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Applications of Nonlinear Perturbation Theory 
to the Existence of Methods of Lines for Functional Evolutions 

in Reflexive Banach Spaces

Wykorzystanie nieliniowej teorii perturbacji 
do możliwcéci stosowania metody łamanych dla równań ewolucji 

w refleksy wnych przestrzeni ach Banacha

Abstract. Nonlinear perturbation theory is applied to the existence of a method of lines 
associated with the functional evolution problem :

x' +A(f)x = G(t,x,), te[0,T],y 
X<> = $ .

The method satisfies an equation of the type :

(**) ) znj + (tnj ~ zn,j-l)/h — G((n>y_i, (znj)tnj_j) .
The underlying space X is a real Banach space with uniformly convex dual space. The operators 

A(i)a are mainly nt-accrotive in tt while G(t,/) is at least Lipschitz continuous in f. Here f lies 
in a suitable function space over the delay interval r, 0],

Recent results are ingwoved and/or extended. The results are new even in the ordinary case 
( G(f,I() = G(f,x(f)) ) and can be effectively used in the numerical treatment of («). It is 

nowhere assumed that X is a (ff)| space or that G(f, /) can be extended to a global Lipschitzian 
with respect to /.

1. Introduction — preliminaries. In what follows, the symbol X denotes a 
real Banach space with norm || ■ || and dual space X*. It is always assumed that X* 
is uniformly convex. The duality mapping of X is denoted by J. This mapping maps 
X into X*, it is positively homogeneous of degree 1 and such that

(x,/x) = ||x||’ = ||Jx||a.

Here, (x,/) denotes the value of the functional f € X* at x € X. An operator 
A : P(A) C X —♦ X is “accretive” if

(Ax — Ay, / (x — >)) > 0 , x,y€P(A).
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An accretive operator A is “m-accretive” if 22 (A 4- XI) = X for every A > 0. Fbr 
an m-accretivc operator, the Yoeida approximants Jn • X —• D(A), A„ : X —» X axe 
defined by

•fn® — (2 + (l/n)A) *x , Anx = AJnx ,

where I denotes the identity operator. An accretive operator is called “strongly 
acretive” if there exists a > 0 such that

(Ax-Ay,x-y) > or||» — y||® , x,yeD(A).

An operator A : 2?(A) C X -* X is “compact” if it maps bounded subsets of its 
domain into relatively compact subsets of X. It is called “bounded” if it maps bounded 
subsets of its domain into bounded subsets of X. It is called “demicontinuous" if 
{i„} C D(A) , x„ -* x € D(A) imply that Ax„ -*■ Ax. The symbol (“-*”) 
denotes strong (weak) convergence and the symbols 22, 22+ denote the real line and the 
half line ¡0,oo), respectively. A real Banach space X is called a “(sr)i space” if there 
exists a sequence {P„} of linear projections, each of norm 1, with finite dimensional 
range PnX = Xn such that Pnx —» x as n —» oo and each subepace X„ has dimension 
n and is contained in Xn+i.

We denote by PC([—r,0],Y) the space of all piecewise continuous functions 
[—r,0] -* Y associated with the sup-norm || • ||oo- Fbr a function a : (—r,T] -* X

we set ««(«) = «(< 4- »), £ € (0, T], # € [—r,Oj. In this paper we study the equation

x'+ A(l)x = G(t,xt) , te(0,T),
*’ x0 = « .

We assume mainly that for each t € [0,T], A(t) is a (possibly nonlinear) 
rn-accreative operator with fixed domain D C X. We also assume that 
G : [0,T] x PC([—r,0],25o) —* X, where Do equals either the ball 
2?r(0) = {x € X ; |jx[| < r} or D, is Lipschitz continuous in its second variable :

for every £ € [0,T], V>i, € PC(|—r,O],Po). The function $ in (*) is a given
function in C([—r,0],2?o).

Now, consider, for n = 1,2,..., a partition {tnj} of the interval [0,T] with 
y = 0,1,2,..., n, t„o — 0 and tnn — T. Moreover, let h = T/n, tnj = jk. Also, let 
ino = $(0) € D, and if x^ denotes the characteristic function of the interval L C 22, 
set

/>(»)(<) = xI_r>ol(<)*G) + x(o;r)(<>,

(£, x) € [—r.T) X X, and

PJOn = G(£,(f,(x))t) , (£,») € (O.T) X .

The function x —• G(t, (/j (x))e) is a Lipschitzian on Z5o with Lipschitz constant 
b. At this point, assume that, for each n, the equation 

(L) (A(£no)-P.(Uo) + (l/A)2)x = rno/A
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has a solution z„i € Do. Then we let

, t € (-r,0l , 
, i€(0,Tl .

It should be noted that xni(t) € Dq for all ( € (—r,T). Similarly, one defines for 
each » and each j € {2,3,..., n} the functions

/>(*)(<) = x. . . + . «,(*)*>

Py(i)x = G(t,(/y(x)),),

respectively. The function fy (t)x is Lipschitz continuous with respect to x on So 
with Lipschitz constant b. Calling z„y € S^ a solution of the equation

(2) (Affnj-t) - + (i/h)l)x = Zn^/h ,

we have actually constructed the following double sequence :

«»y(0 ='

*(0
*nl

*nj

, te[-r,o],
, <€(0,tn,l,

» f € (ffi.y—j3«j—i] « 
» 1 € (fn,j—1 ,T] ,

n = 1,2,..., / = 1,2,...,». We call tin sequence {x„y(f)} or any such sequence 
valid for all large », a “method of lines” for the problem (»), and observe that, for all 
the indices »,/ we have 7„y(f) € So, t € |—r,T]. Moreover,

A(t„,/-l)Sn/ +.(*»> “ — G(<n,y-J, (Xn/)tn y_1) •

If So is a convex set, then the Rothe functions

*(‘) , < € [-r,0) ,
*nj— t + (i ~ Inj-l)(*nj ~ *n,)—l)M » € l^nj—l3nj)

are also lying inside So. In fact, if I € [inj-iJnj] we have

Xn(f) = [l — (f — + I(t — fn.y-l)/h]s„y ,

which lies on the line segment joining the points xnj € So, *n,j-i € So.
This method was used by the author and Parrott [S] in order to obtain solutions

to problems of the type (•) under the assumption that Q is a global Lipschitzian in 
its second variable (Do = X). It was shown however in [7] that the method actually 
converges as in [8] if Do — Bj(Q), for some F, the space X is a (x)i space,

(A(f)x, Jx) > «||x||a , t € (0,r| , x € dBr/i ,
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for some constant a > 0, G(/,0) = 0 (0 is the zero function in <7([—r,0], B,)) and 
b (the Lipschitz constant of G with respect to its second variable) lies in (0,a). Of 
course, we are only mentioning here the assumptions in [7], [3] on the second variable 
oiG.

In this paper we show, among other results with Do = that Theorem 2
of [7] can actually be proven in spaces X that are not necessarily of (tr) ( type. We 
also show that under additional assumptions on A and/or G we may assume that 
Do = D(A). The reader should have in mind that we are only assuming conditions 
on A, G that ensure the solvability of equations of the type (2), and thus guarantee 
the existence of a method of lines (<n/(Z)}. This method will converge if we assume, 
in addition, the rest of the conditions on A and the first variable of G in the various 
results of [7], [3]. We can also apply these considerations to tlie Kato approximants
[6] and the Galerkin approximants [5].

These results can be also applied (and the methods become simpler) to ordinary 
evolutions where G(t,xt) is actually replaced by G(i,r). For such results the reader 
is referred to Karts at os and Zigler [10].

For the general theory of accretive operators, we refer the reader to the books of 
Barbu [1], Browder [2], Lakshmikantham and Leela [11] and Martin [12].

2. Results for the space PC([—r,0],Br(0)). The following conditions will be 
needed in the sequel.

(A.1) For each i € ¡0, T], A(t)a is m-accretive in « with domain J9(A) indepen
dent of t, ____

(G.l) FbreachZ € [0,T] the function G : [0,r]xPC([-r,0)|, R?(0) ”♦ X satisfies 
the Lipschitz condition •

||G(f,^1)-G(<,^)|| <611^-^11«,

with Lipschitz constant b > 0 and $ is a fixed function in G([—r, 0], R?(0)) with 
$(0)eP(A).

(G.2) Condition (G.l) holds with 2?r(0) replaced by D(A).

Theorem 1. Assume that conditions (A.1), (G.l) hold. Assume, further, that 
for every function G PG([—r,0],2?r(0)) and every x € D(A) with ||x|| > r we have

(3) {A(l}x-G{t^)Jx} >0 , t€[0,T).

Then there exists a method of lines for (»).

Proof. Using the m-accretiveness of the operator A(Zno), for a fixed n, we 
obtain that the equation (1) is equivalent to

(4) X = [A(t„o) + (l/A)/]-,[Fl (Zno)x + Snd/h] ,

which can be written as r = Sx. We first note that (Zno)* is Lipschitzian in x with 
constant b on the set P,(0). We observe next that the mapping 
x —» [A(ino) + (l/fi)/]-1* is also Lipschitz continuous with constant h. Consequently,



Application« of Nonlinear Perturbation Theory to the Existence of Method«... 45

S : B?(0) -» X with ||Sa: - Sy|| < bh\\x - y|| for every x,y € 2?,(0). In order to 
apply the contraction mapping principle, we assume that n is so large that bh < 1 
and we show that S maps 2?r(0) into itself. To this end, let x € Ay(0) be given and 
let « = Sx. Then we have

A(l„o)* + (l//t)« — Fi (tno)x — Zno/h — 0 .

Recall that z„o = $(0) 6 JE?r(O). Ikking "inner products" above with « and assuming 
that ||« I, > r, we have

0= (X(f„o)« - Fl{fno)s, Ju) + (-1/A)<- - *n0, J«) >
> (1/A)|<«, J«> - 0„o, J«>1 > (l/fc)l 11-11’ - ||z„o|| It'll 1 > (1/Zt)(It'll - r) 11*11 > o .

Here we have used the fact that F\ (tn0)x— G(tno,(h (®))«.o) with 
ll(A(»))< Jloo < r> It follows that Sx 6 2?r(0). The rest of the proof is a repetition 
of the above argument. It is therefore omitted.

The following homotopy result can be found in the author’s paper {4).

Lemma A. Let U C X be open and let H : [0, l] x V —» X be such that
i) For each t e (0,1], H (t, •) ia demicontinuous and strongly accretive ;
ii) B(t, x) is continuous in t uniformly in x & U ;
iii) H(t,x) £ 0 fort € (0,1), x € dU ;
iv) There exists x0 € U such that ||27 (0, x0)|| < ||27(O,x)|| for every x € dU.

Then has a unique zero in U.

In order to apply the above theorem to the present setting, we need the following 
definition : a set U C X is called "absorbing” if « e 17 implies f« € 17 for every 
<€(0,1).

Theorem 2. Let the conditions (A.1), (G.l) be satisfied and assume that 
D(A) is absorbing. Then if (3) holds for every x € D(A) with |,x|| = r, there exists 
a method of lines for the equation (*).

Proof. We let U = Sr(0) in Lemma A and 27(1, x) = x — fSx, where S is as in 
the proof of Theorem 1. It is easy to see that

(K(t,x) - E(f,y),/(x - y)> > (1 - Wi)||x - y||’

for all x,y e 2?y(0), where n is chosen so large that bh < 1. Thus i) of Lemma A is 
satisfied. Now, let tp,fl € [0,1) be given. Also, let A' be a bound for the mapping 
S on the ball 2?y(0). This bound exists by the fact that S is Lipschita continuous on 
Sy{0). Then we have

||27(t„x) - H(tOtx)|| < A'|f, - <0| , x € SHO) ,

which shows that ii) of Lemma A holds. Since 27(0,0) = 0 and 27(O,x) = x, condi
tion iv) of Ijemma A holds with x<j = 0. To show iii) of that lemma, assume that 
^(t.x.) — 0 for some t € (0,1), x< € ¿>2?f(0). Then we have

A(tno)(x</t) + (l/h)(xt/l) = Fi(fno)jr< + Sno/h ,
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which, evaluating Jxt, implies

(5) 0 = (.A(ir»o)(*«/<MX() + (1/(M)II*<H3 - <A(<no)*i, J««) - (zno/h,Jx,) >
> (A(tn0}(xt/t), Jxt) — (Fi(tno)xt,Jxt)

because

(l/(fc))IM’ - > (l/(A0)IM3 - (1/A)ll«no|| ||*«ll>
>(l/(M)l|x«||3-(l/A)||x«||3>0.

Since X(/t € D(A) and P(A) is absorbing, = xt € D(A). Thus,

(A(tno)(xt/t), Jxt) — (Fi(tn0)xt,Jxt) =
= [t/(l - {)](A(tn0)(xtft) - A(tn0)x,, J([(l - t)/<|*<)>+
+ (A(i„o)xe ~ Fi (tr»o)x<, Jxt) >0 ,

i.e., a contradiction of (5). Consequently, K(l, x) = x — Sx = 0 for some x G Pr(0). 
The rest of the proof, which follows as above, is omitted.

If the operator A(t) is demicontinuous for each t € [0, T| and bounded on jE?f(O), 
then we can actually work with the original equation (2). This is the content of 
Theorem 3 below.

Theorem 3. Assume that (G.l) is satisfied with A(t)u just accretive in « for all 
t € [0, T]. Further, assume that D(A) = 2?(A(t)) is independent oft, Pr(0) G P(.4) 
and (3) holds for |]i|| = r. Then if A(t) is bounded and demicontinuous on Br(0) for 
each t G (0, l), there exists a method of lines for (*).

Proof. This time we look at the homotopy H(t,x) = (1 — t)x + tSx, where 
Sx = (A(tno) — Fi (<no) + (l/h)I)x — Znd/h. Assuming again that n is so large that 
bh < 1, we see easily that

{H(t,x) - H(t,y), J(x - y)> > (1 - t)||x —jr||3 + t((l/h) - 6)||x - y||3

for evety t € [0,1] and every x, y € By (0). Thus H(t, x) is coercive in x on Br(0). 
The rest of the proof follows as in the Theorem 2 except the argument concerning 
xt/l which is not needed here.

This theorem is of particular importance in view of the fact that one may consider 
the Yoaida approximants Am(tnj-i) = X(tnj-i)(/+ (1/m)i, instead of 
A(tn,f-1) itself, in the equation (2), and then obtain a solution of (2) via a limiting 
process. This was done in [7, Th.2] under the assumption that X is a (<)i space. The 
following result eliminates that assumption.

Theorem 4. Let the conditions (A.l), (G.l) be satisfied. Assume also that 
there exists a constant a > 0 such that (A(t)x, Jx) > a||x||3 for allx € P(A)n2?r(0), 
I € [0,T]. Let the Lipschitx constant b of G lie in (0,a) andG(tf5) & 0, where 5
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denote» the zero function inP<7([—r, 0],Py(0)). Then (*) posteaaea a method of line» 
provided that 0 € P(A) and A(l)0 = 0.

Proof. It was shown in [7, Th.2] that given b € (b,a) and tn sufficiently large 
and independent of I, we have

(«) <Am(0«-CM),Jit)>0, t€[0,T],

for all « € dBr(d), € P<7((—r, 0], Py(0)). We sketch this proof here because dBy(O) 
should be replaced in [7, Tlt.2] by Py(0) and the assumption on A(i)0 was omitted 
there. Whenever x € D(A) n By(0) we have

{(J+(l/m)A(t))x,/x)>|l +(«»111x11’.

If we set « = (I + (l/m)A(t))x, we can see easily that

IIM‘)«II <[l+(«/m)]-«||u|| (/m(t) = l/ + (l/m)A(0r*) •

Since the operator I + (l/m)A(t) is suijective, given tt 6 dBr(Q) there exists 
x € D(A) with x + (l/m)A(t)x = u. 'Baking the values of Jx on this equality we 
obtain that ||x|| < ||tt||. Thus x € J?f(0). It follows that (6) holds for every « € ¿)J?r(0). 
Following the proof in the above reference, we obtain now that \

(Am(t)uji»} > m[l - (1 + («/m))“1J||«||’ ,

which, for 1 € (6,«), « € dfly(0) and all large m, gives

(7) {Am(t)«-G(<,^),J«)> hr’-6r’>0, t € |0,r] ,
^€PC(l-r,0l,^(0l)

We now consider the equation

(8) (Am(tn0) - Pl (tno) + (l/A)/)x — Zno/h = 0

for all m for which (7) holds and for n large enough so that bh < 1. Since, for each 
such m, the operator Am(lno) is continuous and bounded on Pr(0), an application of 
Lemma A to the mapping H(l,x) = (1 - ()x + tSx with Sx equal to the first term of 
(8) shows the existence of a solution xm of (8) for all large m.

At this point the proof follows as the corresponding part of the proof of Theorem 
3.6 of Barbu [lj. We let Am = Am(lno), P — (l/h)I - Pi(l„o) , jr = xno/h. We 
have Amxm + Fxm — V- We note that Am is m-accretive and P is coercive with 
constant e = (1 — bh)/h. We have

0 = (Amxm •“ AqXg, <7(xm — Xq)) 4* (Pxm — PXqt J(xm “ Xg))
(AmXm — AgXg, J(xm — Xg)) + f||xm — Xg|j —

= (Am*m ~ AgXg, J(JmXm ~ -^Xg)) +
+• (AmXm — AgXg, J(xm — Xg) ~ J(JmXm “ A*«)) + ~ *1II »
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where Jm — (I + (l/m)A(t„o))-1. This implies

||*m — ®ç|| — ~(l/e) (AmZrn — AgXg, 2(xm - Xg) - ~ JqXq}} $
— (l/c)lt'^ma;m “ ^<jxgl| ||2(xm — Xq) “ J(LmXm ~ 2gXg)|| •

Since the boundedness of (||Pxm||} implies the boundedness of {||Amxm||} and 
||7mxm-xm|| < (l/m)||Amx^,||, using the uniform continuity of J on bounded subsets 
of X we get xm -* x € 5,(0) as m —> oo. Since Amxm = y — Fxm —► j) — Fx, 
Proposition 3.4 of Barbu [1] Implies that x e 23(A) and Ax = y — Fx. We have 
thus solved (1) with the solution lying in 23(A) n Pr(0). The Bame argument applies 
to (2). It is therefore omitted.

3. Results for the space PC([—r,0], 23(A)). It is well known that if JT is also
uniformly convex, then D(A) is a convex set. In addition, a result of Rei chjl3] says
that 23(A) admits a nonexpansive retraction, i.e., a mapping P : X —» D(A) such 

onto
that P3 = P and ||Px — Py|| < ||x — y||, x € X. This result can be effectively used in 
problems where the perturbations are defined only on D(a}.

Theorem 5. Let conditions (A.1), and (G.2) be satisfied. Further, assume 
that there exist constants di >0, dj > 0 such that

(A(l)x,Jx) > -di||*||

¡or alt t € [0,T] and all x € 23(A) with ||x|J > dj.
Moreover, let the constant K > 0 be such that

l|CM)ll<*

Jor all t € (0,T] and € PC(J—r,0], 23(A)). Then there exists a method o] lines ¡or 
the equation (*).

Proof. This time we write (2) as follows :

(9) « - Px(t«o)|A(t„o) + (l/A)2J-*s - zn0/h = 0 ,

where a = (A(J„o) + (l/A)2)x, or, equivalently, « - Su = 0 for the obvious operator 
S : X —» X. It is easy to see that S is Lipschitz continuous on X with constant bh. 
We assume again that n is so large that bh < 1, and consider only such n’s. In order 
to apply Lemma A, with H(t, u) = u - tSu, we show that conditions ii) and iii) are 
satisfied for some open set U. As far as condition ii) is concerned, we observe that

M<nso|| + hA||«||<||so|| + |M
implies the uniform continuity of 2T((,u) in t with respect to u lying in any bounded 
subset of X.

Now, we are going to prove that all possible solutions a( of H(t, a) = 0, t € (0,1), 
lie inside a ball which is independent of I. In fact, let tm € (0,1) be such that

—• +oo as „ —♦ oo. Set um = S(m. Then we have
•

( 10) (ln0 )^m 4" (l/AJjfm — OnoJ^m = *r*o/A ft
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where «m = A(tno)xm + (l/h)xm. If {||xm||} has a bounded subsequence, then
(10) implies that X(fno)*m has a bounded subsequence, which implies in turn that 
{||«r»||} has a bounded subsequence, i.e., a contradiction. It follows that ||xm|| —* oo 
na m —• oo. Thus,

0 = (A(f„o)Xm, xm) + (l/A) ||®m |, ~ f >n(Pl (fno)Xm> J xm) ~ imfano/h, J Zm} >

> -d,||xm|| + (1/A)||xm||3 - K||xm|| - ||zno|| ||xm||/A =
= I (1/A)ll*m|| -di - K - pnoll/A ) ||xm || — oo asm -*oo ,

i.e., a contradiction. If we leK||t»<|| < r lor all possible solutions u» of = 0,
then we may tale U = Br,(0), for any r» > r, and the conditions ii), iii) of Lemma 
A are satisfied. Conditions i), iv) follow easily. This completes the proof.

Theorem 6. Let X be uniformly convex. Let conditions (A.1), (G.2) hold. Let 
0 € £>(A) with A(t)0 = 0, t € |0,r]. Let $(») € D(A) D B?(0), » € r,0). Aaaurne 
that for every x € #Br(0) nD(d), every A € (0,1) and every € PC([-r,0], D(A) fl 
Br(0)) we have

(H) (A(t)x-XG(t^),Jx)>0 .

Then (*) poaaeaaea a method of tinea.

Proof. Since X is also uniformly convex there exists a nonexpansive retraction 
P on P(A). Since 0 € P(A), P0 = 0. Thus, for every x € X, ||Px|| < |[x||. We now 
consider the homotopy

B(t,x) = x-[A(tn0) + (l/A)/rWi(^o)P* + ino/Al •

The equation P(l,x) = 0 is equivalent to (2). In fact., if H(l,x) = 0, then 
xeD(A) and Px = x. In order to apply Lemma A to this problem, we notice again 
that the term in H(t,x) after the minus sign is a Lipschitz continuous function on X 
with Lipschitz constant bh. We assume again that » is so large that bh < 1. In fact,

||P,(en0)Px - P, (tno)Py|| < t||Px - Py|| < 6||x - y|j

for all x,y € A'. Now, let x e be given. Since ||Px|| < ||x||, we have that
||Px]| £ This implies that the entire function

/,(r«)W = x|_rO1(<|i(-) + K(o:r)«)rx,

(l, x) € |-r,r] x dPF(0), lies in the closed convex set D(.4)flBf(0). Thus (fi (Px))» € 
PC([—r,0],D(A) nBr(O)) and if x is asolution of the equation H(t,x] = 0 lying in 
df?r(0) for some < 6 (0,1), then we have

0 = (d(t„o)x - <G(l„o,(/i(Px))»„0),/x) + (1/A)(x, Jx) - (i/A)(s„o, Jx) £ 
> (I/A)l ||x||’ - r||x,.o|| ||x|| I > (1/ARl - <)r3 > 0 .
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It is easy to see now that all the conditions i), iv) of Lemma A are satisfied with 
U = Br(O). Ibis completes the proof.

Evidently, separate, and independent of A € (0,1), conditions can be imposed on 
A(<), C(t,0) for (11) to hold.

4. General comments. Analogous results do hold in general Banach spaces 
whenever A(f) has compact resolvents (Aft) + (1/A)/)-* for all I £ [0, T). However, as 
far as the author knows, it has not been shown whether the method of lines constructed 
here actually converges to the solution of (♦) if X* is not uniformly convex and 
(?(f,^) does depend on tb € PC([—r,0|,U^ nontrivially.

One can also use the present results to show that Theorem 3 of [7] can be proved 
without assuming that is extendable to a global Lipschitzian on [0, T] X O,
where C = <3([—r, 0],X). One can assume instead conditions like the ones of Section 
2 above. The results of that section are directly applicable in this setting.

Theorem 2 replaces the assumption that X ia a (w)i space in Theorem 1 of (7) by 
the boundedness of Afl)« with respect to « on 2?f(0). Since Aft)« is demioontinuous 
(and thus locally bounded) in «, this boundedness assumption is certainly a natural 
one.
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STRESZCZENIE

Stosuje si* nieliniowa teori« perturbacji do rozwiązania równania ewolucji (*) metod« łama
nych. Zakłada n», że kolejna przybliżenia spełniaj« równanie (••) Ulepszono, względnie uogólniono 
dotychczas otrzymane rezultaty w tym kierunku. S« one nowe nawet w przypadku zazwyczaj rozpa
trywanym ćł(f ,I|) = G(f,x(f)) i mog« być efektywnie stoeowane przy numerycznym rozwiązywaniu 

równań.
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