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A.DERNEK

Certain Classes of Meromworphic Functions

Pewne klasy funkcji meromorficznych

Abstract. The author is concerned with the dass 2;(p) of the functions f holomorphic in
the punctured disc 0 < |z| < 1 with the expansion f(z) = 27P + aoz P! 4 ... staslike of
order p, 0 S p< 1.

Introduction. Let S denote the family of functions f(z) which are regular and
univalent in the unit disc E and which satisfy the conditions f(0) = f(0)—1 = 0. Let
S*(a) and C be the subclasses of S consisting of functions which are starlike of order
a and close-to—convex in E, respectively. Let P(a) denote the class of all regular
functions h(z) in E which satisfy the conditions h(0) =1, Reh(z) > a (0SS a< 1),
in particular P(0) = P. Let I, be the class of functions of the form

f(z) = l—p+ﬂoz-P+l + ...+an+p_lzn+... (P: 1,2'...) Y

which are regular and p—valent in E \ {0}. Denote by E; = L the class of univalent
meromorphic functions in E'\ {0}. A function f(z) of T, is said to belong to L3(p),
the class of p—valent meromorphic starlike functions of order p (0 € p < 1), if and
only if

Re {zf'(z)/f(z)} < -pp, :€E.

In particular case, the class T° of univalent meromorphic starlike functions is identified
by I* = T7(0). Then the functions f(z) are called meromorphic Bazlevi¢ functions
of type a if for each f(z) there exisits a function g(z) € T° satisfying

Re {~2f'(2)f(z)* "g(s)"®} >0, :€E.

where o > 0 is any real number. Denote by AfB(a,g) the class of meromorphic
Bazilevi¢ functions of type a with respect to g{z) [6]. For a = 1 the class MC of
meron:orphic dose-to-convex functions is identified by M B(1,g) = MC

In [2], [4] and [5] the following theorems are proved :
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Theorem A ([5] Theo.3.1, =0, y+ 1=-¢). Let a andc real constants such
thata > 0 ande+ 1 — pa > 0. If f(z) € T3 (p), then

Fle) = {(e + 1= pa)e===" Jee ) de}

also belong to E3(p) for F(z) # 0 in E \ {0}.

Theorem B ([2], Thea.3). Let f(z) be close—to—convez unth respect to g(z),

F(z)=cs~ ! j’t"f(t)dl , Gz)=ez~! }t"g(l) dt, ¢>0.
0 0

Then F(z) is close-to-convez with respect to G(z), for G(z) #0 in0 < |z| < 1.

Theorem C ([2), Theo.4). Let F(z) bdelong to °,

1) =H(e+ YFP(2) +:F'(2)} , e>0,

then f(z) € E°® for0 < |s| < ";h The result is sharp.

Theorem D ([2), Theo.8). Let F(a) be close-to—convez uath respect to G(z),
e>0,

1(z) =L{(e+ D)F(s) + zF'(3)} , g(z) = e+ 1)G(2) + :G'(2)} .

Vit 2+ -2
24e¢ ;

Theorem E ([4], Theo.1). If is f(z) in S*(a) and g(2) in S*(v),

Then f(z) is closé-to—convex with respect to g(z) for 0 < |z| <

Fle)= e+ Dg@) ™ Jem'f@dt (>0,

then F(z) is B-starlike for |2| < o, where a is the least positive root of the equation

l-ﬁ-r[2(l—a)+2c(l—1)] —r’[2o—l—ﬂ+2c(l—7)] =0.

In this paper are generalized the above results of Goel and Sohi [2] and we
obtain a result analogous to the Theorem Eof Karunakaran and Ziegler [4) for
functions meromorphic in the unit disc.

2. Main results. We require the following results to prove the theorems of this
section.

Lemmm A [5]. A function f(s) belongs to I;(p) (0 < p < 1) if and only if
there exists a function w(z) regular and satisfying w(0) = 0, |w(z)| < 1 in E such
h
e f'(s) __ 1+ (2p=L)uls)

/(3) a4
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ILemmma B ([1], p-25). If w(s) is regular in E and satisfies the conditions
w(0) =0, |w(z)] <1 for z € E, then

|20’ (z) — w(2)] £ Jaf’ — [w(=)t? /

1-]z2

We shall now proceed to prove the fallowing :

Theorem 1. Let a and ¢ be real constants such thata > 0 ande+1—pa > 0.
IfF(z) € £;(p) and

(1) 1(2) = {(e+ 1= pa) " (e + 1 + 0aF'(3)/F ()} /°F(2) ,

! e+ 1—po
then f(z) € E5(p) for 0 < jz| < ‘/e-}- 1+pall - 2p)

Proof. Since F(z) € L;(p), by Lemma A there exists a function w(z) regular in
E with w(0) =0, Ju(z)] <1 sudl that

_zF'(z) _ 14 (2p-1)w(s)
@) Fio) =P 1+w()

From (1) and (2) we have

_3f'(z) p1 +(2p-1w(z) b-. 2w'(z2)
16) I+ w(z) a (T o@)(+()
ffe) _1{ A w'(s) - wls)
@ T T alie N D bei )
where b= < i b f o U 29}, h(z) = M"lﬂ_ (6—1)A =20, (b=1)B = (b—1)e—2

¢+ 1-pa 1+ w(z)
and (b—1)D =1 — 2pa(l — p). Using Lemma B, we get from (3)

zf'(x)_‘ ’Ih(:)—&[’—{l—h(s)l’
AR AT {“"(h()”’"“*” + e ) P

1
h{z) is subordinate to the linear transformation s
elementary arguments that

b
: and from this it follows by

Ih(l)—alSd.d: =3 'J=T.—;i_‘f°” <*
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If we put A(z) = Re'® and denote the right hand side ot (4) by S(R,0), then

R 4ya- 42

gy < vy
S(R.60) = m{-r(m cosd+

R+al-&
O il o B
cosf > 73R

as
E (1)

where T(R) =2a + (2pa(l - p) = 1)R- % , a—dSR<a+d.
If T(R) <0, then dearly S(R,8) > 0 inside the disc |h(z) — a| £ d. To see this,
note that if T(R) £ 0, then

v/a?+b(2pa(l —p)~1)-a b
R Sai-a-1  “\Ze-a-1’

The preceding inequalities in turn imply that

T(R)sind

R+a®-—a®_ R 4+a>-d%¢(b
S TR

If T(R) > 0, then the minimum of S(R,®) inside the disc |A(z) — a] < d is
attained at # = 0 and the minimum value is given by

1 { -4
a(b-1) R

~T(R)cost +

S(R.0) = L(R).=

—-2(pa(l1—-p)—1)R-2a+(b+1)(pa(l-p)-1) }

L(R) is a monotonic decreasing function of R and therefore its minimum is attained
at R=a+d,

pa(l—p)(1 =)+ (pa(l = p) = 1) (= I)r

Hoyeym a(l+7)(1+)
and L(a +d) > 0 for r? < }. Thus
'f(') 3]
,( ) >ppy v <g3.

This completes the proof of Theorem 1.

Remark. The result of Theorem C turns out to be a particular case of the above
theceem fora = p =1 and p= 0.

Theoremn 3. Let a and c be real constants, a >0, ¢>0,¢e+1-a> 0. [f
9(z) €T and f(s) € MB(a,g),

e+ 1

L )" o) = (L2 Tty a) "

® F@=( —,-.T.—n'm)"
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then F(z) € MB(«,G) for G(z) #0 in0 < |z| < 1.

Proof. If we put p =1 and p = 0 in Thevrem A, we can see that G(3) € E°.
Thercfore it is sufficient to show that

—Re {zF'(2)F(2)*"'G(z)""} > 0.
Let w(z) be regular function defined in E by

_:F'(z)F(z)*7! _ 1-w(s)

(6) CL)e - 1+ w()

Clearly w(0) = 0 and w(z) # —1. From the definition F(z) and G(z) in (5), we have

(e+ 1= a)f(2)° = (e + WF(2)° + azF'(z)F(s)°~" =

(7 e - 1 - w(z) =
= (e+ 1)F()? - ar+—'(—.)c(3) .

Differentiating (7) and using (6), we obtain

(8) (=) Feps o(r)  2:0'(z) 1
o(z)° [+w(z)  (1+w0()? c414a:FLL

Now we claim that |w(3)| < 1 for otherwise by a lemma of Jack {3] there exists
2g € E such that

(9) z2ow'(20) = m w(zg) . |w(s)|=1 and m21.

Thus from (8) it fallows that

(10’ -Zol'(zo)f(zo’o_l = l""’(:o) s 2mw(g°) l
g(20)® 1+ w(z) l+w(z°n3 C+l+o‘n‘ﬁ;.“ P!
Gl‘
Since G(z2) € £°, B L € P and hence
G(z2)
:G'(z2)
< =
(11) ] T ta|<d, Jol=r,
where —l+'1 i L If t
ere a = l_"’.a— et we pu
k(z) = ——-l—
et+1+aigryd

then (11) gives

e+l -—aa | ad

bz
I = - < .
L) lH” (e+ ) = ae)? - ardi| = {e+ 1 =ca)? —ald?




6 A. Dernek

This implies that
14+r th
cet+l—a+(c+l+o)r .

1-w(z) _ w(z) 1
Aleo R i) 1 Bt (L Tllswao))
(10) and (12)

Re k(x) 2

> 0, it fallows from

o 20f'(20)f(20)*7" _ m
s 9(20)°® "~ 1+ Rew(z)

Rbk(Zo) <0,

which is a contradiction to our hypothesis that f(z) € MB(a,g). Hence |w(z)| < 1
and the theorem follows from (6).

Remark. For a = 1, this theorem reduces to the Theorem .

Theorem 8. lLeta>0.e> 0. ¢+1-—a > 0. IfG(z) € L and F(z) €
MB(a,G),

(18) (e+1=a)f(z)" = (¢ + 1)F(2)® + azF'(z)F()° ",
(14) (e+ 1= a)g(z) = (e + )G (3)® + azG' (:)G(2)°~"

Vel +2¢+2a+2-a-1
ce+1l1+a "

Proof. Since G(s) is starlike, the Thearem 1 with p = 1, p= 0, gives g(z) € £*

L
. lal "o' ce+lta

to G(z), therefore we can write

sF'(z)F(z)*?
(15) i

then f(z) € MB(a,g) for 0 < |3| < r(a,¢) =

. F(z) is a Bazilevi¢ function of type a with respect

= h{z} ,

where h(z) € P. Differentiating (15), with (13) and (14) we get, after a simple

computation,
_2f'(2) ()" 1 (2)

"0 R O

2l
For G(z) € &° we may wrte -%'(i—:) = w(z) € P. It is well known that for a
function of positive real part in E

o)) < TR0
Then,
zh'(2) Re A(s) 2r
Re A(z) = Re {h(s) + ,H_,.(,)}:-’ Ie+l—oru(x)l{"+""'('"" =}

lsl=r.
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1472 2r
. il & - =
Since |¥(z) —a| < d, a = and d = have further

le+1-ou(z)|—d>|c+1~aa|-al|e(z)—a|~-d2
2le+1-aa|-(a+1)d=

(16) _letl-a—(et1ta)?|—2a+lr
1-r?
_ D(n)
T 1-0

where D(r) = —(e+ 1+ a)r? = 2r(a + 1) + ¢+ 1 — a for |z]| < ro. Thus, r=r(a,e¢)
being the positive root of the equation D(r) = 0, it is clear that 0 < r(a,¢) < ro.
Therefore, it follows from (16) that Re A(z) > 0 for 0 < |z| < r(a,¢). Thus, the proof
is completed.

Remark. In particular for & = 1, we obtain the result of Theorem D.

Theoremn 4. Let o and ¢ be real constants a > 0, e > 0, e+ 1-a>0. If
g(z) € B(~) and f(z) € 2,

(17) F(z) = {(c +1 - a)g(2)** ch(c)" ar)'’e

! o
then F(z) €L® for 0 < |2| < a¥2er =7

ol 1
Proof. If k(z) = (i*s_“ﬁ_" Jer &) ' then F(z) = (s 9(s)"*"° . k(s)
and Theorem A implies k(z) is in L°. Differentating (17) we obtain

_zF'(z) e+l et 24'(s)  zk'(s)

F(z) a a g(s) k(s) °
29'(x) zk’(z) e
For — o) € P(y) and - %) € P it is well known that
z2g'(z) L 1-(1=29)r (z) _1-+r
i g(z) 2 1+ ° e k(z) ?'l+r tlsl<r)
Therefore
—Re 1F'(2) S (2(e+ 1)(1 - 9) +a)r
F(z) ~ a(l+r)
:F'(z) a
and =Re ) >0for0< |z| < P TP T g

Remark. Note that, this theorem is analogous to the Theorem E for functions
meromorphic in the unit disc. And also note that, the limiting case y — 1 whilep=1 °
gives the result of Theorem A.
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STRESZCZENIE

Autor rozpatruje wiasnosa funkcji klasy 2;('} funkcji holormorficanych f w obszarze
0< |z| < 1, o roawmnigau f(z) = 27F 4 ag: Pt 4. gmandnstych rzedu p, 0 S p < 1.



