ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL. XLII,
SECTIO A
1988
Dopartment of Mathematic
Univenity of South Plorids, Tampa .
A. G. KARTSATOS

Applications of Nonlinear Perturbation Theory to the Existence of Methods of Lines for Functional Evolutions in Reflexive Hanach Spaces

Wykorzystanie nieliniowej teorii perturbacji do móaliwó́ci stosowania metody lamanych dla równań ewolucji w reflelosywnych przestrzeniach Banacha

$$
\begin{align*}
& \text { Abstract. Nonlinear perturbation theory is applied to the esaistence of a mothod of linee } \\
& \text { asociated with the functional evolution problem: } \\
& \qquad \begin{array}{l}
x^{\prime}+A(t) x=G\left(t, x_{\ell}\right), t \in[0, T], \mid \\
\text { (*) }
\end{array}
\end{align*}
$$

The mothod satisfies an equation of the type :

$$
\begin{equation*}
A\left(l_{n, j-1}\right) z_{n j}+\left(z_{n j}-z_{n, j-1}\right) / h=G\left(l_{n, j-1},\left(\bar{z}_{n j}\right) l_{n, j-1}\right) . \tag{*}
\end{equation*}
$$

The underlying apace X is a real Banach apace with uniformly convex dial apace. The oparators $A(t) x$ aro minly m-eccrotive in u while $G(t, f)$ is at least Lipechitz continuous in f. Here f lies in a suitable function apace over the delay interval $[-r, 0]$.

Recont results are improved and/or extended. The results aro new even in the ordinary case $\left(G\left(t, x_{l}\right) \equiv G(t, x(t))\right.$) and can be offectively ueed in the numerical treatment of ($:($). It is nowhere asoumed that X is \& (π), spece or that $G(t, f)$ can be extanded to a global Lipechitzian with reepect to f.

1. Introduction - preliminaries. In what follows, the symbol X denotes a real Banach space with norm $\|\cdot\|$ and dual space X^{\bullet}. It is always assumed that X° is uniformly convex. The duality mapping of X is denoted by J. This mapping maps X into X^{\bullet}, it is positively homogeneous of degree 1 and such that

$$
\langle x, J x\rangle=\|x\|^{2}=\|J x\|^{2}
$$

Here, $\langle x, f\rangle$ denotes the value of the functional $f \in X^{*}$ at $x \in X$. An operator $A: D(A) \subset X \rightarrow X$ is "accretive" if

$$
\langle A x-A y, J(x-y)\rangle \geq 0, \quad x, y \in D(A) .
$$

An accretive operator A is " m-accretive" if $R(A+\lambda I)=X$ for every $\lambda>0$. For an m-accretive operator, the Yosida approximants $J_{n}: X \rightarrow D(A), A_{n}: X \rightarrow X$ are defined by

$$
I_{n} x=(I+(1 / n) A)^{-1} x, \quad A_{n} x=A J_{n} x,
$$

where I denotes the identity operator. An accretive operator is called "strongly acretive" if there exists $\alpha>0$ such that

$$
\langle A x-A y, x-y\rangle \geq \alpha\|x-y\|^{2}, \quad x, y \in D(A) .
$$

An operator $A: D(A) \subset X \rightarrow X$ is "compact" if it maps bounded subsets of its domain into relatively compact subsets of X. It is called "bounded" if it maps bounded subsets oi its comain into bounded subsets of X. It is called "demicontinuons" if $\left\{x_{n}\right\} \subset D(A), x_{n} \rightarrow x \in D(A)$ imply that $A x_{n}-A x$. The symbl " \rightarrow " (" - ") denotes strong (weak) convergence and the symbols $\boldsymbol{R}, \boldsymbol{R}_{+}$denote the real line and the half line $[0, \infty)$, respectively. A real Banach space X is called a " $(\pi)_{1}$ space" if there exists a sequence $\left\{P_{n}\right\}$ of linear projections, each of norm 1, with finite dimensional range $P_{n} X=X_{n}$ such that $P_{n} x \rightarrow x$ as $n \rightarrow \infty$ and each subspace X_{n} has dimension n and is contained in X_{n+1}.

We denote by $P C([-r, 0], Y)$ the space of all piecewise continuous functions $f^{\prime}:|-r, 0| \rightarrow Y$ associated with the sup-norm $\|\cdot\|_{\infty}$. For a function a : $|-r, T| \rightarrow X$ we set $z_{t}(s)=z(t+o), t \in[0, T], z \in[-r, 0]$. In this paper we study the equation

$$
\begin{align*}
& x^{\prime}+A(\ell) x=G\left(\ell, x_{\imath}\right), \quad t \in[0, T] \\
& x_{0}=\Phi .
\end{align*}
$$

We assume mainly that for each $\ell \in[0, T], A(\ell)$ is a (possibly nonlinear) m-accrative operator with fixed domain $D \subset X$. We also assume that $G:\{0, T] \times P C\left([-r, 0], \overline{D_{0}}\right) \longrightarrow X$, where D_{0} equals either the ball $B_{P}(0)=\{x \in X ;\|x\|<\bar{r}\}$ or D, is Lipschitz continuous in its second variable :

$$
\left\|G\left(t, \psi_{1}\right)-G\left(t, \phi_{2}\right)\right\| \leq b\left\|\psi_{1}-\psi_{2}\right\|_{\infty}
$$

for every $\left.t \in[0, T], \phi_{1}, \psi_{2} \in P C(\mid-r, 0], \overline{D_{0}}\right)$. The function Φ in (() is a given function in $C\left([-r, 0], \overline{D_{0}}\right)$.

Now, consider, for $n=1,2, \ldots$, a partition $\left\{l_{n j}\right\}$ of the interval $[0, T]$ with $j=0,1,2, \ldots, n, t_{n 0}=0$ and $t_{n n}=T$. Moreover, let $h=T / n, t_{n j}=j h$. Also, let $z_{n 0}=\Phi(0) \in D$, and if χ_{L} denotes the characteristic function of the interval $L \subset R$, set

$$
f_{1}(x)(l)=x_{\mid-r, 0]^{(t) \Phi(t)+x^{\prime}}\left(0,\left.T\right|^{(t) x},\right.}
$$

$(\ell, x) \in[-r, T] \times X$, and

$$
F_{1}(\ell) x=G\left(\ell,\left(f_{1}(x)\right)_{\ell}\right), \quad(\ell, x) \in[0, T) \times \overline{D_{0}}
$$

The function $x \rightarrow G\left(\ell,\left(f_{1}(x)\right)_{\ell}\right)$ is a Lipschitzian on $\overline{D_{0}}$ with Lipechitz constant b. At this point, assume that, for each n, the equation

$$
\begin{equation*}
\left(A\left(l_{n 0}\right)-F_{1}\left(l_{n 0}\right)+(1 / h) I\right) x=z_{n 0} / h \tag{1}
\end{equation*}
$$

has a solution $x_{n 1} \in \overline{D_{0}}$. Then we let

$$
\bar{z}_{n 1}(t)= \begin{cases}\Phi(t) & , t \in[-r, 0] \\ z_{n 1} & , t \in(0, T]\end{cases}
$$

It should be noted that $\bar{z}_{n 1}(t) \in{\overline{D_{0}}}_{0}$ for all $\ell \in[-r, T]$. Similarly, one defines for each n and each $j \in\{2,3, \ldots, n\}$ the functions

$$
\begin{aligned}
& f_{j}(x)(t)=x_{\left[-r, i_{n, j-1}\right]}(t) \bar{z}_{n, j-1}(i)+x_{\left(t_{n, j-1}, T \mid\right.}(t) x, \\
& F_{j}(t) x=G\left(t,\left(f_{j}(x)\right)_{t}\right),
\end{aligned}
$$

respectively. The function $F_{j}^{\prime}(t) x$ is Lipschitz continuous with respect to x on $\overline{D_{0}}$ with Lipechitz constant b. Calling $z_{n j} \in \overline{D_{0}}$ a solution of the equation

$$
\begin{equation*}
\left(A\left(t_{n, j-1}\right)-F_{j}\left(t_{n, j-1}\right)+(1 / h) I\right) x=x_{n, j-1} / h, \tag{2}
\end{equation*}
$$

we have actually constructed the following double sequence :

$$
\bar{z}_{n j}(t)= \begin{cases}\Phi(l) & , t \in[-r, 0] \\ z_{n l} & , t \in\left(0, l_{n l}\right], \\ \vdots & \\ z_{n, j-1} & , t \in\left(l_{n, j-2}, l_{n, j-1}\right] \\ z_{n j} & , t \in\left(l_{n, j-1}, T\right],\end{cases}
$$

$n=1,2, \ldots, j=1,2, \ldots, n$. We call the sequence $\left\{\bar{z}_{n j}(l)\right\}$ or any such sequence valid for all large n, a "method of linean for the problem (\cdot), and obeerve that, for all the indices n, j we have $\bar{Z}_{n j}(l) \in \overline{\bar{D}_{0}}, l \in|-r, T|$. Moreover,

$$
A\left(l_{n, j-1}\right) z_{n j}+\left(z_{n j}-z_{n, j-1}\right) / h=G\left(l_{n, j-1},\left(\bar{z}_{n j}\right) \ell_{n, j-1}\right) .
$$

If $\overline{D_{0}}$ is a convex set, then the Rothe functions

$$
z^{n}(t)= \begin{cases}\Phi(t) & , t \in[-r, 0] \\ z_{n, j-1}+\left(t-l_{n, j-1}\right)\left(z_{n j}-z_{n, j-1}\right) / h & , t \in\left[l_{n, j-1}, l_{n j}\right]\end{cases}
$$

are also lying inside \bar{D}_{0}^{-}. In fact, if $\ell \in\left[\ell_{n, j-1}, \ell_{n j}\right]$ we have

$$
\varepsilon^{n}(l)=\left[1-\left(l-t_{n, j-1}\right) / h\right] x_{n, j-1}+\left[\left(l-t_{n, j-1}\right) / k\right] z_{n j},
$$

which lies on the line segment joining the points $s_{n, j} \in \bar{D}_{0,} \quad s_{n, j-1} \in \overline{D_{0}}$.
This method was used by the author and Parrott $[8]$ in onder to obtain solutions to problems of the type (\cdot) under the assumption that G is a gobal Lipschitzian in its second variable $\left(D_{0}=X\right)$. It was shown however in $[7]$ that the method actually converges as in $[8]$ if $D_{0}=B_{F}(0)$, for some F, the space X is a $(x)_{1}$ space,

$$
\langle A(l) x, J x\rangle \geq a\|x\|^{2}, \quad l \in[0, T], x \in \partial B_{Y / 2},
$$

for some constant $a>0, G(t, \overline{0}) \equiv 0$ ($\overline{0}$ is the zero function in $C\left([-r, 0], B_{\bar{r}}\right)$) and b (the Lipschitz constant of G with respect to its second variable) lies in ($0, a$). Of course, we are only mentioning here the assumptions in $[\vec{j}],[8]$ on the second variable of G.

In this paper we show, among other results with $D_{0}=B_{F}(0)$, that Theorem 2 of [7] can actually be proven in spaces X that are not necassarily of (x), type. We also show that under additional assumptions on A and/or G we may assume that $D_{0}=D(A)$. The reader should have in mind that we are only assuming conditions on A, G that ensure the solvability of equations of the type (2), and thus guarantee the existence of a method of lines $\left\{z_{n j}(l)\right\}$. This method will converge if we assume, in addition, the rest of the conditions on A and the first variable of G in the various results of [7], [8]. We can also apply these considerations to the K ato approximants [6] and the Galerkin approcimants [5].

These results can be also applied (and the methods become simpler) to ordinary evolutions where $G\left(\ell, x_{i}\right)$ is actually replaced by $G(\ell, x)$. For such results the reader is referred to Kartsatos and Zigler [10].

For the general theory of accretive operators, we refer the reader to the books of Barba [1], Browder [2], Lakshmikantham and Leela [11] and Martin [12].
2. Results for the space $P C\left([-r, 0], \overline{B_{r}(0)}\right)$. The following canditions will be needed in the sequel.
(A.1) For each $\ell \in\{0, T\}, A(\ell) \varepsilon$ is m-accretive in u with domain $D(A)$ independent of t.
(G.1) For each $t \in[0, T]$ the function $G:[0, T] \times P C([-r, 0)], \overline{B_{F}(0)} \rightarrow X$ satisfies the Lipschitz condition .

$$
\left\|G\left(t, \psi_{1}\right)-G\left(t, \phi_{2}\right)\right\| \leq b\left\|\psi_{1}-\phi_{2}\right\|_{\infty}
$$

with Lipschitz constant $b>0$ and Φ is a fuxed function in $C\left(\left\{-r, 0 \mid, \overline{B_{\bar{r}}(0)}\right)\right.$ with $\Phi(0) \in D(A)$.
(G.2) Condition (G.1) holds with $B_{F}(0)$ replaced by $D(A)$.

Theorem 1. Assume that conditions (A.1), (G.1) hold. Assume, further, that for every function $\left.\psi \in P C(\mid-r, 0], \overline{B_{F}(0)}\right)$ and every $x \in D(A)$ with $\|x\|>\bar{r}$ we have

$$
\begin{equation*}
\langle A(l) x-G(t, v), J x\rangle \geq 0, \quad t \in[0, T\rangle . \tag{3}
\end{equation*}
$$

Then there exists a method of lines for (*).
Proof. Using the m-accretiveness of the operator $A\left(l_{n 0}\right)$, for a fixed n, we obtain that the equation (1) is equivalent to

$$
\begin{equation*}
x=\left[A\left(l_{n 0}\right)+(1 / h) I\right]^{-1}\left[F_{1}\left(l_{n 0}\right) x+z_{n 0} / h\right], \tag{4}
\end{equation*}
$$

which can be written as $x=S x$. We first note that $F_{1}\left(\ell_{n 0}\right) x$ is Lipschitzian in x with constant b on the set $\overline{B_{\bar{r}}(0)}$. We observe next that the mapping $x \rightarrow\left[A\left(l_{n 0}\right)+(1 / h) I\right]^{-1} x$ is also Lipcchitz continuous with constant h. Consequently,
$S: \overline{B_{\bar{r}}(0)} \rightarrow X$ with $\left\|S x-S_{y}\right\| \leq b h\|x-y\|$ for every $x, y \in \overline{B_{\bar{r}}(0)}$. In order to apply the contraction mapping principle, we assume that n is so large that $b h<1$ and we show that S maps $B_{F}(0)$ into itself. To this end, let $x \in \overline{B_{F}(0)}$ be given and let $\approx=S x$. Then we have

$$
A\left(f_{n 0}\right)=+(1 / h) y-F_{1}\left(f_{n 0}\right) x-z_{n 0} / h=0 .
$$

Recall that $z_{n 0}=\Phi(0) \in \overline{B_{F}(0)}$. Taking "inner products" above with \& and assaming that $\|\| \gg \bar{F}$, we have

$$
\begin{aligned}
0 & =\left(A\left(l_{n 0}\right) v-F_{1}\left(l_{n 0}\right) x, J v\right)+(1 / h)\left(\varepsilon-z_{n 0}, J s\right) \geq \\
& \left.\geq(1 / h) \mid(\varepsilon, J v)-\left(z_{n 0}, J s\right\rangle\right) \geq(1 / h)\left(\|v\|^{2}-\left\|z_{n 0}\right\|\|v\| \mid \geq(1 / h)(\|s\|-\bar{r})\|s\|>0 .\right.
\end{aligned}
$$

Here we have used the fact that $F_{1}\left(\ell_{n 0}\right) x=G\left(\ell_{n 0},\left(f_{1}(x)\right)_{i_{n 0}}\right)$ with $\left\|\left(f_{1}(x)\right)_{t_{00}}\right\|_{\infty} \leq \bar{r}$. It follows that $S x \in \overline{B_{F}(0)}$. The rest of the proof is a repetition of the above argument. It is therefore omitted.

The following homotopy result can be found in the anthor's paper [4].
Lemma A. Let $U \subset X$ be open and let $B:\{0,1\} \times \mathbb{U} \rightarrow X$ be such that
i) For each $\ell \in[0,1], B(\ell, \cdot)$ is demicontinuous and strongly aceretive ;
ii) $B(t, x)$ is continuous in t uniformly in $x \in \bar{\Pi}$;
iii) $B(t, x) \neq 0$ for $t \in(0,1), x \in \partial U$;
iv) There exists $x_{0} \in U$ such that $\left\|\boldsymbol{H}\left(0, x_{0}\right)\right\| \leq\|H(0, x)\|$ for every $x \in \partial U$. Then $H(1,-)$ has a unique zero in \bar{U}.

In order to apply the above theonem to the present setting, we need the following definition : a set $U \subset X$ is called "aboorbing" if $x \in \mathbb{U}$ implies $t s \in U$ for every $t \in(0,1)$.

Theorem 2. Let the conditions (A.1), (G.1) be satisfied and assume that $D(A)$ is absorbing. Then if (3) holds for every $x \in D(A)$ with $\|x\|=\bar{r}$, there exists a method of lines for the equation (*).

Proof. We let $U=B_{r}(0)$ in Lemma A and $B(t, x)=x-t S x$, where S is as in the proof of Theorem 1. It is easy to see that

$$
\langle H(t, x)-H(l, y), J(x-y)\rangle \geq(1-b h)\|x-y\|^{2}
$$

for all $x, y \in \overline{B_{\bar{r}}(0)}$, where n is chosen so large that $b h<1$. Thus i) of Lemma A is satisfied. Now, let $t_{0}, t_{1} \in\{0,1]$ be given. Also, let K be a bound for the mapping S on the ball $\overline{B_{F}(0)}$. This bound exists by the fact that S is Lipschitz continuous on $\overline{B_{F}(0)}$. Then we have

$$
\left\|B\left(\ell_{1}, x\right)-H\left(\ell_{0}, x\right)\right\| \leq K\left|\ell_{1}-\ell_{0}\right|, \quad x \in \overline{B_{F}(0)},
$$

which shows that ii) of Lemma A holds. Since $\boldsymbol{B}(0,0)=0$ and $\boldsymbol{B}(0, x)=x$, condition iv) of Lemmil A holds with $x_{0}=0$. To show iii) of that lemma, assune that $\boldsymbol{H}\left(t, x_{t}\right)=0$ for some $t \in(0,1), x_{t} \in \boldsymbol{J} B_{F}(0)$. Then we have

$$
A\left(l_{n 0}\right)\left(x_{1} / t\right)+(t / h)\left(x_{1} / 1\right)=F_{1}\left(t_{n 0}\right) x_{t}+z_{n 0} / h,
$$

which, evaluating $J x_{f}$, implies
(5) $\left.0=\left\langle A\left(l_{n 0}\right)\left(x_{1} / l\right), J x_{l}\right\rangle+(1 /(h l))\left\|x_{1}\right\|^{2}-\left\langle F_{1}\left(l_{n 0}\right) x_{1}, J x_{1}\right\rangle-\left\langle z_{n 0} / h, J x_{1}\right\rangle\right\rangle$ $>\left\langle A\left(\ell \ell_{n 0}\right)\left(x_{i} / \ell\right), J x_{l}\right\rangle-\left\langle F_{1}\left(\ell \ell_{n 0}\right) x_{i}, J x_{i}\right\rangle$
becanse

$$
\begin{aligned}
& (1 /(h t))\left\|x_{t}\right\|^{2}-\left\langle z_{n 0} / h, J x_{t}\right\rangle \geq(1 /(h t))\left\|x_{i}\right\|^{2}-(1 / h)\left\|z_{n 0}\right\|\left\|x_{i}\right\| \geq \\
& \geq(1 /(h t))\left\|x_{i}\right\|^{2}-(1 / h)\left\|x_{i}\right\|^{2}>0 .
\end{aligned}
$$

Since $x_{t} / t \in D(A)$ and $D(A)$ is absorbing, $t\left(x_{t} / t\right)=x_{l} \in D(A)$. Thus,

$$
\begin{aligned}
& \left\langle A\left(l_{n 0}\right)\left(x_{l} / t\right), J x_{\ell}\right\rangle-\left\langle F_{1}\left(l_{n 0}\right) x_{\ell}, J x_{l}\right\rangle= \\
& =[\ell /(1-t)]\left\langle A\left(l_{n 0}\right)\left(x_{t} / t\right)-A\left(l_{n 0}\right) x_{1}, J\left(\left[(1-t) / t \mid x_{\ell}\right)\right\rangle+\right. \\
& +\left\langle A\left(l_{n 0}\right) x_{t}-F_{1}\left(l_{n 0}\right) x_{l}, J x_{8}\right) \geq 0,
\end{aligned}
$$

i.e, a contradiction of (5). Consequently, $B(1, x)=x-S x=0$ for some $x \in \overline{B_{r}(0)}$. The rest of the proof, which follows as above, is omitted.

If the operator $A(t)$ is demicontinuous for each $t \in[0, T]$ and bounded on $\overline{B_{\bar{r}}(0)}$, then we can actually work with the ariginal equation (2). This is the content of Theorem 3 below.

Theorem 3. Assume that (G.1) is satisfied with $A(t)$) just aceretive in s for all $t \in[0, T]$. Further, assume that $D(A)=D(A(t))$ is independent of $t, \overline{B_{F}(0)} \subset D(A)$ and (3) holds for $\|x\|=\bar{F}$. Then if $A(t)$ is bounded and demicontinuous on $\overline{B_{\bar{F}}}(0)$ for each $t \in[0,1]$, there exists a method of lines for (*).

Proof. This time we look at the homotopy $H(t, x)=(1-t) x+i S x$, where $S x=\left(A\left(l_{n 0}\right)-F_{1}\left(l_{n 0}\right)+(1 / h) I\right) x-z_{n 0} / h$. Assuming again that n is so large that $u h<1$, we see easily that

$$
\langle B(l, x)-B(l, y), J(x-y)\rangle \geq(1-t)\|x-y\|^{2}+t((1 / h)-b)\|x-y\|^{2}
$$

for every $t \in[0,1]$ and every $x, y \in \overline{B_{\bar{r}}(0)}$. Thus $B(t, x)$ is coercive in x on $\overline{B_{\bar{r}}(0)}$. The rest of the proof follows as in the Theorem 2 except the argument concerning x_{i} / ℓ which is not needed here.

This theorem is of particular importance in view of the fact that one may consider the Yoaida approximants $A_{m}\left(l_{n, j-1}\right)=A\left(l_{n, j-1}\right)\left(I+(1 / m) A\left(t_{n, j-1}\right)\right)^{-1}$, instead of $A\left(\ell_{n, j-1}\right)$ itself, in the equation (2), and then obtain a solution of (2) via a limiting process. This was done in [7, Th.2] ander the assumption that X is a $(x)_{1}$ space. The following result eliminates that assumption.

Theorem 4. Let the conditions (A.1), (G.1) be satisfied. Assume also that there exists a constant $a>0$ such that $\langle A(t) x, J x\rangle \geq a\|x\|^{2}$ for all $x \in D(A) \cap \overline{D_{\bar{r}}(0)}$, $t \in[0, T]$. Let the Lipschilz constant b of G lie in $(0, a)$ and $G(t, \overline{0}) \equiv 0$, where $\bar{\delta}$
denotes the zerofunction in PC(|-r, 0|, $\left.\overline{B_{F}(0)}\right)$. Then (*) possesses a method of lines provided that $0 \in D(A)$ and $A(l) 0 \equiv 0$.

Proof. It was shown in [7,Th.2] that given $\bar{b} \in(b, a)$ and m sufficiently large and independeat of t, we have

$$
\begin{equation*}
\left\langle A_{m}(\ell) \varepsilon-G(\ell, \phi), J u\right\rangle>0, \quad t \in[0, T], \tag{6}
\end{equation*}
$$

for all $x \in \partial B_{T}(0), \psi \in P C\left([-r, 0], \overline{B_{F}(0)}\right)$. We aketch this proof here because $8 B_{T}(0)$ should be replaced in [7, Th. 2] by $B_{F}(0)$ and the assumption on $A(l) 0$ was omitted there. Whenever $x \in D(A) \cap \overline{B_{F}(0)}$ we have

$$
\langle(I+(1 / m) A(t)) x, J x\rangle \geq\{1+(a / m)]\|x\|^{2} .
$$

If we set $s=(I+(1 / m) A(l)) x$, we can see easily that

$$
\left\|J_{m}(l)\right\| \leq\{1+(a / m)]^{-1}\|u\| \quad\left(J_{m}(l)=[I+(1 / m) A(l)]^{-1}\right) .
$$

Since the operator $I+(1 / m) A(t)$ is surjective, given $\approx \in \partial B_{F}(0)$ there exists $x \in D(A)$ with $x+(1 / m) A(l) x=s$. Taling the values of $J x$ on this equality we obtain that $\|x\| \leq\|w\|$. Thus $x \in \overline{B_{F}(0)}$. It follows that (6) holds for every \& $\in \delta B_{\bar{F}}(0)$. Following the proof in the above reference, we obtain now that i

$$
\left.\left\langle A_{m}(l) ษ, J v\right\rangle \geq m \mid 1-(1+(a / m))^{-1}\right]\|\varepsilon\|^{2},
$$

which, for $\bar{b} \in(b, a), \varepsilon \in \partial B_{F}(0)$ and all large m, gives

$$
\begin{align*}
\left\langle A_{m}(t) s-G(t, \phi), J «\right\rangle \geq \bar{\delta}_{r^{2}}-b r^{2}>0, & \imath \in[0, T], \tag{7}\\
& \phi \in P C\left(|-r, 0|, \overline{B_{r}(0)}\right)
\end{align*}
$$

We now consider the equation

$$
\begin{equation*}
\left(A_{m}\left(l_{n 0}\right)-F_{1}\left(l_{n 0}\right)+(1 / h) I\right) x-z_{n 0} / h=0 \tag{8}
\end{equation*}
$$

for all m for which (7) holds and for n large enough so that $b h<1$. Since, for each such m, the operator $A_{m}\left(t_{n O}\right)$ is continuous and bounded on $\overline{B_{r}(0)}$, an application of Lemma A to the mapping $H(l, x)=(1-l) x+l S x$ with $S x$ equal to the firet term of (8) shows the existence of a salution x_{m} of (8) for all large m.

At this paint the proof follows as the correspanding part of the proof of Theorem 3.6 of Barbu [1]. We let $A_{m}=A_{m}\left(t_{n 0}\right), F=(1 / h) I-F_{1}\left(t_{n 0}\right), y=z_{n 0} / h$. We have $A_{m} x_{m}+F x_{m}=y$. We note that A_{m} is m-accretive and F is coercive with constant $c=(1-b h) / h$. We have

$$
\begin{aligned}
0 & =\left\langle A_{m} x_{m}-A_{q} x_{q} \cdot J\left(x_{m}-x_{q}\right)\right)+\left\langle F x_{m}-F x_{q}, J\left(x_{m}-x_{q}\right)\right) \geq \\
& \geq\left\langle A_{m} x_{m}-A_{q} x_{q}, J\left(x_{m}-x_{q}\right)\right)+c\left\|x_{m}-x_{q}\right\|^{2}= \\
& =\left\langle A_{m} x_{m}-A_{q} x_{q}, J\left(J_{m} x_{m}-J_{q} x_{q}\right)\right\rangle+ \\
& +\left(A_{m} x_{m}-A_{q} x_{q}, J\left(x_{m}-x_{q}\right)-J\left(J_{m} x_{m}-J_{q} x_{q}\right)\right\rangle+c\left\|x_{m}-x_{q}\right\|^{2},
\end{aligned}
$$

where $J_{m}=\left(I+(1 / m) A\left(t_{n 0}\right)\right)^{-1}$. This implies

$$
\begin{aligned}
\left\|x_{m}-x_{q}\right\|^{2} & \leq-(1 / e)\left(A_{m} x_{m}-A_{q} x_{q}, J\left(x_{m}-x_{q}\right)-J\left(J_{m} x_{m}-J_{q} x_{q}\right)\right) \leq \\
& \leq(1 / c)\left\|A_{m} x_{m}-A_{q} x_{q}\right\|\left\|J\left(x_{m}-x_{q}\right)-J\left(J_{m} x_{m}-J_{q} x_{q}\right)\right\| .
\end{aligned}
$$

Since the boundedness of $\left\{\left\|F x_{m}\right\|\right\}$ implies the boundedness of $\left\{\left\|A_{m} x_{m}\right\|\right\}$ and $\left\|J_{m} x_{m}-x_{m}\right\| \leq(1 / m)\left\|A_{m} x_{m}\right\|$, using the uniform continuity of J on bounded subsets of X we get $x_{m} \rightarrow x \in B_{\bar{r}}(0)$ as $m \rightarrow \infty$. Since $A_{m} x_{m}=y-F x_{m} \rightarrow y-F x_{1}$, Proposition 3.4 of Barbu [1] implies that $x \in D(A)$ and $A x=y-F x$. We have thus solved (1) with the solution lying in $D(A) \cap \overline{B_{F}(0)}$. The same argument applies to (2). It is therefore amitted.
3. Reaults for the space $P C([-r, 0], \overline{D(A)})$. It is well known that if X is also uriformly convex, then $\overline{D(A)}$ is a convex set. In addition, a result of Reich (13) says that $\overline{D(A)}$ admits a nonexpansive retraction, i.e., a mapping $P: X \underset{\text { onto }}{\overrightarrow{D(A)}}$ such that $P^{2}=P$ and $\|P x-P y\| \leq\|x-y\|, x \in X$. This result can be effectively used in problems where the perturbations are defined only on $\bar{D}(A)$.

Theorem 5. Let conditions (A.1), and (G.2) be satisfied. Further, assume that there exist constants $d_{1}>0, d_{2}>0$ such that

$$
\langle A(l) x, J x\rangle \geq-d_{1}\|x\|
$$

for all $t \in[0, T]$ and all $x \in D(A)$ with $\|x\| \geq d_{2}$.
Moreover, let the constant $K>0$ be such that

$$
\|G(\ell, \psi)\| \leq K
$$

for all $\ell \in[0, T]$ and $\psi \in P C(|-r, 0|, \overline{D(A)})$. Then there exists a method of lines for the equation (*).

Proof. This time we write (2) as follows :

$$
\begin{equation*}
z-F_{1}\left(l_{n 0}\right)\left[A\left(l_{n 0}\right)+(1 / h) I\right]^{-1}-z_{n 0} / h=0, \tag{9}
\end{equation*}
$$

where $\varepsilon=\left(A\left(l_{n 0}\right)+(1 / h) I\right) x$, or, equivalently, $u-S u=0$ for the obvious operator $S: X \rightarrow X$. It is easy to see that S is Lipschitz continucus on X with constant bh. We assume again that n is so large that $b h<1$, and consider only such n 's. In order to apply Lemma A, with $B(t, u)=u-t S u$, we show that conditions ii) and iii) are satisfied for some open set U. As far as condition ii) is concerned, we observe that

$$
\|S u\| \leq\|S 0\|+b h\|u\| \leq\|S 0\|+\|v\|
$$

implies the aniform continuity of $B(\ell, u)$ in t with reapect to u lying in any bounded subset oi X.

Now, we are going to prove that all possible solutions s, of $H(\ell, x)=0,1 \in(0,1)$, lie inside a ball which is independent of l. In fact, let $l_{m} \in(0,1)$ be such that $\left\|v_{i_{m}}\right\| \rightarrow+\infty$ as $n \rightarrow \infty$. Set $\varepsilon_{m}=w_{i_{m}}$. Then we have

$$
\begin{equation*}
A\left(l_{n 0}\right) x_{m}+(1 / h) x_{m}-t_{m} F_{1}\left(l_{n 0}\right) x_{m}=t_{m} z_{n 0} / h . \tag{10}
\end{equation*}
$$

where $\varepsilon_{m}=A\left(\ell_{n 0}\right) x_{m}+(1 / h) x_{m}$. If $\left\{\left\|x_{m}\right\|\right\}$ has a bounded subsequence, then (10) implies that $A\left(l_{n 0}\right) x_{m}$ has a bounded subsequence, which implies in turn that $\left\{\left\|\mathrm{m}_{\mathrm{m}}\right\|\right\}$ has a bounded subsequence, i.e., a contradiction. It follows that $\left\|x_{m}\right\| \rightarrow \infty$ as $m \rightarrow \infty$. Thus,

$$
\begin{aligned}
0 & =\left\langle A\left(\ell_{n 0}\right) x_{m}, J x_{m}\right)+(1 / h)\left\|x_{m 1}\right\|^{2}-\ell_{m}\left\langle F_{1}\left(\ell_{n 0}\right) x_{m}, J x_{m}\right\rangle-\ell_{m}\left\langle z_{n 0} / h, J x_{m}\right\rangle \geq \\
& \geq-d_{1}\left\|x_{m}\right\|+(1 / h)\left\|x_{m}\right\|^{2}-K\left\|x_{m}\right\|-\left\|z_{n 0}\right\|\left\|x_{m}\right\| / h= \\
& =\left|(1 / h)\left\|x_{m}\right\|-d_{1}-K-\left\|z_{n 0}\right\| / h\right|\left\|x_{m}\right\| \rightarrow \infty \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

i.e., a contradiction. If we let $\left\|w_{i}\right\| \leq \bar{r}$ for all possible solutions v_{1} of $H(t, w)=0$, then we may take $U=B_{F_{1}}(0)$, for any $\bar{r}_{I}>\bar{r}_{\text {}}$, and the conditions $\left.i i\right)$, iii) of Lemma A are satisfied. Conditions i), iv) follow easily. This completes the proof.

Theorem 6. Let X be uniformly conver. Let conditions (A.1), (G.2) hold. Let $0 \in D(A)$ with $A(t) 0=0, l \in\{0, T]$. Let $\Phi(0) \in \overline{D(A)} \cap \overline{B_{r}(0)}, \bullet \in[-r, 0]$. Assume that for every $x \in \partial B_{\bar{r}}(0) \cap D(A)$, every $\lambda \in(0,1)$ and every $\psi \in P C(\{-r, 0\}, \overline{D(A)} \cap$ $\left.\overline{B_{\bar{r}}(0)}\right)$ we have

$$
\begin{equation*}
\langle A(t) x-\lambda G(\ell, \psi), J x\rangle \geq 0 \tag{11}
\end{equation*}
$$

Then (*) possesses a method of lines.
Proof. Since X is also uniformly convex there exists a nonexpanaive retraction P on $\overline{D(A)}$. Since $0 \in \overline{D(A)}, P 0=0$. Thus, for every $x \in X,\|P x\| \leq\|x\|$. We now consider the homotopy

$$
H(\ell, x) \equiv x-\left[A\left(\ell_{n 0}\right)+(1 / h) I\right]^{-1}\left[t\left(F_{1}\left(\ell_{n 0}\right) P x+z_{n 0} / h\right]\right.
$$

The equation $B(1, x)=0$ is equivalent to (2). In fact, if $B(1, x)=0$, then $x \in D(A)$ and $P x=x$. In order to apply Lemma A to this problem, we notice again that the term in $H(t, x)$ after the ininus sign is a Lipschitz continuous function on X with Lipschitz constant bh. We assunse again that n is so large that $b h<1$. In fact,

$$
\left\|F_{1}\left(l_{n 0}\right) P x-F_{1}\left(l_{n 0}\right) P_{y}\right\| \leq b\left\|P_{x}-P_{y}\right\| \leq b\|x-y\|
$$

for all $x, y \in X$. Now, let $x \in \partial B_{F}(0)$ be given. Since $\|P x\| \leq\|x\|$, we have that $\|P x\| \leq \bar{r}$. This implies that the entire function

$$
f_{1}(P x)(t)=x_{[-r, 0]}(l) \Phi(l)+x_{(0, T]^{(l) P x},}
$$

$(t, x) \in[-r, T] \times \partial B_{\bar{r}}(0)$, lies in the closed convex set $\overline{D(A)} \cap \overline{B_{r}(0)}$. Thus $\left(f_{1}\left(P_{x}\right)\right)_{t} \in$ $P C\left(|-r, 0|, \overline{D(A)} \cap \overline{B_{r}(0)}\right)$ and if x is a solution of the equation $B(t, x)=0$ lying in $\partial B_{F}(0)$ for sorne $t \in(0,1)$, then we have

$$
\begin{aligned}
0 & =\left(A\left(t_{n 0}\right) x-\mid G\left(t_{n 0},\left(f_{1}(P x)\right)_{i_{\infty 0}}\right), J x\right)+(l / h)\langle x, J x\rangle-(t / h)\left\langle z_{n 0}, J x\right\rangle \geq \\
& \geq(1 / h)\left|\|x\|^{2}-t\left\|z_{n, 0}\right\|\|x\|\right| \geq(1 / h)\left(1-t \mid \bar{F}^{2}>0\right.
\end{aligned}
$$

It is easy to see now that all the conditions i), iv) of Lemma A are satisfied with $U=B_{\boldsymbol{r}}(0)$. This completes the prool.

Evidently, separate, and independent of $\lambda \in(0,1)$, conditions can be imposed on $A(\ell), G(l, \downarrow)$ for (11) to hold.
4. General cormments. Analogons resalts do hold in general Banach spaces whenever $A(l)$ has compact resalvents $(A(l)+(l / h) I)^{-1}$ for all $\ell \in[0, T]$. However, as far as the anthor knows, it has not been shown whether the method of lines constructed here actually converges to the solution of (() if X° is not uniformly convex and $\boldsymbol{G}(\ell, \phi)$ does depend on $\phi \in P C\left(|-r, 0|, \overline{D_{0}}\right)$ nontrivially.

One can alro use the present results to show that Theorem 3 of (7) can be proved withort assuming that $G(t, \psi)$ is extendable to a global Lipechitzian on $[0, T] \times O$, where $C=O(\mid-r, 0], X)$. One can assume instead conditions like the ones of Section 2 above. The results of that section are directly applicable in this setting

Theorem 2 replaces the assumption that X is a (x), space in Theorem 1 of $[\vec{i}]$ by the boundedness of $A(l)=$ with respect to \& on $B_{F}(0)$. Since $A(t) w$ is demicontinuous (and thus locally bounded) in ε, this boundedness assumption is certainly a natural ane.

REPERENCES

[1] Barbu, V. . Nonkinear Semigronps and Dyferential Equations in Banach Spaces, Noordbof Int. Pubd., Layden 1078.
[2] Browder. P.E . Nomhinear Operators and Nowinear Equations of Bualulion in Banach Spaces, Proc. Symp. Pure Mah., 18, Arrar. Soc. Providenca, Rhode Laland 1976.
[3] Kertsitos. A. G. The existences of method of bines for evoletion eqmations unoding masinal monotone operators and looilly defined Lupechetean perturbation, so eppear.
 Intogral Equations, 8 (1985), 173-184.
[5] Kartsatos, A. G. Parrot, M. P. Emetence of soluthons and Galertim apprammatione for nonlincor fenctional esotution equations. Tohoku Math. J., 34 (1982), 500-523.
[6] Karseatos, A. G. , Perrot, MR. Consergence of the hiato apprommans for evolution aquations moding fundiond perterbation . J. Differential Equation, 47 (1983), 358-377.
[7] Karisetos. A. G. Pariot, ME. Cabal edetione of functiond evaluion equations inoolving locally defined Lepechetsan perturbatione . J. London Mhsh. Soc., 27 (1983), 306316.
[8] Kartsatos, A. G. , Parrot, M. . , A methad of lines for a nonlinear abstract functional evolution equation. Trans. Amer. Mith Soc., 256 (1904), 73-89.
[9] Kartsetob, A. G. . Toro, J. Pasiniy and admesibility for evolution equations in Banach spaces , Nonlinear Anal., 6 (1882), 225-236.
[10] Karteatoe, A. O., Zigles, W. . Rothe's mathad and weak solution of perisurbed evoletion .aquations in neflesive Barach gpaces. Math. Ans., 219 (1976), 159-166.
(1i) Lekehmikentham, V. , Leele, S. , Nombear Difierential Equations in Abatrect Spaces, Porgemon Pres, Oxford 1881.
[12] Martia. RH., jr., Nontinear operators and dyferential equatuone in Banach qpaces, Willoys New York 1978.
[13] Reich, S. , Extenon problemp for acrebive sets in Banach apaces , J. Punct. Anal., 28 (1977), 378-305.

STRESZCZENIE

 srywanym $G\left(l, x_{1}\right)=G(l, z(l))$ i mogi byt ofoktywie olosomene pray aumiryconym romingymaniu sobmat.

