ANNALES UNIVERSITATIS MARIAE CURIE-SKEODOWSKA

LUBLIN-POLONIA

Instylat Matematyli UMCS
Zakied Zestosowas Matemmiyli UMCS

J.MIAZGA,A.WESOLOWSKI

An Extension of a Sufficient Condition for $|p|$ - valence of Analytic Functions

O romzerreniu waranku dostatecznego |p|-listnofoi funkgii analityczaych

Abstract

Abatrect. In this paper a sufficient condition for $|p|$-vilence (p baing an integers) of functions f andytic in the puncturxd unit diak $E \backslash\{0\}$ and actinfying $\lim _{x \rightarrow 0} z^{-p} f(x)=1$ has bean cuablinhed (Theorem 1). Using this condition wo abow that for a positivo integer p the function $\left.F(z)=p \int_{0}^{z} t^{p-1} U(l)\right)^{\alpha} d t$ in p-alent in E, if $|a| \leq p /(0 p-2)$.

1. Introduction. Let $E=\{z:|z|<1\}$ and let Ω denote the class of analytic functions ω such that: $\omega(0)=0,|\omega(z)|<1$ for $z \in E$.

We denote by S the dass of functions f of the form: $f(z)=z+a_{2} z^{2}+\cdots$ analytic and univalent in E and by P the class of analytic functions A in E such that: $\operatorname{Re} h(z)>0$ for $z \in E, h(0)=1$.

Let f, F be analytic functions in E and $f(0)=F(0)$. We say that the function f is subordinate to the function F in E if there existe a function ω in Ω such that $f(z)=F(\omega(x))$ in E. This relation shall be denoted $f<F$.

Definition [8]. Let $I=[0, \infty)$. A family of fanctions $f(x, l), z \in E, b \in I$ is called a p-subordination chain on II if

$$
\begin{equation*}
f(s, t) \text { is analytic in } E \text { for each fixed } t \in I \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
f^{(k)}(0, t)=0, k=1, \ldots, p-1, \text { and } f^{(\rho)}(0, t) \neq 0 \text {, } \tag{1.2}
\end{equation*}
$$

(1.3) $\quad f(x, s)<f(x, t), 0 \leq t, 0, b \in I, z \in E$.

The prabondinaton chain is said to be normalized if $f(0,8)=0$ and $f^{(t)}(0, t)=$ ple ${ }^{p t}$ for each $t \in I$.

Folowing Pommerenke [5], Halleabeck and Livingoton [3] proved:
Lemma 1. Let $f(s, t)=d^{p} s^{p}+\cdots$ be analytic in E for each $t \in I$. Then $f(x, t)$ is a normalized p-oubordination chain on I if and only if $f(z, t)$ is locally absolusely continuous in I, locally uniformly in E and there exists a function $h(z, b)$ measurable in t and analytic in z with $\operatorname{Re} h(z, t)>0, h(0, t)=1$ such that for each $z \in E$ and
almost all $t \in I$

$$
\begin{equation*}
\dot{f}(z, t)=z f^{\prime}(z, t) h(z, t), \quad\left(\vec{f}=\frac{\partial f}{\partial t}, f^{\prime}=\frac{\partial f}{\partial z}\right) \tag{1.4}
\end{equation*}
$$

Lemma 2. Let $0<r<1$ and $f(z, t)=a_{p}(l) z^{p}+\sum_{n=p+1}^{\infty} a_{n}(l) z^{p}, a_{p}(l) \neq 0$ for each $t \in I$ be analytic in $E_{p}=\{z:|z|<r\}$ and locally absolutely cotinuous in I, locally uniformly in E_{r}. For alnost all $t \in I$ suppose

$$
f(z, t)=z f^{\prime}(z, t) h(z, t), \quad z \in E_{r},
$$

where $h(z, t)$ is analytic in E and satisfies $\operatorname{Re} h(z, t)>0$ for $z \in E$.
If

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|a_{n}(l)\right|\left|\frac{a_{p}(l)}{a_{p}(0)}\right|^{-n / p}=0 \tag{1.5}
\end{equation*}
$$

then for each $t \in I, f(z, t)$ is the p-th power of a univalent function.
2. $|p|$ - valence criterion.

Theorem 1. Let $f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots, p$ is an integer, be an analytic function different from zero in $E \backslash\{0\}$, and $\lim _{z \rightarrow 0} z^{-p} f(z)=1$. Moreover, let be any complex number such that $\mathrm{Re} \cdot=a>0$. If there exists an analytic function g, $g(z) \neq 0$ in E satisfying the inequality

$$
\begin{equation*}
\left|\frac{g(0)}{g(z)} \cdot \frac{z f^{\prime}(z)}{f(z)}-p \frac{*+1}{2 \alpha}\right| \leq|p| \frac{|z+1|}{2 \alpha} \tag{2.1}
\end{equation*}
$$

and such that

$$
\begin{gather*}
\left||z|^{a} \frac{g(0)}{g(z)} \cdot \frac{z f^{\prime}(z)}{f(z)}+\left(1-|z|^{\alpha}\right)\left(\frac{z f^{\prime}(z)}{f(z)}+\bullet \frac{z g^{\prime}(z)}{g(z)}\right)-p \frac{s+1}{2 \alpha}\right| \leq \tag{2.2}\\
\leq|p| \frac{|\theta+1|}{2 a}, \quad z \in E, \quad a=\frac{\theta+1}{\alpha z} \cdot p
\end{gather*}
$$

holds, then f is the p-th power of a univalent function in E.
Proof. We consider two cases
$1^{\circ} . p$ is a positive integer.
We put

$$
\begin{align*}
& f(z, l)=f\left(z e^{-o t}\right)\left[1+\left(e^{\frac{0+1}{l} p l}-1\right) \frac{g\left(z e^{-o t}\right)}{g(0)}\right]^{\bullet}=e^{p l} z^{p}+\cdots \tag{2.3}\\
& z \in E, \quad t \in I, \quad \quad^{\bullet}=1,
\end{align*}
$$

where g is the function which satisfic in E the assumptions of theorem for some $l \in I$.

For each t in $I f(z, \ell)$ is an analytic function for $|z|<e^{a l}, a=$ Re s. It follows from Lemma 1 that $f(z, l)$ is a normalized p-subordination chain on I if and only if

$$
\begin{equation*}
\frac{f(z, l)}{z f^{\prime}(z, l)}=\frac{1+\omega(z, l)}{1-\omega(z, l)}, \quad z \in E, \quad t \in I \tag{2.4}
\end{equation*}
$$

where

$$
\frac{1+\omega(z, t)}{1-\omega(z, t)}=h(z, t), \quad z \in E, \text { for each fixed } t \in I,
$$

is a well-known relationship between the functions ω and h of the class Ω and P, respectively.

From (2.4) and (2.3) after long bat simple calculations we obtain :

$$
\begin{equation*}
\omega(z, t)=\frac{\dot{f}(z, t)-z f^{\prime}(z, t)}{\dot{f}(z, t)+z f^{\prime}(z, t)}=\frac{t+1}{-1} \frac{0}{v-\frac{z z}{0-1}} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{align*}
v=g(0) \frac{x e^{-a t} f^{\prime}\left(x e^{-a t}\right)}{f\left(z e^{-a t}\right) g\left(z e^{-a t}\right)} e^{-b t} & +\left(1-e^{-b t}\right)\left(\frac{z e^{-a t} f^{\prime}\left(z e^{-a t}\right)}{f\left(z e^{-o t}\right)} \div\right. \tag{2.6}\\
& \left.+s \frac{z e^{-a t} g^{\prime}\left(z e^{-o t}\right)}{g\left(x e^{-0 t}\right)}\right)-p, \quad b=\frac{o+1}{a} p .
\end{align*}
$$

It follows from Lemma 1 and Lemma 2 that $f(z)=f(z, 0)$ is the p-th power of univalent function if

$$
\operatorname{Re}\left\{\frac{\dot{f}(z, t)}{z f^{\prime}(z, t)}\right\}>0, \quad z \in E, \quad t \in I,
$$

thas for each $t \in I$ the function ω given by (2.5) will satisfy in \bar{E} (\bar{E} is the closure of $E)$ the inequality: $|\omega(z, t)| \leq 1$.

The inequality (2.2) implies that for $z \in \bar{E} \omega(z, l)$ given by (2.5) satisfies the inequality $|\omega(z, l)| \leq 1$ because it is enough to prt $3 e^{-0 t}=\varsigma$ in $(2.6), e^{-b s}=|\varsigma|^{b / a}=$ $=|\xi|^{\circ}$ for $|z|=1, \alpha=$ Re and apply the inequality (22) exchanging z for s there.
2°. The proof of theorem for p being a negative integer is analogous. It is enough to consider the chain

$$
f(z, b)=\left[\left.f\left(z e^{-x t}\right)\right|^{-1}\left[1+\left(e^{\frac{\Delta t}{0} p t}-1\right) \frac{g\left(z e^{-s t}\right)}{g(0)}\right]^{-\theta}=e^{-p t} z^{-p}+\cdots\right.
$$

The proof is complete.
Corollary 1. If we put $=1$ in the Theorem 1 , and $g(z)=k(z) \frac{z f^{\prime}(z)}{f(z)}$, Re $k(z) \geq \frac{1}{2}, z \in E, k(0)=1$ and

$$
\begin{equation*}
\left||z|^{2 p}\left(\frac{p}{k(z)}-1\right)+\left(1-|z|^{2 p}\right)\left(\frac{z^{\prime}(z)}{k(z)}+\frac{z f^{\prime \prime}(z)}{f(z)}\right)-p+1\right| \leq|p| \tag{2.7}
\end{equation*}
$$

then the function f is the $|p|-t h$ power of a univalent function in E.
This result for $p=1$ and a suitably chosen k was obtained by the present anthare is [4]. The assumption $k(0)=1$ can be dropped (see [5] Cordlary 3).

Corollary 2. If in Corollary 1 we put additionally $\frac{p}{1(2)}-1=c=$ conat., $|c-p+1| \leq|p|$ and

$$
\begin{equation*}
\left.|c| z\right|^{2 p}+\left(1-|z|^{2 p}\right) \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p+1|\leq|p| \tag{2.8}
\end{equation*}
$$

then the function f is the p-th power of a univalent function in E.
Petting $c=p-1$ in the inequality (2.8) we obtain Thearem $21,4,1^{\circ}$ given by Avkhadiev [2].

For $p=1$ the condition (2.8) is a well-lanown sufficient condition of univalence given by Ahlfors [1].

A simple corollary of Theorem 1 is :
Theorem 2. Let $f(x)=z+a_{2} z^{2}+\cdots$ be an analytic function in E and, be any complex number such that Re $=\alpha>0$. If there exists an anatytic function g and $g(z) \neq 0$ in E satisfying the inequality

$$
\begin{equation*}
\left|\frac{g(0)}{g(z)} \frac{z f^{\prime}(z)}{f(z)}-\frac{0+1}{2 \alpha}\right| \leq \frac{|0+1|}{2 \alpha} \tag{2.9}
\end{equation*}
$$

and such that for a fired, positive integer p

$$
\begin{align*}
\left.|p| z\right|^{a} \frac{g(0)}{g(z)} \cdot \frac{z f^{\prime}(z)}{f(z)} & \left.+\left(1-|z|^{\alpha}\right)\left(p \frac{z f^{\prime}(z)}{f(z)}+s \frac{z g^{\prime}(z)}{g(z)}\right)-p \frac{s+1}{2 \alpha} \right\rvert\, \leq \tag{2.10}\\
& \leq p \frac{|z+1|}{2 \alpha}, \quad z \in E, \quad a=\frac{\theta+1}{2 \alpha}, \quad \alpha=\text { Re. },
\end{align*}
$$

holds, then f is a univalent function in 5 .
Proof. Let $h(s)=|f(s)| P, s \in E$. It is easy to see that $h(s)$ satinfes the assumption of Theorem 1 if f sativice the assumption of this theorem Thes f is univelent function in \mathcal{D} becanec h in view α Theorem 1 is the poth power of a anivalent froction.

3. An application.

Thoorem S. if $f \in S$ and a is any comples number such the $\left\lvert\, \begin{aligned} & \text { is } S \frac{p}{p-s} \text {, }\end{aligned}\right.$ where p is a positive inseger, then the function

$$
\begin{equation*}
F(z)=P \int_{0}^{z} z^{p-1}\left(f^{\prime}(t)\right)^{e} d t, \quad z \in E \tag{3.1}
\end{equation*}
$$

is p-valent in E.
Proof. In the proof we ase Corollary 2 and a well-known Bieberbach transormation preserving the class of univalent functions S

$$
\begin{equation*}
g(z)=\frac{f\left(\frac{x+z_{0}}{1+x \bar{z}_{0}}\right)-f\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)}, \quad z \in E, \quad f, g \in S \tag{3.2}
\end{equation*}
$$

x_{0} is a fixed paint of the disk E.
From (3.2) the value of the functional $\frac{-z_{0} F^{\prime \prime \prime}\left(-z_{0}\right)}{F^{\prime}\left(-z_{0}\right)}$ obtained from (3.1) at the point $-z_{0}=z$ is equal to :

$$
\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}=p-1+a \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=p-1+\alpha \frac{2|z|^{2}+2 b_{2} z}{1-|z|^{2}}
$$

where b_{2} is the second coefficient of the function $g \in S$ in Maclanrin's expansion.
Putting $c=p-1-2 a$ in (2.8; and using the above equality we have

$$
\begin{aligned}
& \left.\left.|(p-1-2 \alpha)| z\right|^{2 p}+\left(1-|z|^{2 p}\right) \frac{z F^{\prime \prime}(z)}{F^{\prime \prime}(z)}-p+1 \right\rvert\,= \\
& =\left.|(p-1-2 \alpha)| z\right|^{2 p}+\left(1-|z|^{2 p}\right) \alpha^{2|z|^{2}+2 b_{3} z} \\
& 1-|z|^{2} \\
& \\
& =2|\alpha|\left|b_{2} z\left(1+|z|^{2}+\cdots+|z|^{2(p-1)}\right)+|z|^{2}\left(1+|z|^{2}+\cdots+|z|^{2 p} \mid=\right.\right. \\
& \leq 2|\alpha|(3 p-1) .
\end{aligned}
$$

In view of the assumption $|\alpha| \leq \frac{\rho}{\delta p-2}$ and the Corollary 2 we obtain the assertion of the theorem.

Remark. Using the criterion of p-valence atated in [2] for the function $P(s)$ given by (3.1) we conclude that this function is p-valent if $|\alpha| \leq \frac{1}{\mathrm{f}}$.

REFERENCES

[1] Ahlfore, L V., Sufficient condition for qearionformal extencion, Princetion Ann. of Mash Stud 79 (1974), 25-29.
[2] Avkhadiev, F.C. , Akeoat'ov, L. A. . Reants and problems concorming sufficient conditione for andytic functions to he of finite aelenos, (Rumian), Lsv. Vym. Ucebo. Zaved, Malamalle 10 (1896), 3-16.
[3] Halleabock, D. J. . Liviageloa, A.E. Subordination chaine and p-acoent fractions . Notion Amm. Mall Soc. 28, Jenuary 1976, Abstract 731-30-6 pa-09.
(1) Miasge. J. . Wesotowaki , A. A Unimelencs Chiderion and the armeture of Some
 155-181.
[8] Pommereake, Ck. , Über die Subordination analytiocher Pinhtionen, J. Raine Angow. Math 218 (1905), 150-173.

STRESZCZENIE

W precy podano warunok dostatcany $|p|$-listinofa (p licibe celkowita) funkji annlityemych $\left.f(z)-E \backslash\{0\}, \lim _{s \rightarrow 0} \mid z^{-P} f(z)\right]=1$ (Tviendsonie 1).

$$
F(z)=p \int_{0}^{2} t^{p-1}(f(t))^{a} d t
$$

$\rightarrow p$-listine w bole jednoathowym jali $|a| \leq \frac{\rho}{6 p-2}$.

