$$

From (19) and (21) we obtain $p(z) + \frac{\alpha}{\mu} zp'(z) \prec h(z)$. Hence by (2) we obtain the conclusion (20).

The proof of part (b) follows on the similar lines from (3). Hence the theorem.

Choosing h and ϕ appropriately and taking $\mu = 0$ we obtain

Corollary 1. Let $f \in H$.

(22) Re{
$$f'(z)$$
} > β , $\beta < 1$ implies $f(z) < \beta + (1 - \beta)[-1 - \frac{x}{z} \log(1 - z)]$;
(23) $|f'(z) - 1| < 1$ implies $|\frac{f(z)}{z} - 1| < \frac{1}{2}$;
(24) $f'(z) < e^{\lambda z}$, $|\lambda| \le 1$ implies $\frac{f(z)}{z} < \frac{e^{\lambda z} - 1}{z}$;
(25) $zf''(z) < ze^{kz}$ implies $f'(z) - 1 < \frac{e^{kz} - 1}{k}$ for k real $0 < k \le 1/2$;
(26) $zf''(z) < \frac{2z}{(1 - z)^2}$ implies $f'(z) < \frac{1 + z}{1 - z}$;
(27) $zf''(z) < z$ implies $f'(z) - 1 < z$;
(28) $zf''(z) < \frac{z - (k/(k + 1))z^2}{1 - z}$ implies $f'(z) - 1 < (k + 1)^{-1}[kz - \log(1 - z)]$, for
all $k : |k - 1/8| \le 3/8$.

Since the function ξ defined by $\xi(z) = -1 - \frac{2}{z} \log(1-z)$ is convex (univalent) in U, the coefficients are all positive, $\xi(U) \subset \Omega = \{w \in \mathbb{C} : |\arg w| < \pi/3\}$ and Re $\xi(z) > 2\ln 2 - 1$ in U, we obtain the following interesting result from (22)

Re
$$f'(z) > 0$$
 implies $\frac{f(z)}{z} \in \Omega_1 = \{w : \operatorname{Re} w > 2\ln 2 - 1\} \cap \Omega$
and Re $f'(z) > -\frac{(2\ln 2 - 1)}{2(1 - \ln 2)}$ implies Re $\{\frac{f(z)}{z}\} > 0$ in U.

Corollary 2. Let $f \in B(n, \beta)$, n is a positive integer, and $\beta < 1$. Then

$$\left(\frac{f(z)}{z}\right)^n \prec n z^{-n} \int_0^{z} \left[(1+(1-2s)t)/(1-t) \right] t^{n-1} dt$$

The result is sharp.

Proof. Take $\alpha = 1$ and $h(z) = (1 + (1 - 2\beta)z)/(1 - z)$ in Theorem 4. According to a result obtained in [11, Corollary 3], we deduce

$$\operatorname{Re}\left[nz^{-n}\int_{0}^{z}\left[(1+(1-2\beta)t)/(1-t)\right]t^{n-1}dt\right] > \frac{(2\beta n+1)}{2n+1} \text{ in } U$$

and so Corollary 2 improves the result of [11 and 14, Lemma 1].

Corollary 3. Let $f \in H$. Then for n a positive integer, we have

$$\operatorname{Re}\left\{(1-n)\left[\frac{f(z)}{z}\right)^{n}+nf'(z)\left(\frac{f(z)}{z}\right)^{n-1}\right\}>\beta$$

implies $\left(\frac{f(z)}{z}\right)^n \prec \beta + (1-\beta)[-1-\frac{2}{z}\log(1-z)]$ and for $\alpha \neq 0$, Re $\alpha \geq 0$ and $A \neq 0$, complex, we have

$$(1-\alpha)\frac{f(z)}{z} + \alpha f'(z) \prec 1 + Az$$

implies $\frac{f(z)}{z} \prec 1 + \left(\frac{A}{\alpha+1}\right) z$.

Proof. Proof of the first part follows from Theorem 4 by taking $h(z) = (1 + (1 - 2\beta)z)/(1 - z)$ and considering $\mu = \alpha = n$ and proof of the second part follows by taking h(z) = 1 + Az and $\mu = 1$.

Let $\{f, z\}$ denote the Schwarzian derivative

$$\left(\frac{f''(z)}{f'(z)}\right)' - \frac{1}{2}\left(\frac{f''(z)}{f'(z)}\right)^2, \quad f \in \mathbb{H}.$$

The following theorem relates the Schwarzian derivative of f to the starlikeness and convexity (and univalency) of f, can be proved in a manner similar to that of Theorem 4. It is illustrated as follows:

Theorem 5. Let $f \in H$. Then for $a \neq 0$ with Re $a \ge 0$,

(a)
$$(1+\alpha)\frac{zf'(z)}{f(z)} + \alpha z^2 \left[\left\{\int_0^z f(z)\right\} + \frac{1}{2}\left(\frac{f'(z)}{f(z)}\right)^2\right] \prec h(z)$$

implies $\frac{zf'(z)}{f(z)} \prec \frac{1}{\alpha} z^{-1/\alpha} \int_{0}^{z} h(t)t^{1/\alpha-1} dt$ and

(b)
$$1 + (1 + \alpha) \frac{zf''(z)}{f'(z)} + \alpha z^2 \Big[\{f, z\} + \frac{1}{2} \Big(\frac{f''(z)}{f'(z)} \Big) \Big] \prec h(z)$$

implies $1 + \frac{zf''(z)}{f'(z)} \prec \frac{1}{\alpha} z^{-1/\alpha} \int_0^z h(t) t^{1/\alpha - 1} dt$, where h is convex in U with h(0) = 1;

(c)
$$\frac{zf'(z)}{f(z)} + z^2 \left[\left\{ \int_0^z f, z \right\} + \frac{1}{2} \left(\frac{f'(z)}{f(z)} \right)^2 \right] \prec \phi(z)$$

implies $\frac{zf'(z)}{f(z)} - 1 \prec \int_0^z \frac{\phi(t)}{t} dt$ and

(d)
$$\frac{zf''(z)}{f'(z)} + z^2 \left[\left\{ f, z \right\} + \frac{1}{2} \left\{ \frac{f''(z)}{f'(z)} \right\}^2 \right] \prec \phi(z)$$

implies $\frac{zf''(z)}{f'(z)} \prec \int_{0}^{z} \frac{\phi(t)}{t} dt$ where ϕ is starlike in U.

Remark 4. With appropriate choices of h and ϕ , respectively as convex and starlike in the above theorem, one can obtain sufficient conditions for different subclasses of convex and starlike functions.

Using the result of Mocanu [7, Theorem 2] and Lemma 1 we improve and generalize the results of [9, Theorem 1], etc.

Theorem 6. Let $f \in H$ and h be a convex function with h(0) = 1. Let μ be a real number with $\mu > 0$ and c be a complex number with $\operatorname{Re}(\mu + c) > 0$ and $g \in H$ satisfies the property that

(29)
$$\frac{\mu z g'(z)}{g(z)} + c \prec Q_{\mu+c}(z)$$

Then for $F(z)/z \neq 0$ in U, we have

(30)
$$\frac{zf'(z)}{g^{\mu}(z)f^{1-\mu}(z)} \prec h(z)$$
implies $\frac{zF'(z)}{G^{\mu}(z)\sum_{j=\mu}^{j=\mu}(z)} \prec h(z)$, where

(31)
$$F(z) = \left[\frac{\mu + c}{z^c} \int_0^z f^{\mu}(t) t^{c-1} dt\right]^{1/\mu}$$

(32)
$$G(z) = \left[\frac{\mu+c}{z^c}\int_0^z g^{\mu}(t)t^{c-1} dt\right]^{1/\mu}$$

and $Q_{\mu+c}(z)$ is the function that maps U conformally onto the complex plane slit along the half-lines Re w = 0,

$$|\operatorname{Im} w| \ge |\operatorname{Re}(\mu + c)|^{-1} |\mu + c|(1 + 2 \operatorname{Re}(\mu + c))^{1/2} - Im c].$$

Proof. From the result of Mocanu [7, Theorem 2], (29) implies that G(t) is analytic, $G(z)/z \neq 0$ in U and $\operatorname{Re}\left[\mu \frac{eG'(z)}{G(z)} + c\right] > 0$ in U. Now if we let

$$p(z) = \frac{zF'(z)}{G^{\mu}(z)F^{1-\mu}(z)}$$
 and $r(z) = 1/[\mu \frac{zG'(z)}{G(z)} + c],$

from (31) and (32) we easily obtain

$$p(z) + r(z)zp'(z) = \frac{zf'(z)}{g^{\mu}(z)f^{1-\mu}(z)}$$

and so (30) is equivalent to

$$p(z) + r(z)zp'(z) \prec h(z).$$

Now the conclusion of the theorem follows from Lemma 1.

Taking $\mu = 1$, $h(z) = [1 + (1 - 2\beta)z]/(1 - z)$ ($\beta < 1$), and replacing g(z) by zg'(z) in the above theorem we obtain

Corollary .Let $f \in H$ and e be a complex number with $\operatorname{Re}(e+1) > 0$ and $g \in H$ satisfies the property

$$\operatorname{Re}\left[\frac{zg''(z)}{g'(z)}+1\right]-\operatorname{Re}(c)$$

Then we have

Re
$$\frac{f'(z)}{g'(z)} > \beta$$
 implies Re $\frac{F'(z)}{G'(z)} > \beta$.

This improves and generalizes the result of Libera [4, Theorem] and others. Next, given F, the function f satisfying (31) is written such that

(33)
$$f(z) = F(z) \{ (c + \mu z F'(z) / F(z) / (c + \mu) \}^{1/\mu} .$$

When μ tends to zero, the subordination relation (30) becomes $(zf'(z)/f(z) \prec h(z))$, and at the same time the relation (33) reduced to

(34)
$$f(z) = F(z) \exp \{ e^{-1} (zF'(z)/F(z) - 1) \}.$$

for $c \neq 0$. It follows from (34) that

(35)
$$F(z) = f(z) \exp\left\{-z^{c} \int_{0}^{z} t^{c} (f'(t)/f(t) - t^{-1}) dt\right\}$$

for Re $e \ge 0$ and $e \ne 0$. With $p(z) = \frac{zF'(z)}{F(z)}$ and using (34) we get

$$\frac{zf'(z)}{f(z)} = p(z) + \frac{zp'(z)}{c}$$

and so by (2) we obtain

(36)
$$\frac{zf'(z)}{f(z)} \prec h(z) \text{ implies } \frac{zF'(z)}{F(z)} \prec cz^{-c} \int_{0}^{z} h(t)t^{c-1} dt$$

where $f \in H$ and h is convex function in U with h(0) = 1 and the result is the best possible. From (36) we see that we can improve and generalize the result of Yoshikawa and Yoshikai [16, Theorem 4] and the author [10, Theorem 8] to

(37)
$$e^{i\lambda} \frac{zf'(z)}{f(z)} \prec e^{i\lambda}h(z)$$

implies $e^{i\lambda} \frac{F'(z)}{F(z)} \prec e^{i\lambda}ez^{-c} \int_{0}^{z} h(t)t^{c-1} dt$ by choosing

(38)
$$h(z) = \frac{1 - e^{-i\lambda}(2\rho\cos\lambda - e^{-i\lambda})z}{1 - z}$$

With the above h defined (38), we deduce that (37) is equivalent to saying $f \in S^{\lambda}(\rho)$. In particular for e = 1,

(39)
$$f \in S^{\lambda}(\rho)$$
 implies $e^{i\lambda} \frac{zF'(z)}{F(z)} \prec e^{i\lambda} [\beta + (1-\beta)(-1-\frac{2}{z}\log(1-z))]$

where $\beta = [1 + e^{-i\lambda}(2\rho\cos\lambda - e^{-i\lambda})]/2$. Thus for $\rho = 0$, (39) gives

$$f \in S^{\lambda}(0)$$
 implies $e^{i\lambda} \frac{zF'(z)}{F(z)} \prec i \sin \lambda + \cos \lambda \left(-1 - \frac{2}{z} \log(1-z)\right)$

and so $F \in S^{\lambda}(2\ln 2 - 1)$.

Theorem 7. Let μ be a real number with $\mu > 0$ and c be a complex number with $\operatorname{Re}(\mu + c) > 0$. Suppose that $f \in H$ and h be a convex function in U with h(0) = 1. Then for $F(s)/s \neq 0$ in U, we have

(40)
$$\frac{f'(z)}{\left(\frac{f(z)}{z}\right)^{1-\mu}} \prec h(z) \text{ implies } \frac{F'(z)}{\left(\frac{F(z)}{z}\right)^{1-\mu}} \prec \frac{\mu+c}{z^{\mu+c}} \int_{0}^{z} t^{\mu+c-1} h(t) dt$$

where F is defined by (23). The result is the best possible.

Proof. If we set $p(z) = F'(z) \left(\frac{F(z)}{z}\right)^{\mu-1}$, then p is regular in U, p(0) = 1 and $f'(z) \left(\frac{f(z)}{z}\right)^{\mu-1} = p(z) + (\mu + c)^{-1} z p'(z), z \in U$. Now the conclusion follows from (2). Hence the theorem

Remark 5. According to an earlier result [11, Theorem 2] it can easily seen that for $h(s) = [1 + (1 - 2\beta)s)]/(1 - s)$,

$$\operatorname{Re}\left[\frac{\mu+c}{s^{\mu+1}}\int t^{\mu+c-1}h(t)\,dt\right]\frac{2\beta(\mu+c)+1}{2(\mu+c)+1}\,,\quad s\in U.$$

For h(z) = 1 + Az, $A \neq 0$ the relation (40) leads to

$$f'(z)\left(\frac{f(z)}{z}\right)^{\mu-1} \prec 1 + Az \text{ implies } F'(z)\left(\frac{F(z)}{z}\right)^{\mu-1} \prec 1 + \left(\frac{\mu+e}{\mu+e+1}\right) Az.$$

REFERENCES

- Basilevic, I.E., On a case of integrability in quadratures of the Louner-Kufarev equation, Mat. Sb. 37 (79) (1955), 471-476 (Russian).
- [2] Chichra, P.N., New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 64 (1977), 37-43.
- [3] Hallenbeck, D.J., Ruscheweyh, S., Subordination by conver functions, Proc. Amer. Math. Soc. 52 (1975), 191-195.
- [4] Libera, R.J., Some classes of regular univalent functions, Proc. Amer. Soc. 16 (1965), 755-759.
- [5] MacGregor, T.H., A subordination for convex functions of order Ct., J. London Math. Soc. 9 (1975), 530-536.
- [6] Miller, S.S., Mocanu, P.T., Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
- [7] Mocanu, P.T., Some integral operators and starlike functions, Rev. Pourmine Math. Pures Appl. 31 (1986), 231-235.
- [6] Mocanu, P.T., On starlikeness of Libers transform, Mathematica (Cluj) 28 (51) (1986), 153-155.
- [9] Owa, S., Obradovic, M., Certain redefenses of Banlevic functions of type G, Internat. J. Math. Math. Sci. 9 (1986), 347-359.
- [10] PORRUSSINY, S., On a subclass of λ -spirallike functions, Mathematica (Cluj), To appear.
- [21] PORRUSAMY, S., KARURAKARAR, V., Differential subordination and conformal mappings, Complex Variables, Theory and Application, (1988).
- [12] Reddy, G.L., Padmanabhan, K.S., On analytic function with reference to the Bernardi integral operator, Bull. Austral. Math. Soc. 25 (1982), 387-396.
- [13] Ruscheweyh, St., Bine Invarianzeigenschaft der Basilevic-Fonktionen, Math. Z. 134 (1973), 215-219.
- [14] Singh, R., On Barilevic functions, Proc. Amer. Math. Soc. 38 (1973), 261-271.
- [15] Suffridge, T. J., Some remarks on convex maps of the unit disc, Duke Math. J. 37 (1970).
- [16] Yoshikawa, H., Yoshikai, T., Some notes on Basilevic functions, J. London Math. Soc. 20 (1979), 79-85.

STRESZCZENIE

Autor używa pojęcia różniczkowego podporządkowania aby otrzymać nowe warunki dostateczne na to, by funkcja znormalizowana regularna w kole jednostkowym $U = \{z : |z| < 1\}$ była prawie wypukła (jednolistna) w U. Pewne otrzymane tu wyniki uogólniają i poprawiają wyniki otrzymane wcześniej.

