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Applications of Nonlinear Perturbation Theory
to the Existence of Mecthods of Lines for Functional Evolutions
in Reflexive Banach Spaces

Whykorzystanie ni€liniowej teoni perturbacii
do mozliwoéci stosowania metody tamanych dla réwnad ewolucji
w refleksywnych przestrzeniach Banacha

Abstract. Nonlinear perturbation theory is applied to the existence of a method of lines
assoaated with the functional evolution problem :

#+ W)z =Glt,=), tef0T], |

(.} o = .
The method satisfies an equation of the type :
(oo) A(l,..,..l)z,.,- + (z,.,' = 3'\,,'-!)/" = G(‘n,;’—h(znj)tn.j—l) .

The underlying space X is a real Banach space with uniformly convex dual space. The operators
A(l)l are mainly M-accretive in ¥ while G (£, f) is at least Lipschita continuous in f. Here f lies
in a suitable function space over the delay interval l—r, 0].

Recent 1esults are improved andfor extended. The results are new even in the ordinary case
( G(l,zg) = G(l,z(l)) ) and can be effectivay used in the numencal treatment of (‘) It is
nowhere assumed that X is a (x)1 space or that G(t,f) can be extended to a global Lipschitzian
with respect to f.

1. Introduction — preliminaries. In what follows, the symbol X denotes a
real Banach space with norm || - || and dual space X*. It is always assumed that X*
is uniformly convex. The duality mapping of X is denoted by J. This mapping maps
X into X*, it is positively homogeneous of degree 1 and such that

(2, Jz) = |lfi® = | 7= .

Here, (z, f) denotes the value of the functional f € X* at z € X. An operator
A:D(A) c X — X is “accretive” if

(AS—’A',-’(Z—’»ZO, :v’eD(A)‘



42 A. G. Kartsatos

An occretive operator A is ‘m-accretive” if R(A+AI) = X for every A > 0. For
an m-—accretive operator, the Yosida approximants J, : X — D(A), Ap: X — X are
defined by

Tnz=(I+(1/n)A) 'z, Apz=Al,z,

where I denotes the identity operator. An accretive operator is called “strongly
acretive” if there exists o > 0 such that

(Az — Ay, z—3y) 2 a|lz - g"’ y z,9€D(A).

An operator 4 : D(A) € X — X is “compact” if it maps bounded subsets of its
domnin into relatively compact subsets of X. It is called “bounded” if it maps bounded
subsets of its comain into bounded subsets of X. It is called “demicontinuous” if
{zn} € D(A) , zn — z € D(A) imply that Az, — Az. The symbd “—" (“=")
denotes strong (weak) convergence and the symbols R, Ry denote the real line and the
half line [0, 00), respectively. A real Banach space X is called a “(x); space” if there
exists a sequence {P,} of linear projections, each of norm 1, with finite dimensional
range P, X = X, such that P,z — z 23 n — oo and each subspace X, has dimension
n and is contained in Xn+1.

We denote by PC([~r,0],Y) the space of all piecewise continuous functions
J't|-r0] = Y associated with the sup—norm || - ||co. For a function « : [-r,T| = X
we set u(s) = u(t + o), t €[0,T), ¢ € [~r,0]. In this paper we study the equation

£+ A{)z=C(t,z), te|0,T],
Zo = o .

(¢

We assume mainly that for each ¢ € [0,T], A(¢t) is a (possibly nonlinear)
m—accreative operator with fixed domain D € X. We also assume that
G : [0,T] x PC([~r,0],Ds) — X, where Do equals either the ball
By(0) = {z € X ; ||z]l < 7} or D, is Lipechitz continuous in its second variable :

[IGUI #l) o~ G(‘ré’)u S b“él - *‘l“m

for every t € [0,T], 1,92 € PC(|~r,0],D;5). The function & in (s) is a given
function in C([-r, 0], Dy).

Now, consider, for n = 1,2,..., a partition {tn;} of the intervul |0, T] with
7=0,1,2,...,n, tho =0 and t,, = T. Moreover, let h = T/n, t,; = jh. Also, let
2no = 2(0) € D,.and if x L denotes the characteristic function of the interval L C R,
set

fl (z)(t) = X[_f’ 0] (‘)Q(‘) + X(o‘ Tl (‘)z ’
(¢,z) €|-r.T] x X, and
Fi()z=G(¢t,(fi(2))e), (L) €[0,T)x Dg .

The function z — G(¢, (f1(2))¢) is a Lipschitzian on Dy with Lipschitz constant
b. At this paint, assume that, for each n, the equation

(1 (A(tno) = Fi(tno) + (1/A)1)z = zno /A
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has a solution 3, € Do. Then we let

o) ,te|-r0],
Zm » LE (O,Tl .

7m)= {

It should be noted that ¥ny(t) € Dy for all ¢t € [—r,T). Similarly, one defines for
each n and each j € {2,3,...,n} the functions

fi(=)(t) = Xl gl i ()% -1 () + X(tojor,T) )=,
Fj()z = G(t, (fj(2))e)

respectively. The function Fj(t)z is Lipschitz continuous with respect to z on Dp
with Lipechitz constant b. Calling zn; € Dy a solution of the equation

2 (Atnj-1) = Fj(tnj-1) + (1/B))z = zn1 [k,
we have actually constructed the fallowing double sequence :
r &(t) y LE[-10],

Znl s LE (olt'"] ’
i) = ¢
l Znj-1 1+ LE (‘n.j-—h‘n.j-l] )

" Zny y LE ('n,j—hT] v

n=12.. 5y=12,..,n. We call th: sequence {Fnj(t)} or any such sequence
valid for all large », & “method of lines” for the problem (¢), and obeerve that, for all
the indices n,y we have ¥,;(t) € D, te [-r,T]. Moreover,

A(tnj-1)3nj +.(2nj = #n,j-1)/B = G(tn,j=1, Fnjlt, ;_,) -

If Dy is a convex set, then the Rothe functions

O(‘) s LE [_700] ’
Zngi— + (‘ i ‘n.j—l)('ni = ‘n.i—l)/" y LE [ln;j-h‘njl

x",(t) = {
are also lying inside Do. In fact, if t € [tn j-1,tn;] We have
(t) = [1 = (t = taj-1)/A] 2 g1 + [(t = tnj=1)/b]20;j ,
which lies on the line segment joining the points 2, ; € Do, 2q,-1 € Do.
This method was used by the author and Parrott (8] in order to obtain solutions
to problems of the type (s) under the assumption that G is a global Lipschitzian in

its second variable (Dg = X). It was shown however in [7] that the method actually
converges as in [8] if Dy = B7(0), for some ¥, the space X is a (x); space,

(A(t)z,Jz) 2 aljz||* , t€[0,T], z€ 8By, ,
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for some constant a > 0, G(1,0) = 0 (0 is the zero function in C([~r,0], Bf)) and
b (the Lipschitz constant of G with respect to its second variable) lies in (0,a). Of
course, we are only mentioning here the assumptions in [7], [§] on the second variable
of G.

In this paper we show, among other results with Dy = B#(0), that Theorem 2
of [7] can actually be proven in spaces X that are not necessarily of (x); type. We
also show that under additional assumptions on A and/or G we may assume that
Do = D(A). The reader should have in mind that we are only assuming conditions
on A, G that ensure the solvability of equations of the type (2), and thus guarantee
the exdstence of a method of lines {zn;(t)}. This method will converge if we assume,
in addition, the rest of the conditions on A and the first variable of G in the various
results of (7], [8]. We can also apply these considerations to the Kato approximants
[6] and the Galerkin approximants [5].

These results can be also applied (and the methods become simpler) to ordinary
evolutions where G(t,z;) is actually replaced by G(t,z). For such results the reader
is referred to Kartsatos and Zigler [10].

For the general theory of accretive operators, we refer the reader to the books of
Barbu [1), Browder [2], Lakshmikantham and Leela [11] and Martin {12].

2. Results for the space PC([-r,0], B,(0)). The following conditions will be
needed in the sequel.

(A.1) For each ¢t € [0, T}, A(t)s is m-accretive in u with domain D(A) indepen-
dent of ¢.

(G.1) For each t € [0,T] the function G : [0, T} x PC([-r,0)], Br(0) — X satisfies
the Lipschitz condition .

IG(t, ¥1) = G(t, ¥3)l| < bl|¥1 = ¥l
with Lipschitz constant b > 0 and & is a fixed function in C([-r,0|, B7(0)) with
®(0) € D(A).
(G.2) Condition (G.1) holds with Br(0) replaced by D(A).

Theorem 1. Assume that conditions (A.1), (G.1) hold. Assume, further, that
for every function ¥ € PC([—r,0], B#(0)) and ecvery x € D(A) with ||z|| > ¥ we have

(3) (Al)z-G(t,v),Jz) 20, te|0,T).
Then there exists a method of lines for (s).

Proof. Using the m-accretiveness of the operator A(tng), for a fixed n, we
obtain that the equation (1) is equivalent to

(4) = [A(tno) + (/M) I]7'[Fi (tno)z + zno /] ,

which can be written as z = Sz. We first note that Fj(¢,0)z is Lipschitzian in z with
constant b on the set B#(0). We observe next that the mapping
z — [Aftno)+(1/h)I]~' z is also Lipechitz continuous with constant A. Consequently,
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S : B#(0) — X with ||Sz — Sy|| < bh|jz — y|| for every 2,y € B#(0). In order to
apply the contraction mapping principle, we ussume that n is so large that bh < 1

and we show that S maps Bz(0) into itself. Tb this end, let z € By(0) be given and
let « = Sz. Then we have

A(‘no)l + (l/h)u -5 (t,.o)z - l'.o/’l =0.

Recall that 2,0 = &(0) € By(0). Taldng "inner products” above with # and assuming
that ||x|| > 7, we have

0 = (A(tno)% — Fi{tno)z, Ju) + (1/h)(% = zno, Ju) 2
2 (1/A)|(w, Ju) = (3no, J)] 2 (1/A)[ flwfl® = lznoll lixll ] 2 (1/B)(lisll = P)]}s]l > 0.

Here we have ured the fact that Fy(tao)2 = G(tno, (f1(2))e.,) with
(/1 (2))eoollco S F. It follows that Sz € Br(0). The rest of the proof is a repetition
of the above argument. It ia therefore omitted.

The following homotopy result can be found in the anthor's paper [4].

Lemma A. Let U C X be open and let H :[0,1] x U — X be sueh that

i) For each t € [0,1], H(¢,-) is demicontinuous and strongly accretive ;

ii) H(t,z) is continuous in ¢t uniformly inz €U ;

iii) H(t,z) #0 fort € (0,1), z €U ;

iv) There exists zo € U such that ||H (0, z,)|| < || H(0,2)|| for every = € 3U.
Then H(1,) has a unigue zero inU.

In order to apply the above theorem to the present setting, we need the fallowing
definition : a set U € X is called "abeorbing” if x € U implies tw € U for every
t € (0,1).

Theorem 2.  Let the conditions (A.1), (G.1) de satisfied and assume that
D(A) is absorbing. Then if (3) holds for every x € D(A) with ||z|| = F, there exists
a method of linea for the equation (s).

Proof. We let U = B+0) in Lemma A and H{t,z) = z — tSz, where S is as in
the proof of Theorem 1. It is easy to see that

(H(t,z) - B(t,9). I (z - v)) 2 (1 - bA)jz - y||?

for all 2,y € B;(0), where n is chosen so large that bh < 1. Thus i) of Lemma A ia
satisfied. Now, let o, ¢, € [0,1] be given. Also, let K be a bound for the mapping
S on the bull By(0). This bound exists by the fact that S is Lipschitz continuous on
By(0). Then we have

1B (r,2) - B(to, )| < Klts —to], 2 € T70)

which shows that ii) of Leinma A holds. Since H(0,0) = 0 and H(0,z) = =z, condi-
tion iv) of Lemma A halds with 2¢ = 0. To show iii) of that lemma, assume that
H(¢t,z) = 0 for some t € (0,1), zy € ?B¢(0). Then we have

A(tno)(zt/‘) + (l/h)(’(/‘) = Fl (tno)‘r‘ + 'n(l/h ’
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which, evaluating Jz¢, implies

(5) 0= (A(tno)(ze/t), Jxe) + (1/ () |zell? ~ (Fi(tno)ze, J2e) = (zno/h, Jxi) >
> (A(lno)(.‘n/t). f:t) = (Fl (tno)zh J:g)

because

(1/(Be)zel® = (zno/By T2e) 2 (1/(h))lleli* = (1/B)l1znoll 2]l 2
2 (1/(he)llzell? = /W)=l > 0.

Since z/t € D(A) and D(A) is absorbing, t(z/t) = z; € D(A). Thus,

(A(lno)(zg/l), JJ’-:) - (F] (t"o)zh Jz.) =
= [t/(1 = t)J{A(tno) (2¢/t) — A(tno)=e, J([(1 — t)/t)2e))+
+ (A(tno)ze =~ Fi(tno)zi, J2:) 2 0,

i.e., a contradiction of (5). Consequently, H(1,z) = z — Sz = 0 for some z € By(0).
The rest of the proof, which follows as above, is omitted.

If the operator A(t) is demicontinuous for each t € [0, T] and bounded on Bz(0),
then we can actually work with the ariginal equation (2). This is the content of
Theorem 3 below.

Theorem'3. Assume that (G.1) is satisfied with A(t)s just accretive inu for all
t € [0,T). Further, assume that D(A) = D(A(t)) is independent of ¢, Br(O) & D(4)
and (3) holds for ||z|| = F. Then if A(t) is bounded and demicontinuous on B#(0) for
each t € (0,1}, there ezists a method of lines for (s).

Proof. This time we look at the homotopy H(t,z) = (1 — t)z + ¢Sz, where
Sz = (A(tno) =~ Fi(tno) + (1/A)])z — zno/h. Assuming again that n is 80 large that
bh < 1, we see easily that

(B(t,2) = B(t,9), J(z = y)} 2 (1 = Ollz =3l + ¢((1/h) - B) |z — 9]

for every t € [0,1] and every z,y € B7(0). Thus H(t, z) is coercive in z on B7(0).
The rest of the proof follows as in the Theorem 2 except the argument concerning
z¢/t which is not needed here.

This theorem is of particular importance in view of the fact that one may consider
the Yosaida appraximants Am(tnj-1) = A(tng-1)( + (1/m)A(tn,j-1))"", instead of
A(tn,j—1) itself, in the equation (2), and then obtain a solution of (2) via a limiting
process. This was done in (7, Th.2] under the assumption that X ie a (1), spuce. The
following result eliminates that assumption.

Theoremn 4.  Let the conditions (A.1), (G.1) be satisfied. Assume also that
there exists a constant a > 0 such that (A(t)x, Jz) 2 al|z||® for all z € D(A) N B#(0),
t € [0,T). Let the Lipschitz constant b of G lie in (0,a) and G(t,0) = 0, where B
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denotes the zero function in PC(|—r,0], By(0)). Then (s) possesses a method of lines
provided that 0 € D(A) and A(t)0 = 0.

Proof. It was shown in [7, Th.2) that given b € (b,a) and m sufficiently large
and independent of ¢, we have

(8) (Am(t)us - G(t,¥),Ju) >0, te€l0,T],

for all v € 8By(0), ¥ € PO([-r, Ol,BriOi’. We sketch this proof here beceuse 8 By(0)
should be replaced in [7, Th.2] by B¢(0) and the assumption on A(¢)0 was omitted
there. Whenever 2 € D(A) N B7(0) we have

((I+ (1/m)A(t)z, J2) 2 1+ (a/m)]|l=])® .
I we set & = (I + (1/m)A(t))z, we can see easily that
m(e)sll < (14 (@/m)] |lull  (Im(t) = [T + (2/m)A(@®)]™") .

Since the operator I + (1/m)A(t) is surjective, given « € §Br(0) there exists
z € D(A) with z + (1/m)A(t)z = u. Taking the values of Jx on this equality we
obtain that ||z|| £ ||s}|. ‘Thus z € Br(0). It follows that (6) holds for every 4 € 8B¢(0).
Following the proof in the above reference, we obtain now that 4

(Am(t)w, Ju) 2 m[L = (1+ (a/m))~"]|le]f? ,
which, for b € (b, a), « € 9By(0) and all large m, gives

)] (Am(t)s - G(t,¢),Je) 2 -r? >0, te(0,T],
¢ € PC({-,0), BH0))

We now consider the equation
(&) (Am(tno) = Fi (tno) + (1/A)])z = 2p9/h =0

for all m for which (7) holds and for n large enough so that 34 < 1. Since, for each
such m, the operator Am(tno) is continuous and bounded on By(0), an application of
Lemnma A to the mapping H(t,z) = (1 = t)z + ¢Sz with Sz equal to the first term of
(8) shows the existence of a sdlution z,, of (8) for all large m.

At this paint the proof follows as the corresponding part of the proof of Theorem
3.6 of Barbu [1}. Welet Am = Am(tno), F = (1/h)] = F\(tno) , 3 = zno/h. We
have Amzm + Fz,n = 3. We note that A,, is m-accretive and F' is coerdve with
constant ¢ = (1 — bh)/h. We have

0= (AmZm = Agzq . J(Zm = 2g)) + (Fzpm = Fzg, J(zm — 24)) 2
2 (Amzm = Agzg, J(2m — 2j)) + ¢|l2m — :qll’ =
= (Amzm — Agzq, I (ImZTem = Jozq))+
+(Amzm = Agzq, J(zm = Tq) = I(ImEm — Jozq)) + ellzm — 2ol
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where Jm = (I + (1/m)A(tno))~". This implies

lzm = 2g[* € =(1/e)(AmZm — Aq2q, J(2m — 2¢) = J(JmZm — Jo2q)) €
S (1/)lAmzm = Agzqll |/ (zm — 2¢) = I (Jmzm = T ) -

Since the boundedness of {||Fzm||} implies the boundedness of {||Amzm]|} and
Hmzm=2m|l £ (1/m)|| Amz ]|, vsing the uniform continuity of J on bounded subsets
of X we get z,» — z € B#(0) as m — oco. Since AmZm = y — Fzy — g — Fz,
Propcsition 3.4 of Barbu [1] implies that £ € D(A) and Az = y — Fx. We have
thus solved (1) with the salution lying in D(A) N Br(0). The same argument applies
to (2). It is therefore omitted. ;

3. Results for the space PC([-r,0], D(4)). It is well known that if X is also
uniformly convex, then D(A) is a convex set. In addition, a result of Reich [13] says
that D(A) admits a nonexpansive retraction, i.e., a mapping P : X e D(A) such

that P? = P and |Pz — Py|| S ||z~ y||, z € X. This result can be effectively used in
problems where the perturbations are defined only on Dm.

Theorem 8. Let conditions (A.1), and (G.2) de satisfied. Further, assume
that there exist constants dy > 0, d3 > 0 such that

(A(t)z, Jz) 2 ~di|l||
Jor allt € [0,T| and all z € D(A) with ||z|| 2 ds.
Moreover, let the constant K > 0 be such that
G 9l < K
Jor allt € [0,T] and ¢ € PC(|~r,0|,D(A)). Then there exists a method of lines for

the equation (s).

Proof. This time we write (2) as follows :
(9 # = Fi(tno)[A(tno) + (1/M)]] " w = zno/h =0,

where u = (A(tno) + (1/h)I)z, or, equivalently, ¥ — Su = 0 for the obvious operator
S : X — X. It is easy to see that S is Lipschitz continucus on X with constant bh.
We assume agein that n is 8o large that bh < 1, and consider only such n's. In order
to apply Lemma A, with H(t,u) = u — tSu, we show that conditions ii) and iii) are
satisfied for some open set U. As far as condition ii) is concerned, we observe that

ISull < [|S0ft + bAl[ull < [{SO] + ||l

implies the uniform continuity of H(¢,u) in ¢ with respect to u lying in any bounded
subset of X.

Now, we are gaing to prove that all possible solutions 4, of H(t,%) = 0, t € (0, 1),
lie inside a ball which is independent of ¢. In fact, let ¢, € (0,1) be such that
|[#e, ]| = 400 a8 n — 00. Set 4, = w;_. Then we have

(10) Az +-01/K) 20n — banPllno) i = bmina N

-
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where 8 = A(tno)zm + (1/h)zm. If {||zm||} has a bounded subsequence, then
(10) implies that A(tno)zm has a bounded subsequence, which implies in turn that

{ll#n]|} has a bounded subsequence, i.e., a contradiction. It follows that ||zm|| — co
as m — oo. Thus,

0= (A(tno)zm, fzm) + (l/h)":,,.“’ = tn(Fi(tno)zm, J2m) — !m(znP/h, Jzp) 2
=di||zm|l + (1/B)|zml|* = Kllzm]| = Izl Izl /B =
=[(1/h)|zm|l — dy = K = |lznoll/h ] |zm]l = 00 asm — o0,

i.e., a contradiction. If we let. ||u,]| < ¥ for all possible solutions w, of H(t,u) = 0,
then we may take U = By, (0), for any ¥, > 7, and the conditions ii), ili) of Lemma
A are satisfied. Conditions i), iv) follow easily. ‘This completes the proof.

Theorem 8. Let X be uniformly convezr. Let conditions (A.1), (G.2) hold. Let
0 € D(A) with A(t)0 =0, t € [0,T). Let &(s) € D(A) N B5(0), » € |[~r,0]. Assume
that for every z € 3B#(0) N D(A), every A € (0,1) and every ¢ € PC(|-r,0}, D(A) N
B#(0)) we have

(11) (A(t)z = AG(t,¥), J=) 20 .
Then (s) possesses a method of lines.

Proof. Since X is also uniformly convex there exista a nonexpansive retraction

P on D(A). Since 0 € D(A4), PO = 0. Thus, for every z € X, [|Pz|| £ ||lz]]. We now
consider the homotopy

H(t,z) =z~ [A(tno) + (1/B)]) M {t(Fi(tno)Px + zno/h] .

‘The equation H(l,z) = 0 is equivalent to (2). In fact, if H(1,z) = 0, then
z € D(A) and Pz = x. In order to apply Lemnma A to this problem, we notice again
that the termin H(t,z) after the minus sign is a Lipschitz continuous function on X
with Lipschitz constunt bh. We assume again that n is so large that bh < 1. In fact,

1Fi(tno)Pz = Fy(tno)Pyll < b||Pz — Py|| < bf|z - ||

for all 2,y € X. Now, let z € B7(0) be given. Since ||Pz|| < ||z||, we have that
||[Pz]| £ 7. This implies that the entire function

Hhi(Pz)(t) = x[_r 0] (e)®(t) + x l(!)P.'r ;

(o,T

(t,r) € [—r,T| x 3B5(0), lies in the closed convex set D{4JNB7(0). Thus (fy (Px)): €
PC(|-r,0],D(A) N Br(0)) and if x is a salution of the equation H(t,z) = 0 lying in
9By(0) for some ¢t € (0,1), then we have

0 = (A(tn0)z = (Cltno. (/1 (PE))ess). J2) + (1/B) (2, J£) = (£/8)(zn0, I 2) 2
2 (/M) llzlf? = tllznoll 1=l ] 2 (1/6302 = )7 > 0
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It is easy to see now that all the conditions i), iv) of Lemma A are satisfied with
U = By(0). This completes the proof.

Evidently, separate, and independent of A € (0, 1), conditions can be imposed on
A(t), G(¢, ¥) for (11) to hald.

4. General cormuments. Analogous results do hold in general Banach spaces
whenever A(t) has compact resolvents (A(t) + (1/h)1)~* for all ¢ € |0, T]. However, as
far as the author knows, it has not been shown whether the method of lines constructed
here actually converges to the solution of (¢) if X® is not uniformly convex and
G(¢8,¥) does depend on ¢ € PC(|-r,0],D;) nontrivially.

One can also use the present results to show that Thedrem 3 of (7] can be proved
without assuming that G(¢,¢) is extendable to a global Lipschitzian on [0,T] x O,
where 0 = O(|-r,0},X). One can assume instead conditions like the ones of Section
2-above. The results of that section are directly applicable in this setting.

Theorem 2 replaces the assumption that X is a (x), space in Theorem 1 of [7] by
the boundedness of A(t)s with respect to w on By(0). Since A(t)u is demicontinuous
(and thus locally bounded) in u, this boundedness assumption is certainly a natural
one.
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STRESZCZENIE

Stasuje sie nieliniowy, teorie perturbacji do roswigzania réwmania ewolugi (¢) mstods lame-
nych. Zaldada sig, 3o kolejne praybliienia speiniajg réwnanie (¢8). Ulepssono, waglednie uogdlniono
dotychcsas otrsymane rezultaty w tym kierunku. Sg one nowe nawet w praypadiu saswycsaj rospe-
trywanymG(t, 2,) = G(8, 2(t)) i moga byé efekiywnia stosowane prsy numery cenym roswigsywaniu
géwnafh.






