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Bounded Functions with Symmetric Normalization

Funkcje ograniczone z symetryczng normalizacjgy

Abstract. Let X (B) denote the dass of functions regular and univalent in the open unit disk
A which satisfy the conditions f(-a) = —a, f(a) = ¢ and |f(z)| < B, wherte 0 < a < ],
8 < B. The author obtain several covering theorerns for the dlass X (B) and its subclasses.

1. Introduction. A function f(z), regular and univalent in the open unit disk
A, A={z:|z|] <1}isinclass S if

(1.1) f(0)=0 and f'(0)=1.
I, on the other hand,
(1.2) f(0)=0 and f(a)=a,

for some a, 0 < a < 1, then it is said to have Montel's normalization, [8], and is
in cdass M. Furthermore, we will let S(B) and M(B) be subclasses of S and M,
respectively, whose members satisfy the additional condition that |f(z)| < B for
z € A. This additional hypothesis makes the study of these subclasses both difficult
and interesting, {1.2).

The transformation af(z)/f(a) carries members of S into M, consequently M
inherits some properties directly from S. However, the effectiveness of this rclation-
ship breals down between S(B) and M(B). The normalizations for § and M play a
significant role in the study of these classes (see [5], [6], [7], for example).

In our present work, we look at functions {(2), regular and univalent in A, nor-

malized so that
(1.3) f(-a)=—-a and f(a)=a,

for a fixed 6, 0 < a < 1. We call this dass X. X{(B) is the subclass of fuctions
bounded by B. The class X is compact. Its normalization renders the subclasses
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X(B), S(B), and M(B) quite independent. Consequently, X(B) has properties not
shared by other classes.

" We will establish covering properties for X(B) and some of its subclasses. Our
methods make use of circular symmetrization [10] and a lemma established by
J.Krzyz and E. Zlotkiewicz [5].

2. Covering properties. The Koebe constant for a subset A of either S or M
is the radius of the largest disk centered at the origin contained in f(A) for each f
in A. Since members of X may omit the origin, the classical Koebe constant for X
is zera However, it is meaningful to ask for its Koebe constants relative to @ or —a.
The symmetric normalization of X guarantees that if f(z) is in X, then —f(~z) is
also, hence the Koebe constants relative to @ and —a are the same.

Theorem 1. Let R = R(a,B) be given by the formula R = |d — a|, where

(2.1) d=i [*(t)-qk(-g)] £ ids (1_,)¢

1-¢ l+a

and k denotes the inverse of the Koebe function k(z) = z/(1 - z)?. Then
(2.2) {w:|w—a|< R}U{w:|w+d| <R}c f(A)
Jor each f(z) in X(B). This result is the best poasible.

Proof. Let f(z) bein X(B) and D = f(A). The compactness of X (b) guarantees
that there be a function in the class for which dist{a,dD} =R, R > 0.

Let g(z,20; ) be Green's function of D and let D* be the domain obtained from
D under circular symmetrization with respect to the ray (—o0,a]. Then

(2.3) g(a,—a;4A) = g(a,—a; D) £ g(a,—4a; D°) ,

as Green's function increases under crcular symmetrization [4].
Denote by Kg the domain obtained from the disk |w0| < B slit along the segment
|B - R, B], then

(2") ’(av -a; D.) < ’(‘a —a; KR) '

because D* € Kgr. Now, if K4 is a domain like Kg, but slit along [B — d, B|, with
d chosen so that g(a, —a; K4) = g(a,—~a; A), then, in view of (2.3) and (2.4), d < R.
To conclude, it sufficies to find the mapping of A onto Ky which satisfies (1.3) and
(2.1). This is done by the function W(z) defined by

H(752) -4(5) = k-

where ¢ is & constant determined by (2.1).
Since both f(z) and —f(—~z) are always in our class, the proof is concluded.

The Koebe set for the class X(B) is the set common to all regions f|A], f(z) in
X(B), hence,itis K= )  fla].
J(s)EX(B)
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K may not be simply—connected for suitable choices of a. The function W = W(a)
normalized by (1.3) and defined by the equation

iWB | AT
M=y -l Tl

is in X(B) ; and W (z) maps A onto the disk given by |W| < B furnished with a cut
covering the segment [0, B}, providing @ 2 eq, with

4 Arctan a0 =2 Arctan(2) + 3 .

Since W (z) and W(Z) are simultaneously in X(B), the corresponding Koebe set is
separated by the imaginary axis. This observation is consistent with the analogous
result for the class of M of functions with Montel's normalization {5).

Our methods are not sufficient at this time to enable us to find the Koebe set
of X(B). However, we are able to give the analog of Theorem 1 for the subclass of
X(B) whose members map A onto a convex domain. We call this class X¢(B).

Theorem 2. For each f(z) in X°(B),
(2.5) {w| |w—-a|< R}U{w||w+a| <R} flA],

if R=DBecosa—a,0<a<cos}(}), a being a solution of the equation

MR Lo | e | WONT Ll
2 e S = s len(S + 3 )
with
= giun" e wiand
a B —-acosa
-__2_" -l d‘ina
e g B+acosa

Proof. As symmetrization does not generally preserve convexity of domains we
must modify the technique used for Theorem 1.

Suppose D = f[|A] and wy € D with |wg| < B. Becaunse D is convex, there is a
supporting segment of D, through wo, which together with a properly choeen arc of
the crcle jw| = B form the boundary of a convex domain G, with D € G. Then, the
conformal invariance of Green's function and the above inclusion give

(2.7) g(a,~a;4) = g(s,—6; D) £ g(a,-a;G) .

The drcular symmetrization of G with respect to the ray {z € R : z < a} gives the
convex domain G°. Then, as in Theorem 1,

(2.8 9(a,—a;G) < g(a,~a;G") .
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Now, suppose
(2:9) D,={w:|w|<B and Rew<A},
for a < A £ B. We know that g(a, —a; Dp) = g(a,—a; A), consequently
(2.10) A<d,
for d = dist{0,8G*}. Furthermore, equality holds in (2.10) if and only if Dy = G™.
This means that A is the Koebe constant for X¢(B) with respect to ¢ and —a.
To find the explidt form for A, A = R, as given in the theorem, we use the
condition
(2.11) g(a,—a;A) = g(a.—a; Dp) .

If Be*® and Be™*@ are the end points of the segment satisfying Re w = & and |v| £ B,
then

(2.12) U(w) = (%}_%)m :

with U(0) = "’l' maps Dy onto the lower half-plane, H.

Now, g(z,20;A) = —log|L(z,z20)|, where L(z,2) = e'® :?- lnl' zp € A, and
i
9(2,2; H) = —log|T'(,A)|, for T(s,4) = & i ;), ImA < 0 and suitable§. Letting
: _—

2 =U(w) in T(2,)) and evaluating constants appropriately reduces (2.11) to

U(a)—U(-a)| _ 2a
(2.13) |U(a)-U(—¢) =

Then, setting 8 = zf Arg(B—ae™'?) and y = 3“1 Arg (B + ac™*®), yields the form

1 s .8_
Im—'ill 2a

(2.14) 3 = -
Idn[%-ﬁ(ﬂ:")]l 1+a4*

which is equivalent to (2.6).

3. An extremal problem. Let {[wo,¢] be the ray issuing from wy with incli-
anation ¢, i.e.,

(3.1) l[o,9] = {w: w0 =wy+re?, r20}.
If f(z) is univalent in A, then let

(3:2) Elf(z).¢] = fla]Nl[wo, 9]
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and let u(E[f(z), ¢]) be the Lebesgue measure of (3.2), (it may be +o0).
Suppose now, that A is a suitably defined family of functions univalent in A and
with wg in f[A]. Then one may pose the problem of finding

(33) (#) = inf u(ELf (2). 8] ,

lor0< ¢ <2x.

This extremal problem is the radial analog of the omitted-arc problem resolved
for 8 by Jenkins [3]. The solution to (3.3) for starlike or convex subclasses of S,
with wy = 0, gives the Koebe set for those classes. But it is not 8o in general.

We have no solution to (3.3) for X or X (B). It seerms plausible that the solution
for X coincides with that for X* and for X(B) it coincides with X°*(B). (X* and
X°(B) denote the subfamilies of functions starlike with respect to the origin.) It
would be useful to determine (3.3) for X and its subclasses with wo = a. However,
at this time, we are able to handle the problem only for X(B) and for odd members
of X*(B) with wo = 0 ; and, we resalve it by finding the Koebe set for each class.

The Koebe set for X¢(B) is K = [} [f[A]. Itis a closed convex set containing

X*(B)
¢ and —a. f w = pe'?® is in IKC, then {(¢) = |w| = p, when wy = 0 in (3.1).

Our method depends on properties of Green's function which were established
by J.Krzyz and E.Zlotkiewicz [5]. They found Koebe sets for functions f(z)
univalent in A for which f(0) = @ and f(z9) = b, (a,b and 2z, are fixed). Their work
depended on the following lemma which we will use here.

Lemma (8]. Suppose G is a class of simply connected domains in C each
containing the fired, distinct points @ and b. let G, be the subclass of G whose
members omit w. Furthermore, if

(i) there is Qg in G such that for all in G,
0(a,50) S g(a,4:0.) = G(w; G) ;
(ii) {z: g(8,2:00) > 6} € G forall§ ,
0<6<g(abdi0);

and

(1) G, 5 {0 €G:9(a,0:0) =4}, for y> 0 ; then

n N0={v:G(v;G) <} .
nec,

Now, let F(a,—a;wp) be the family of all convex domains D, each contained
entirely in the disk {w : |w] < B}, including 4 and —a but omitting the value wp,
with |wg| < B. Because of the convexity, each member of the set is contained in a
subdomain D(wp) bounded by an arc satisfying |w| = B and a segment through wp
with end points on the arc. Consequently,

(3.4) 9(a,—a;D) < g(a,-a; D(wo)) .
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Then to find the supremmm of the right side of (3.4), we confine ourselves to domains
of type D(wo) and apply the lemma.

If wy is a boundary point of K¢, it follows from the compactness of X¢(B) that
the corresponding domain D(wp) is the image of A under a function in the class and
we may write

(3.5) g9(a,—a; A) = g(a, —a; D(wq)) .

Now, because of the conformal invariance of Green’s function, we may restrict our
search for extremal functions and extremal domains to like D(w0p), in some optimal
position, and to their images in the lower half-plane, (as was done in Theorem 2).

Fig.'l

Let us assume that the extremal domain appears as in Figure 1. Then a rotation
through the angle (—a) gives a domain of the type D(wp), as shown in Figure 2 ; we
call it D(wo).

Fig.2

B =cos”! (L'!glfg’_g) .

B

Then, the function mapping D(wp) onto the lower half-plane H is
B—ePw )'ﬂ

o ) (R
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The invariance of Green's function guarantees that
(3.7) g(—a,a; D(wy)) = g(—a,a;b(wo)) =

= g(U(~ae™*®),U(ae™**); H) = &(a, B, w0, 0a) ,
where

|U(¢c @) — U(—ae™ ‘°)|

(8.8) aneh 'U(ac'“') U(-ace)|

We have used properties of mapping and Green's functions discussed in the proof of
Theorem 2.

Finally, the extremal value for the problem corresponds to the choice ag, of a
for which

2a

(3.9) ¥(a,B, w,a) = e

wo is fixed in these computations, however, a vanes as the segment [Py, P;] through

wo, (see Fig.1), is allowed to vary. We summarize our conclusion as the following
theorem.

Theorem 3. The Koebe set for the family of convez functions in X(B) is

o fu . 2a
(3.10) K°={w:2(s,B,v,0) S —H_.,] .
If wg € 3K® , |wp| = p < B, then the corresponding extremal function maps A onto

a domain bounded by an arc of |w| = B whose endpoints are joined by a segment
through wg.

To condude, we look at the analogous problem for bounded, odd starlike fanc-
tions in X.
Theorem 4. The Koebe set for the class of odd functions in X°(B) is given by
|B?w + a?® |B’w+¢’t

(3.11) e rzmi*a Sl+a?

Furthermore, I(®) = |w| whenever |w|e'® gives equality in (3.11).

Proof. Let G(a,~a;wo) be the family of domains boundad by B, etarike and
symmetric with respect to the origin (“odd” could be used to describe the latter),
and omitting wo , |wo| < B. f D € G(a,—a:wo), then the ray {w = pe'®|p 2 |wol}
and its reflection in the origin, {w = pe'(®+*)|p > |wg|} , a = Arg wo, are in the
complement of D. Now, if D(wp) is the disk |w| € B alit along these rays, then

(3.12) g(—a,8;D) S g(—e,a; D(wo)) .

To complete our proof, it suffices to find g(~a,a; D(wo)).
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First, we rotate and dilate the domain D(tr) by the transformation ¢ = gk,
Ap, the image of D(wy) is the unit disk cut along the segmenta [=1,-p} and [p, 1),
P = L%’-l and we let b = ’-‘D— Then, with U = ,’ 'i'-'f? ,the transformation

Z =Gt maps Ap onto A. A computation shows that

2U(b) l_ logll+ \/T-T(TI

(3.13) 9(5,0;4p) = log I~ /i 20 (b)

Finally, an application of the lemma, gives the Koebe set for our class as
)
(8.14) {w v ( o1l
2U(‘—5-1)

which is equivalent to (3.11). The second statement of Theorem 4 follows from the
special character of the domains under consideration.

|14

g
a
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Funkcje ogranicaone a symetryczng normalizac)s i

STRESZCZENIE

Niech X(B) cznacza klase funkeji regularnych i jednolistnych w kole jednostkowym A, spe-
niajacych warunki : f(—a) = —a, [(a) = a oraz If(z)l < Bdaz€A gdnie0 <a<l,
a < B. W pracy tej autoray otraymujg kilka twierdzed o nokryciu dla klasy X(B) i jej podidas.






