ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL XLII, 7

SECTIO A

1988

Instytut Matematyki Uniwersytet Mani-Curie Skłodowskiej

J. G. KRZYZ

Some Remarks Concerning the Cauchy Operator on AD - regular Curves

Pewne uwagi dotyczące operatora Cauchy'ego na AD-regularnych krzywych

Abstract. In this paper we prove some results concerning the Cauchy operator C_{Γ} acting on $L^{p}(\Gamma)$ where Γ is regular in the sense of Ahlfors-David (i.e. AD-regular). In particular we show that C_{Γ} is an involution, i.e. $C_{\Gamma} = C_{\Gamma}^{-1}$ for any p > 1.

Moreover, we give a precise value of $||C_{\Gamma}||$ in the L^2 -case and show that $||C_{\Gamma}|| = 1$ if and only if Γ is a circle.

1. AD-regularity and complementary Hardy spaces. Let us suppose that D is a bounded domain whose boundary is a rectifiable curve Γ and let $L^{p}(\Gamma)$, $1 \leq p < +\infty$, denote the class of complex-valued functions h on Γ such that $\int |h(z)| |dz| < +\infty$. A function f holomorphic in D is said to belong to the class Γ $E^{p}(D), 1 \leq p < +\infty$, if there exists a sequence (O_{n}) of rectifiable Jordan curves C_{n} in D approaching Γ as $n \to +\infty$ such that for some M > 0 we have $\int |f(z)|^{p}|dz| \leq M$

for all $n \in \mathbb{N}$. This condition does not depend on a special choice of (C_n) , cf. [3]. Any function $f \in E^p(D)$ has non-tangential limits a.e. (w.r.t. the arc-length measure) on Γ and the limiting function may be also denoted by f. Then $\int |f(z)|^p |dz| < +\infty$

and f does not vanish on subsets of Γ of positive measure unless $f(z) \equiv 0$.

Conversely, any function $f \in E^p(D)$, $p \ge 1$, can be recovered from its boundary values on Γ by means of the Cauchy integral :

(1.1)
$$f(z) = (2\pi i)^{-1} \int_{\Gamma} f(\varsigma)(\varsigma - z)^{-1} d\varsigma , \quad z \in D .$$

For $z \in \mathbb{C} \setminus \overline{D}$ the integral on the right vanishes identically.

If $D_1, D_2 \ni \infty$ are the components of $\overline{C} \setminus \Gamma$ then for any $h \in L^p(\Gamma), p \ge 1$, the

Cauchy-type integral

(1.2)
$$(2\pi i)^{-1} \int_{\Gamma} h(\varsigma)(\varsigma-z)^{-1} , \quad z \notin \Gamma ,$$

generates two functions f, g holomorphic in D_1 and D_2 , resp.

The classical problem to characterize rectifiable curves Γ and the exponents p so that any $h \in L^{p}(\Gamma)$ would generate via the Cauchy-type integral (1.2) two holomorphic functions $f \in E^{p}(D_{1}), g \in E^{p}(D_{2})$ with $h \mapsto f, h \mapsto g$ being bounded linear operators on $L^{p}(\Gamma)$, has found its final solution in the paper of Guy David [2].

A more detailed presentation of this important problem, its background and consequences may be found in the excellent survey article [4].

Since the existence of non-tangential limits of the integral (1.2) at $z \in \Gamma$ is equivalent to the existence of the Cauchy principal value Ch(z), where

(1.3)
$$C h(z) = C_{\Gamma} h(z) = \frac{1}{\pi i} P.V. \int_{\Gamma} h(\varsigma)(\varsigma - z)^{-1} d\varsigma , \quad z \in \Gamma ,$$

we may ask an equivalent question : When is the Cauchy operator (1.3) $h \mapsto C_{\Gamma} h$ a bounded linear operator on L^p ? To this end we need

Definition 1.1. A locally rectifiable (not necessarily Jordan) curve Γ is said to be regular in the sense of Ahlfors-David, or AD-regular (cf. [1], [2]), if there exists a constant M > 0 such that for any disk D(a, r) with radius r and centre a the arc length measure of $D(a, r) \cap \Gamma$ is at most Mr.

The definition of Ahlfors (cf. [1, pp.159-160) is more general than that of David and applies to curves on Riemann surfaces, with the constant M depending on the neighbourhood containing the disk. Since the curves in [1] were investigated in a quite different setting, we prefer to attribute this concept of regularity to both authors. The AD-regularity shows to be invariant under Moebius transformations, cf. [5, p.70].

According to David [2] the Cauchy operator C_{Γ} is bounded on $L^{p}(\Gamma)$, $1 , for a locally rectifiable (not necessarily Jordan) curve <math>\Gamma$ if and only if Γ is AD-regular.

If Γ is an AD-regular Jordan curve in the finite plane O, then its complementary domains $D_1, D_2 \ni \infty$ are of Smirnov type [2]. This means that for any $f \in E^p(D_1)$, $1 \le p < +\infty$, there exists a sequence (P_n) of polynomials such that

$$\int_{\Gamma} |f(z) - P_n(z)|^p |dz| \to 0 \quad \text{as} \quad n \to +\infty \; .$$

Moreover, if $0 \in D_1$, then for any $g \in E^p(D_2)$, $g(\infty) = 0$ and $p \ge 1$ there exists a sequence (Q_n) of polynomials with vanishing constant terms such that

$$\int_{\Gamma} |g(z) - Q_n(z^{-1})|^p |dz| \to 0 \quad \text{as} \quad n \to +\infty$$

In this case the classes $E^p(D_k)$, k = 1,2; p > 1, are obvious analogues of Hardy classes H^p in the unit disk D and therefore we adopt the notation

$$(1.4) H^p(D_1) := E^p(D_1) , H^p(D_2) := \{g \in E^p(D_2) : G(\infty) = 0\},$$

where $D_1 \ni 0$, $D_2 \ni \infty$ are complementary domains of an AD-regular Jordan curve Γ . Then $H^p(D_k)$ are said to be complementary Hardy spaces of Γ . Since the nontangential limiting values on Γ of $f \in H^p(D_1)$ and $g \in H^p(D_2)$ uniquely determine the functions f, g via the Cauchy integral (1.1) (for g the orientation of Γ has to be changed) we may consider complementary Hardy spaces of Γ as subspaces of $L^p(\Gamma)$.

As pointed out by David [2], for any $1 and any <math>h \in L^{p}(\Gamma)$ the unique decomposition h = f - g with $f \in H^{p}(D_{1}), g \in H^{p}(D_{2})$ holds so that

(1.5)
$$L^{p}(\Gamma) = H^{p}(D_{1}) \cup H^{p}(D_{2})$$
, $H^{p}(D_{1}) \cap H^{p}(D_{2}) = \{0\}$.

Thus $L^{p}(\Gamma)$ may be considered as a topological and a direct sum of complementary Hardy spaces of Γ . The unique David decomposition (1.5) of $h \in Lp(\Gamma)$ is performed by the Plemelj formulas

(1.6)
$$f(\varsigma) = \frac{1}{2} [h(\varsigma) + C h(\varsigma)], \quad g(\varsigma) = \frac{1}{2} [-h(\varsigma) + C h(\varsigma)]$$

a.e. on Γ so that

(1.7)
$$h(\varsigma) = f(\varsigma) - g(\varsigma); \quad f \in H^p(D_1), \quad g \in H^p(D_2),$$

(1.8)
$$C h(\varsigma) = f(\varsigma) + g(\varsigma)$$
.

As an immediate consequence of (1.7), (1.8) and the uniqueness of the decomposition (1.7) we obtain

Theorem 1.2. If Γ is an AD-regular Jordan curve then the Cauchy operator (1.3) is an involution on $L^p(\Gamma)$ for any p > 1, i.e.

(1.9)
$$O^2 = I$$
, or $C^{-1} = O$,

where I stands for the identity operator.

Proof. If $h = f \in H^p(D_1)$ then g = 0 by the uniqueness statement and (1.8) implies Of = f. Similarly, $h = -g \in H^p(D_2)$ implies Og = -g. Using this we obtain from (1.8): C O h = Cf + Cg = f - g = h and this is equivalent to (1.9).

Corollary 1.3.
$$C(L^{p}(\Gamma)) = L^{p}(\Gamma)$$
.

Corollary 1.4. The numbers $\lambda = \mp 1$ are the only eigenvalues of the operator C. The functions $f \in H^p(D_1)$, $g \in H^p(D_2)$ are eigenfunctions corresponding to $\lambda = 1$ and $\lambda = -1$, resp.

In fact, if $h = \lambda Ch$ for some $\lambda \in O$ and $h \in L^{p}(\Gamma)$, $h \neq 0$, then by (1.9) $Oh = \lambda h$, i.e. $h = \lambda^{3}h$ and hence $\lambda = \mp 1$. If $\lambda = 1$ then (1.7) and (1.8) imply g = 0and $h = f \in H^{p}(D_{1})$. Similarly $\lambda = -1$ means h = -Oh and consequently h = -g. Corollary 1.5. The resolvent $R_{\lambda} = (I - \lambda C)^{-1}$ has the form

$$R_{\lambda} = (1 - \lambda^2)^{-1} I + \lambda (1 - \lambda^2)^{-1} C, \quad \lambda \neq \pm 1.$$

2. Complementary Hardy spaces $H^2(D_k)$ of Γ . If p = 2 then $L^2(\Gamma)$ becomes a Hilbert space with the inner product $\langle x, y \rangle = 1/|\Gamma| \int x(x)y(x) |dx|$. We

may assume without loss in generality that the length of Γ satisfies $|\Gamma| = 1$ and $0 \in D_1$. The Plemelj formulas (1.6) determine oblique projections of $L^2(\Gamma)$ onto its subspaces $H^2(D_k)$, k = 1, 2, and also the angle $\alpha \in (0; \pi/2]$ between these subspaces, as given by the formula

(2.1)
$$\cos \alpha = \sup \{ \operatorname{Re} \langle x, y \rangle / \|x\| \cdot \|y\| : x \in H^2(D_1), y \in H^2(D_2) \}$$

With this definition we have

Theorem 2.1. If Γ is an AD-regular Jordan curve in the finite plane then the norm $||C|| = ||C_{\Gamma}||$ of the Cauchy operator (1.3) acting on $L^{2}(\Gamma)$ satisfies

$$||C|| = \cot \frac{1}{2}\alpha$$

The smallest value ||C|| = 1 corresponds to the case of the orthogonal decomposition (1.5) of $L^{2}(\Gamma)$ which takes place if and only if Γ is a circle.

Proof. Let $h \in L^{2}(\Gamma)$ have the decomposition (1.7). Due to (1.7) and (1.8) we have

$$\begin{split} \|C\| &= \sup\{\|Ch\|^2/\|h\|^2 : h \in L^2(\Gamma) \setminus \{0\}\} = \\ &= \sup\{\|f + g\|^2/\|f - g\|^2 : f - g \neq 0\} = \\ &= \sup\{\left[1 + \frac{2 \operatorname{Re} < f, g >}{\|f\|^2 + \|g\|^2}\right] / \left[1 - \frac{2 \operatorname{Re} < f, g >}{\|f\|^2 + \|g\|^2}\right]\} \end{split}$$

Now, $\sup 2 \operatorname{Re} < f, g > (||f||^2 + ||g||^2)^{-1} = \sup \operatorname{Re} < f, g > (||f|| ||g||)^{-1} = \cos \alpha$ and this implies $||C|| = [(1 + \cos \alpha)/(1 - \cos \alpha)]^{1/2} = \cot \frac{1}{2}\alpha$. Thus ||C|| = 1 if and only if $\alpha = \pi/2$. If Γ is the unit circle T, then any $h \in L^2(T)$ has the decomposition $h(\varsigma) = f(\varsigma) - g(\varsigma)$, where $f(\varsigma) = \sum_{n=0}^{\infty} \alpha_n \varsigma^n$, $g(\varsigma) = \sum_{n=1}^{\infty} \beta_n \varsigma^{-n}$, $\varsigma = \epsilon^{i\theta}$, $\sum_{n=0}^{\infty} |\alpha_n|^2 < +\infty$ and $\sum_{n=1}^{\infty} |\beta_n|^2 < +\infty$. Hence $||Ch||^2 = ||h||^2 = \sum_{n=0}^{\infty} |\alpha_n|^2 + \sum_{n=1}^{\infty} |\beta_n|^2$ and $\int_T f(\varsigma) \overline{g(\varsigma)} d\theta = 0$ for any $h \in L^2(T)$. Thus ||C|| = 1 and $H^2(D_1) \perp H^2(D_2)$ hold for $\Gamma = T$. The converse statement is less trivial.

Suppose that $||C|| = ||C_{\Gamma}|| = 1$. Then ||Ch|| = ||h|| for any $h \in L^{2}(\Gamma)$ in view of (1.9) and this implies that C is unitary, i.e. $C^{-1} = C^{\bullet}$. However, $C^{-1} = C$ (cf. (1.9)) and hence $C = C^{\bullet}$, i.e. C is self-adjoint. Assuming that the length $|\Gamma| = 1$

and $s = s(s), 0 \le s \le 1$, is the equation of Γ we have

$$< Ox(o), y(o) > = \int_{0}^{1} \left(\frac{1}{\pi i} P.V. \int_{0}^{1} \frac{x(t)z'(t) dt}{z(t) - z(o)} \right) \overline{y}(o) do =$$
$$= \frac{1}{\pi i} \lim_{\sigma \to 0} \iint_{Q} \frac{x(t)\overline{y(o)}z'(t) do dt}{z(t) - z(o)} ,$$

where $Q = [0; 1] \times [0; 1]$, $P_{\varepsilon} = \{o + it \in Q : |o - t| \le \varepsilon\}$. Moreover,

$$< \mathbf{z}(\mathbf{s}), C\mathbf{y}(\mathbf{s}) >= \frac{1}{\pi i} \lim_{\mathbf{s} \to 0} \iint_{Q \setminus P_{\mathbf{s}}} \frac{\mathbf{z}(t) \overline{\mathbf{y}(\mathbf{s})}}{\mathbf{z}(t) - \mathbf{z}(\mathbf{s})} \frac{\mathbf{z}'(\mathbf{s}) \, d\mathbf{s} \, dt}{\mathbf{z}(t) - \mathbf{z}(\mathbf{s})}$$

Thus $\langle Cx(s), y(s) \rangle = \langle x(s), Cy(s) \rangle$ for all $x, y \in L^2(\Gamma)$ implies $x'(t)/[x(t)-z(s)] = \overline{x'(s)}/[\overline{x(t)}-\overline{x(s)}]$, or $\operatorname{Im}\{x'(s)x'(t)/[x(t)-x(s)]^2\} = 0$ a.e. in Q, with x(s) absolutely continuous on [0; 1]. On integrating w.r.t. s we obtain that $\arg[x(t)-x(s_2)]/[x(s)-x(s_1)] = \operatorname{const}$ for any fixed s_1, s_2 ($0 \leq s_1 < s_2 < 1$) and $t \in (s_2; 1)$ which is a well known characteristic property of a circle. This ends the proof.

The following lemma may be helpful in evaluating the angle α between the subpaces $H^2(D_1)$, $H^2(D_2)$ and consequently the norm of C in $L^2(\Gamma)$.

Lemma 2.2. Let Γ be an AD-regular Jordan curve in the finite plane with $\mu' = 1$ and $0 \in D_1$. If (p_n) , $n \in \mathbb{N} \cup \{0\}$ and (q_n) , $n \in \mathbb{N}$ are Szegő polynomials for D_1 and D_2 , resp. $(q_n$ being actually polynomials in s^{-1} without a constant term) then

(2.3)
$$\cos \alpha = \sup \left\{ \operatorname{Re} \sum_{j=0}^{m} \sum_{k=1}^{n} c_j \overline{d_k} < p_j, q_k >: \sum_{j=0}^{m} |c_j|^2 = \sum_{k=1}^{n} |d_k|^2 = 1 \right\}.$$

Proof. The sums $x_m = \sum_{j=0}^m c_j p_j$, $y_n = \sum_{k=1}^n d_k q_k$ are dense in $H^2(D_1)$ and $H^2(D_2)$, resp., because D_1, D_2 are of Smirnov type. We may assume that $||x_m|| = ||y_n|| = 1$ which is equivalent to $\sum_{j=0}^m |c_j|^2 = \sum_{k=1}^n |d_k|^2 = 1$. Then we have

$$\operatorname{Re} < z_m, y_n > / ||z_m|| ||y_n|| + \operatorname{Re} \sum_{j=0}^m \sum_{k=1}^n c_j \overline{d_k} < p_j, q_k >$$

and (2.3) readily follows.

Corollary 2.3. Under the assumptions of Lemma 2.2 there exists $\delta \in (0; 1)$ such that $|\langle p_j, q_h \rangle | \leq \delta$ for any $k, j + 1 \in \mathbb{N}$.

Corollary 2.4. If Γ is AD-regular with 0 inside Γ and for any system of complex numbers $\{a_0, a_1, \ldots, a_m; b_1, b_2, \ldots, b_n\}$ we have

(2.4)
$$\int_{\Gamma} \left(\sum_{j=0}^{m} a_j z^j \right) \left(\sum_{k=1}^{n} \overline{b_k} / \overline{z}^k \right) |dz| = 0$$

then Γ is a gircle.

Note that (2.4) implies the orthogonality of complementary H^2 – spaces of Γ .

In a paper to follow we shall be concerned with several interesting consequences of the Theorem 1.2.

REFERENCES

- [1] Ahlfors, L.V., Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), 157-194.
- [2] David, G., Opérateurs intégraus singuliers sur certaines courbes du plan complexe, Ann. Scient. Éc. Norm. Sup. 17 (1984), 157-189.
- [3] Duren, P.L., Theory of HP Spaces, Academic Press, New York, London 1970.
- [4] Semmes, S., The Cauchy integral, chord-arc curves, and quasiconformal mappings, The Biberbach Conjecture-Proceedings of the Symposium on the Ocassion of the Proof, Providence, R.I. 1986.
- [5] Zinsmeister, M., Domaines de Lavrentier, Publ. Math. d'Ornay, Paris 1985.

STRESZCZENIE

W pracy tej podano kilka wyników swiązanych z operatorem Cauchy'ego C_{Γ} działającym w przestrzeni $L^{p}(\Gamma)$, przy czym krzywa Γ jest regularna w sensie Ahlforsa-Davida. W szczególności wykazano, że operator C_{Γ} jest inwolucja, tzn. $C_{\Gamma} = C_{\Gamma}^{-1}$ dla dowolnego p > 1. Ponadto znaleziono dokładną wartość normy operatora O_{Γ} w przypadku p = 2 i wykazano, że $||C_{\Gamma}|| = 1$ wtedy i tylko wtedy, gdy Γ jest okrygern.