LUBLIN-POLONIA

VOL. XLII, 7
SECTIO A
Instytut Matematylo
Usiversytet Mari-Curie Sldodowikiej

J. G. KRZY'Z

Some Remarks Concerning the Cauchy Operator on AD - regular Curves

Pewne uwagi dotyczące operatora Cauchy'ego na AD-regularnych krzywych

Abstract

In this paper wo prove come resulte concerning the Cauchy operator C_{Γ} ecting on $L^{p}(\Gamma)$ where Γ is regular in the sense of Ahlion-David (i.e. AD-regular). In particular we show that C_{r} is an involution, i.e. $C_{r}=C_{r}^{-1}$ for any $p>1$.

Moreover, we give a precise value of $\left\|C_{r}\right\|$ in the L^{2}-case and show that $\left\|C_{\Gamma}\right\|=1$ if and only if Γ is a cirde.

1. AD-regularity and complementary Hardy spaces. Let us suppose that D is a bounded domain whose boundary is a rectifiable carve Γ and let $L^{P}(\Gamma)$, $1 \leq p<+\infty$, denote the class of complex-valued functions h on Γ such that $\int_{\Gamma}|h(z)||d z|<+\infty$. A function f halomorphic in D is said to belong to the class $E^{p}(D), 1 \leq p<+\infty$, if there exists a sequence $\left(O_{n}\right)$ of rectifiable Jordan curves C_{n} in D approaching Γ as $n \rightarrow+\infty$ such that for some $M>0$ we have $\int_{C^{*}}|f(z)| p|d z| \leq M$ for all $n \in \mathbf{N}$. This condition does not depend on a special choice of $\left(C_{n}\right), C$. [3]. Any function $f \in E^{p}(D)$ has non-tangential limits a.e. (w.r.t. the arc-length measure) on Γ and the limiting function may be also denoted by f. Then $\int_{\Gamma}|f(z)|^{P}|d z| \leqslant+\infty$ and f does not vanish on subsets of Γ of positive measure unless $f(z) \equiv 0$.

Conversely, any function $f \in E^{p}(D), p \geq 1$, can be recovered from its boundary values on Γ by means of the Canchy integral :

$$
\begin{equation*}
f(z)=(2 \pi i)^{-1} \int_{r} f(s)(s-z)^{-1} d s, \quad z \in D \tag{1.1}
\end{equation*}
$$

For $z \in C \backslash \bar{D}$ the integral on the right vanishes identically.
If $D_{1}, D_{2} \ni \infty$ are the companents of $\bar{C} \backslash \Gamma$ then for any $h \in L^{p}(\Gamma), p \geq 1$, the

Cauchy-type integral

$$
\begin{equation*}
(2 \pi i)^{-1} \int_{r} h(s)(s-x)^{-1}, \quad x \notin \Gamma . \tag{1.2}
\end{equation*}
$$

generates two functions f, g halomorphic in D_{1} and D_{2}, resp.
The classical problem to characterize rectifiable curves Γ and the exponents p so that any $h \in L^{P}(\Gamma)$ would generate via the Cauchy-type integral (1.2) two holomorphic functions $f \in E^{p}\left(D_{1}\right), g \in E^{p}\left(D_{2}\right)$ with $h \mapsto f, h \mapsto g$ being bounded linear operators on $L^{P}(\Gamma)$, has found its final solution in the paper of Guy David [2].

A mare detailed presentation of this important problem, its background and consequences may be found in the excellent survey article [4].

Since the existence of non-tangential limits of the integral (1.2) at $z \in \Gamma$ is equivalent to the existence of the Cauchy principal value $C h(z)$, where

$$
\begin{equation*}
C h(z)=C_{\Gamma} h(z)=\frac{1}{\pi i} P \cdot V \cdot \int_{\Gamma} h(s)(s-z)^{-1} d s, \quad z \in \Gamma, \tag{1.3}
\end{equation*}
$$

we may ask an equivalent question : When is the Cauchy operator (1.3) $h \mapsto C_{r} h$ a bounded linear operator on L^{p} ? To this end we need

Definition 1.1. A locally rectifiable (not necessarily Jordan) curve Γ is said to be regular in the sense of Ahlfors-David, or AD-regular (cf. [1], [2]), if there exists a constant $M>0$ such that for any disk $D(a, r)$ with radius r and centre a the are length measure of $D(a, r) \cap \Gamma$ is at most $M r$.

The definition of Ahlfors (cf. (1, pp.159-160) is more general than that of David and applies to curves on Ricmann surfaces, with the constant M depending on the neighborrhood containing the disk. Since the curves in [1] were investigated in a quite different setting, we prefer to attribute this concept of regularity to both authors. The AD-regularity shows to be invariant under Moebius transformations, cf. [5, p.70].

According to David [2] the Cauchy operator C_{Γ} is bounded on $L^{p}(\Gamma)$, $1<p<+\infty$, for a locally rectifiable (not necessarily Jardan) curve Γ if and only if Γ is AD-regular.

If Γ is an $A D$-regular Jordan curve in the finite plane O, then its complementary domains $D_{1}, D_{2} \ni \infty$ are of Smirnov type [2]. This means that for any $f \in E^{p}\left(D_{1}\right)$, $1 \leq p<+\infty$, there exists a sequence $\left(P_{n}\right)$ of polynomials such that

$$
\int_{\Gamma}\left|f(z)-P_{n}(z)\right|^{p}|d z| \rightarrow 0 \text { as } n \rightarrow+\infty
$$

Moreover, if $0 \in D_{1}$, then for any $g \in E^{p}\left(D_{2}\right), g(\infty)=0$ and $p \geq 1$ there exists a sequence $\left(Q_{n}\right)$ of polynamials with vanishing constant terms such that

$$
\int_{r} \operatorname{lo}(x)-\left.Q_{n}\left(x^{-1}\right)\right|^{p}|d x| \rightarrow 0 \text { as } n \rightarrow+\infty
$$

In this case the classes $E^{p}\left(D_{k}\right), k=1,2 ; p>1$, are obvions analogues of Handy classes H^{p} in the unit disk D and therefore we adopt the notation

$$
\begin{equation*}
H^{p}\left(D_{1}\right):=E^{p}\left(D_{1}\right) \quad, \quad H^{p}\left(D_{2}\right):=\left\{\rho \in E^{p}\left(D_{2}\right): G(\infty)=0\right\} \tag{1.4}
\end{equation*}
$$

where $D_{1} \ni 0, D_{2} \ni \infty$ are complementary domains of an AD-regular Jordan curve Γ. Then $\boldsymbol{H}^{\mathrm{P}}\left(D_{k}\right)$ are said to be complementary Hardy spaces of I. Since the nontangential limiting values on Γ of $f \in B^{p}\left(D_{1}\right)$ and $a \in H^{p}\left(D_{2}\right)$ uniquely determine the functions f, g via the Cauchy integral (1.1) (for g the orientation of Γ has to be changed) we may consider complementary Handy spaces of Γ as subspaces of $L^{p}(\Gamma)$.

As pointed out by David [2], for any $1<p<+\infty$ and any $h \in L P(\Gamma)$ the unique decomposition $h=f-g$ with $f \in H^{p}\left(D_{1}\right), g \in E^{p}\left(D_{2}\right)$ holds so that

$$
\begin{equation*}
L^{P}(\Gamma)=B^{P}\left(D_{1}\right) \cup B^{P}\left(D_{2}\right) \quad, \quad B^{p}\left(D_{1}\right) \cap H^{p}\left(D_{2}\right)=\{0\} \tag{1.5}
\end{equation*}
$$

Thus $L^{p}(\Gamma)$ may be considered as a topalogical and a direct sum of complementary Hardy spaces of Γ. The unique David decomposition (1.5) of $h \in L_{p}(\Gamma)$ is performed by the Plemelj formulas

$$
\begin{equation*}
f(s)=\frac{1}{2}[h(s)+C h(s)], \quad g(s)=\frac{1}{2}[-h(s)+C h(s) \mid \tag{1.6}
\end{equation*}
$$

a.e. on Γ so that

$$
\begin{align*}
& h(s)=f(s)-g(s) ; \quad f \in B^{P}\left(D_{1}\right), g \in B^{P}\left(D_{2}\right) \tag{1.7}\\
& C h(s)=f(s)+g(s) \tag{1.8}
\end{align*}
$$

As an immediate consequence of (1.7), (1.8) and the uniqueness of the decomposition (1.7) we obtain

Theorem 1.2. If Γ is an $A D$-regular Jordan curve then the Cauchy operator (1.3) is an involution on $L^{p}(T)$ for any $p>1$, i.e.

$$
\begin{equation*}
O^{2}=1 \quad, \quad \text { or } C^{-1}=C \tag{1.9}
\end{equation*}
$$

where I stands for the idensity operator.
Proof. If $h=f \in B^{P}\left(D_{1}\right)$ then $g=0$ by the uniqueness statement and (1.8) implies $O f=f$. Similarly, $h=-g \in B^{P}\left(D_{2}\right)$ implies $O_{g}=-g$. Uaing this we obtain from (1.8) : $C O h=C f+C g=f-g=h$ and this is equivalent to (1.9).

Corollary 1.8. $\left.C^{(L P}(\Gamma)\right)=L^{P}(\Gamma)$.
Corollary 1.4. The numbers $\lambda=\mp 1$ are the only eigenvalues of the operator C. The functions $f \in \mathbb{P}^{P}\left(D_{1}\right), g \in H^{P}\left(D_{2}\right)$ are eigenfunetions corresponding to $\lambda=1$ and $\lambda=-1$, resp.

In fect, if $h=\lambda C h$ for some $\lambda \in O$ and $h \in L(\Gamma), h \neq 0$, then by (1.9) $O h=\lambda h$, i.e. $h=\lambda^{2} h$ and hence $\lambda=\mp 1$. If $\lambda=1$ then (1.7) and (1.8) imply $g=0$ and $h=\int \in \operatorname{IP}^{P}\left(D_{1}\right)$. Similarly $\lambda=-1$ means $h=-O h$ and consequently $h=-g$.

Corollary 1.5. The resolvent $R_{\lambda}=(I-\lambda C)^{-1}$ has the form

$$
R_{\lambda}=\left(1-\lambda^{2}\right)^{-1} I+\lambda\left(1-\lambda^{2}\right)^{-1} C, \quad \lambda \neq \mp 1 .
$$

2. Complementary Hardy spaces $E^{2}\left(D_{k}\right)$ of Γ. If $p=2$ then $L^{2}(\Gamma)$ becomes a Hilbert space with the inner product $\langle x, y\rangle=1 /|\Gamma| \int_{\Gamma} x(z) \overline{y(x)}|d x|$. We may assume without loss in generality that the length of Γ satisfies $|\Gamma|=1$ and $0 \in D_{1}$. The Plemelj formulas (1.6) determine oblique projections of $L^{2}(\Gamma)$ onto its subspaces $H^{2}\left(D_{k}\right), k=1,2$, and also the angle $\alpha \in(0 ; \pi / 2]$ between these subspaces, as given by the formula
(2.1) $\quad \cos \alpha=\sup \left\{\operatorname{Re}\langle x, y\rangle /\|x\| \cdot\|y\|: x \in B^{2}\left(D_{1}\right), y \in B^{2}\left(D_{2}\right)\right\}$.

With this definition we have

Theorem 2.1. If Γ is an AD -regular Jordan curve in the finite plane then the norm $\|C\|=\left\|C_{r}\right\|$ of the Cauchy operator (1.3) acting on $L^{2}(\Gamma)$ satisfies

$$
\begin{equation*}
\|C\|=\cot \frac{1}{2} \alpha \tag{2.2}
\end{equation*}
$$

The smallest value $\|C\|=1$ corresponds to the case of the orthogonal decomposition (1.5) of $L^{2}(\Gamma)$ which takes place if and only if Γ is a circle.

Proof. Let $h \in L^{2}(\Gamma)$ have the decomposition (1.7). Due to (1.7) and (1.8) we have

$$
\begin{aligned}
\|C\| & =\sup \left\{\|C h\|^{2} /\|h\|^{2}: h \in L^{2}(\Gamma) \backslash\{0\}\right\}= \\
& =\sup \left\{\|f+g\|^{2} /\|f-g\|^{2}: f-g \neq 0\right\}= \\
& =\sup \left\{\left[1+\frac{2 \operatorname{Re}<f, g>}{\|f\|^{2}+\|g\|^{2}}\right] /\left[1-\frac{2 \operatorname{Re}<f, g>}{\|f\|^{2}+\|g\|^{2}}\right]\right\}
\end{aligned}
$$

Now, sup $2 \operatorname{Re}<f, g>\left(\|f\|^{2}+\|g\|^{2}\right)^{-1}=\sup \operatorname{Re}\langle f, g\rangle(\|f\|\|g\|)^{-1}=\cos a$ and this implies $\|C\|=[(1+\cos a) /(1-\cos \alpha)]^{1 / 2}=\cot \frac{1}{2} \alpha$. Thus $\|C\|=1$ if and only if $\alpha=\pi / 2$. If Γ is the unit circle T, then any $h \in L^{2}(T)$ has the decomposition $h(s)=f(s)-g(s)$, where $f(s)=\sum_{n=0}^{\infty} \alpha_{n} s^{n}, g(s)=\sum_{n=1}^{\infty} \beta_{n} s^{-n}, s=e^{i \theta}, \sum_{n=0}^{\infty}\left|\alpha_{n}\right|^{2}<+\infty$ and $\sum_{n=1}^{\infty}\left|\beta_{n}\right|^{2}<+\infty$. Hence $\|C h\|^{2}=\|h\|^{2}=\sum_{n=0}^{\infty}\left|\alpha_{n}\right|^{2}+\sum_{n=1}^{\infty}\left|\beta_{n}\right|^{2}$ and $\int_{T} f(s) \bar{\sigma}(s) d \theta=0$ for any $h \in L^{2}(T)$. Thus $\|C\|=1$ and $B^{2}\left(D_{1}\right) \perp H^{2}\left(D_{2}\right)$ hold for $\Gamma=T$. The converse statement is less trivial.

Suppose that $\|C\|=\left\|O_{r}\right\|=1$. Then $\|C h\|=\|h\|$ for any $h \in L^{2}(\Gamma)$ in view of (1.9) and this implies that C is unitary, i.e. $C^{-1}=C^{\circ}$. However, $C^{-1}=C$ (cf. (1.9)) and hence $C=C^{\bullet}$, i.e. C is self-adjoint. Assuming that the leagth $|\Gamma|=1$
and $z=z(0), 0 \leq 0 \leq 1$, is the equation of Γ we have

$$
\begin{aligned}
<O x(0), y(t)> & =\int_{0}^{1}\left(\frac{1}{\pi i} \text { P.V. } \int_{0}^{1} \frac{x(l) z^{\prime}(l) d l}{x(l)-z(t)}\right) y(t) d s= \\
& =\frac{1}{\pi i} \lim _{l \rightarrow 0} \iint_{D} \frac{x(l) \overline{y(0)} z^{\prime}(l) d t d l}{z(l)-z(0)},
\end{aligned}
$$

where $Q=\{0 ; 1] \times[0 ; 1], P_{\varepsilon}=\{0+i f \in Q:|0-1| \leq \varepsilon\}$. Moreover,

$$
\left\langle x(0), O_{y}(0)\right\rangle=\frac{1}{x_{i}} \lim _{s \rightarrow 0} \iint_{Q \backslash P_{s}} \frac{x(l) \overline{y(o)} \overline{z^{\prime}(0)} d o d t}{z(l)-z(0)}
$$

Thus $<C x(0), y(0)>=<z(0), C y(0)>$ for all $x, y \in L^{2}(\mathrm{f})$ implies $\left.z^{\prime}(t) / \| z(t)-z(0)\right\}=$ $\overline{z^{\prime}(0)} /\left[\overline{z(l)}-\overline{z(\rho)} \mid\right.$, or $\operatorname{Im}\left\{z^{\prime}(\rho) z^{\prime}(\ell) /\left[z(\ell)-\left.z(\rho)\right|^{2}\right\}=0\right.$ ae. in Q, with $z(\rho)$ aboolately continuous on $[0 ; 1]$. On integrating w.r.t. We obtain that arg $\left|z(l)-z\left(g_{g}\right)\right| / / z(0)-$ $z\left(\rho_{1}\right) \mid=$ const for any fixed $\theta_{1}, \theta_{2} \quad\left(0 \leq o_{1}<\theta_{2}<1\right)$ and $\ell \in\left(\rho_{2} ; 1\right)$ which is a well known characteristic property of a circle. This ends the proof.

The following lemma may be helpfal in evaluating the angle a between the subspaces $\boldsymbol{H}^{2}\left(D_{1}\right), B^{2}\left(D_{2}\right)$ and consequently the narm of C in $L^{2}(\Gamma)$.

Lemman 2.2. Let Γ be an AD -regular Jordan eurve in the finite plane with $\mu^{\prime} \mid=1$ and $0 \in D_{1} . \forall\left(p_{n}\right), n \in \mathbf{N} \cup\{0\}$ and $\left(g_{n}\right), n \in \mathbf{N}$ are Szegö polynomialo for D_{1} and D_{2}, resp. (qn being actually polynomials in z^{-1} withous a constant term) then

$$
\begin{equation*}
\left.\cos \alpha=\sup \left\{\operatorname{Re} \sum_{j=0}^{m} \sum_{k=1}^{n} c_{j} \bar{d}_{k}<p_{j}, q_{k}\right\rangle: \sum_{j=0}^{m}\left|e_{j}\right|^{2}=\sum_{k=1}^{n}\left|d_{k}\right|^{2}=1\right\} . \tag{2.8}
\end{equation*}
$$

Proof. The sums $x_{m}=\sum_{j=0}^{m} e_{j} p_{j}, y_{n}=\sum_{k=1}^{n} d_{k} q_{k}$ are dense in $H^{2}\left(D_{1}\right)$ and $H^{2}\left(D_{2}\right)$, resp, because D_{1}, D_{2} are of Smirnov type. We may assume that $\left\|x_{m}\right\|=$ $\left\|y_{n}\right\|=1$ which is equivalent to $\sum_{j=0}^{m}\left|c_{j}\right|^{3}=\sum_{k=1}^{n}\left|d_{k}\right|^{2}=1$. Then we have

$$
R e\left\langle x_{m}, y_{n}\right\rangle /\left\|x_{m}\right\|\left\|y_{n}\right\|+\operatorname{Re} \sum_{j=0}^{m} \sum_{k=1}^{n} e_{j} \bar{d}_{k}\left\langle p_{j}, q_{b}\right\rangle
$$

and (2.3) readily follows.
Conoltary 2.3. Under the assumption of Lemma 2.2 there exists $\delta \in(0 ; 1)$ such that $\left|<p_{j}, g_{t}>\right| \leq \delta$ for any $k_{0} j+1 \in N$.

Corollary 2.4. If Γ is AD -regular with 0 inside Γ and for any syatem of complex numbers $\left\{a_{0}, a_{1}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n}\right\}$ we have

$$
\begin{equation*}
\int_{\Gamma}\left(\sum_{j=0}^{m} a_{j} z^{j}\right)\left(\sum_{k=1}^{n} \sigma_{k} / \bar{z}^{k}\right)|d z|=0 \tag{2.4}
\end{equation*}
$$

then Γ is a girele.
Note that (2.4) implies the orthogonality of complementary B^{2} - spaces of Γ.
In a paper to follow we shall be concerned with several interesting consequences of the Theorem 1.2.

REFERENCES

[1] Ahlfors, L. V. . Zer Theorie der Überlagerangoflächen, Acta Math. 65 (1935), 157-19.
[2] David, O. , Opéraleure integraus singuliers sar certaines courbes de plan complese. Ann. Soiont. Ec. Norm Sup. 17 (1981), 187-189.
[3] Duren, P. L. , Theory of H^{P} Spoces, Academic Prees, Now York, London 1970.
[4] Semmes, S. , The Cauchy integrad, chord-arc curoes, and quarwonformal mappings, The Biberbech Conjecture-Proceedinge of the Symposium on the Ocasion of the Proof. Providence. RL 1986.
[3] Zinemoister, M, Domaines de Laventive, Publ. Math d'Onay, Paris 1985.

STRESZCZENIE

W pracy saj podano billa mynikow swiazanych z operatorem Cauchy'ego C_{r} diadajecym w
 wylazeno, ie operator C_{Γ} jos inuclucja, isn. $C_{r}=C_{T}^{-1}$ dle dowolnego $p>1$. Ponadto zuleceiono dokitadna wartokt nurray uperatora O_{r} ■ praypadku $p=2$ i wylanano, ie $\left\|C_{\Gamma}\right\|=1$ mody i tylbo wtody, sdy I juit otoviciarn

