ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL, XR, 27	SECTIO A
	Inatute of Mathematica Peking Univeraity

WEN GUO-CHUN

The Nonschlicht Mapping of Multiply Connected Domains

Niejechnoliture odwrorowemie obszanów wielospójnych

Неоднолистные отобраменоя многосвязных областей

Introduction. Let D be a bounded $N+1(1 \leqslant N<\infty)$ connected domain in the (z)-plane with the boundary

$$
\Gamma=\sum_{j=1}^{N+1} \Gamma_{j} \in c_{\alpha} \quad(0<\alpha<1), \text { where } \quad \Gamma_{j}(j=2, \ldots, N+1)
$$

form the boundary of a bounded domain contained in the interior of Γ_{1}, and $z=0$ © . It is known that there exists a schlicht function which maps conformally the domain D onto a Ni+1-connected circular domain G bounded by $N+1$ circles I_{j} ($j=1, \ldots, N+1$), and there also exists a nonschlicht analytic function which maps the domain D onto a $\mathbb{N}+1$-sheeted disk H (cf. [1]). In this paper we shall prove that there exists an analytic function which maps the domain D onto a $N+1-k$ $(0 \leqslant k \leqslant N)$-sheets Riemann surface in the unit disk, and give a uniqueness condition of the nonschlicht mapping. In particular the cases when $k=N$ and $k=0$ are the known results stated above, respectively. Besides, we shall Eeneralize the result obtained to the uniformly elliptic complex equation of first order.
I. The nonschlicht mappings for analytic functions.
ivithout loss of generality, we assume that the boundary compomont Γ_{i} of the domain is $|z|=1$.

Theorem 1.1. Let D be a $N+1$-connected domain stated as above. Then there exists a unique analytic function $w=F(z)$, sutisfying the following conditions:

1) $W=F(z)$ maps D onto a $N+1-k$-sheeted Riemann surface G in $|w|<1 \quad(0 \leqslant k \leqslant N)$ with $k+1$ boundary components.
2) $w=F(z)$ maps three points $a_{1}, b_{1}, c_{1} \in \Gamma_{1}$ onto $1,-1,-1 \in L_{1}:|w|=1$ respectively and maps Γ_{j} $(j=1, \ldots, N+1-k)$ onto L_{1}, and maps $a_{j} \in \Gamma_{j}(j=2, \ldots, N+1-k)$ onto $w=1$, where a_{1}, b_{1}, c_{1} on Γ_{1} are arranged in accordance with the positive direction.
proof. We first prove that there exists a unique analytic function $=\mathcal{P}(2)$ satisfying the conditions:
3) $\quad W=f(z)$ maps D onto a $N+1-k-s h e e t o d$ Riemann surface in $0<\operatorname{Re} W<1$ with the boundary: Re $W=0, \operatorname{Re} W=1$ and k vertical rectilinear silts in $0<\operatorname{Be} W<1$.
4) $V=f(z)$ maps three points $a_{1}, b_{1}, c_{1} \in \Gamma_{1}$ onto the boundary points $1 \infty,-i \infty, 1$ and maps $a_{j} \in \Gamma_{j}(j=2, \ldots$, $N+1-k$) onto $i \infty$, where a_{1}, b_{1}, c_{1} are arranged on Γ_{1} in accordance with the positive direction, for convenience we assume $a_{1}=1, b_{1}=-1, c_{1}=-1$.

In order to prove the existence of the above function
$W=f(z)$, we find a bounded harmonic function $u(z)$ in D satisfying the boundary condition
(1.1)

$$
u(z)=\left\{\begin{array}{l}
0, \text { for } z \in \Gamma_{0}=\sum_{j=1}^{N+1-i} \Gamma_{j}, \\
1, \text { for } z \in \Gamma^{\cdots}=\sum_{j=1}^{N+1-k} \Gamma_{j}, \\
d_{j}, \text { for } z \in \Gamma_{j}, \quad j=N+2-k, \ldots, N+1,
\end{array}\right.
$$

where $\Gamma_{j}=a_{j} b_{j}$ is the curve from a_{j} to b_{j} on Γ_{j}, $\Gamma_{j}=b_{j} a_{j}$ is another one on $\Gamma_{j}, j=1, \ldots, N+1-k$, and $d_{j}(j=N+2-k, \ldots, N+1)$ are unknown real constants and $b_{j} \in \Gamma_{j}(j=1, \ldots, N+1-k)$ are points to be determined appropriately, so that tho conjugate harmonic function $v(2)$ is single--valued in D. In fact, let $O(2)$ be a bounded harmonic function satisfying the boundary condition:
(1.2)

$$
U(z)= \begin{cases}0, & \text { for } z \in \Gamma^{0}, \\ 1, & \text { for } z \in \Gamma^{\prime}, \\ \alpha_{j}, & \text { for } z \in \Gamma_{j}, \\ j=N+2-k, \ldots, N+1,\end{cases}
$$

where $\propto_{j}(j=N+2-k, \ldots, N+1)$ are all constants. We denote by $\omega_{j}(z)$ the harmonic measure in D with the boundary condition

$$
\omega_{j}(z)=\left\{\begin{array}{ll}
0, & \text { for } z \in \Gamma-\Gamma_{j}, \tag{1.3}\\
1, & \text { for } z \in \Gamma_{j},
\end{array} \quad \begin{array}{l}
\\
1=N+2-k, \ldots, N+1,
\end{array}\right.
$$

and we can prove that

$$
\left|\begin{array}{ccc}
I_{N+2-k, N+2-k} & \ldots, & I_{N+2-k, N+1} \\
\vdots & \ddots & \vdots \\
I_{N+1, N+2-k} & \ldots . & I_{1 H+1, N+1}
\end{array}\right| \neq 0
$$

whence $l_{i j}=\int_{\Gamma_{i}} \frac{\partial \omega_{i}}{\partial n} d s, \quad 1=N+2-k, \ldots, N+1$ and \vec{n} is the outward normal on Γ_{1}. Hence there exist constants Y_{j}
$(j=N+2-k, \ldots, N+1)$ such that
(1.4) $\sum_{j=N+2-k}^{N+1} \gamma_{j} I_{i j}=-\int_{\Gamma_{1}} \frac{\partial U}{\partial n} d s, 1=N+2 \cdots k, \ldots, N+1$,
and the function
(1.5)

$$
u(z)=u(2)+\sum_{j=11+2-k}^{1 i+1} \gamma_{j} \omega_{j}(z)
$$

is harmonic in D and satisfies the boundary condition
$(1.6) \quad u(z)=\left\{\begin{array}{l}0, \text { for } z \in \Gamma^{\prime}, \\ 1, \text { for } z \in \Gamma^{\prime \prime}, \\ \alpha_{j}+\gamma_{j}, \text { for z }, \Gamma_{j}, j=N+2-k, \ldots, N+1 .\end{array}\right.$

Besides, according to the method described in [1] and [2], if we determin properly the points b_{j} on $\Gamma_{j}, j=2, \ldots, i+1-i s$, then the conjugate harmonic function $v(z)$ of $u(z)$ is single--valued in D.

Putting $f(z)=u(z)+i v(z)$, we are free to choose a complex number T_{0}, so that $\operatorname{Re} W_{0}<0$ or Reiiio >1, it is clear that $\triangle_{Y} \arg \left(f(2)-W_{0}\right)=0$. Moreover, if the complex number W_{0} satisfies the condition $0<$ Re $\boldsymbol{H}_{0}<1$ and $W_{0} \bar{\epsilon} \mathrm{I}(\Gamma)$, then

$$
\begin{equation*}
\Delta_{\mathrm{f}} \arg \left(f(z)-w_{0}\right)=2(N+1-k) \pi \tag{1.7}
\end{equation*}
$$

Therefore, $W=f(z)$ maps $\mathbb{N}+1-k$ points ($N+1-k$ zero-points of the function $W_{0}-f(2)$) in D to the point W_{0}. It is shown that $i=f(z)$ is an analytic function as required.

If we add the condition $v\left(c_{1}\right)=0$, then the function $W=f(2)$ is unique.

It is easy to see that $w=g(H)=\frac{e^{1 \pi N}-1}{e^{1 \pi N}+1}$ maps the band domain onto the unit disk $|w|<1$, and then the function $W=F(z)=g(f(z))$ is an analytic function desired.

Theorem 1.2. Let $D_{n}(n=0,1, \ldots)$ be a sequence of $N+1$ -- connected domains, winch are of the sane type as the doinain D and $\left\{D_{n}\right\}$ converge to its kernel D_{0}. Then $\left\{I_{n}(2)\right\}$ uniformly converges to ${ }^{\prime} f_{0}(z)$ on any closed point-set in D, where $f_{n}(z)$
maps D_{n} onto the Riemann surface stated in Theorem 1.1 , $n=0,1, \ldots$.

Proof. We may assume that $D_{n}(n=0,1, \ldots)$ are the circalar domains with a boundary component $\Gamma_{1}:|z|=1, G_{n}=$ $=f_{n}\left(D_{n}\right)$ is a Riemann surface in $0<$ Re it $\langle 1$ stated as in the proof of Theorem 1.1, and $f_{n}(1)=1 \infty, f_{n}(-1)=-1 \infty$, $f_{n}(-1)=1$. In this case, we can seek an analytic function $f_{n}(z)$ in D_{n}, which satisfies the boundary condition
(1.8) $\operatorname{Re} f_{n}(z)=r_{n}(z)=\left\{\begin{array}{l}0, \text { for } z \in \Gamma_{n}^{\prime}, \\ 1, \text { for } z \in \Gamma_{n}^{\prime}, \\ d_{j}^{n}, \text { for } z \in \Gamma_{j}^{n}, j=N+2-k, \ldots, N+1\end{array}\right.$
where $d_{j}^{n}(j=N+2-k, \ldots, N+1)$ are all constants, and $\Gamma_{n}{ }^{\prime}$, $\Gamma_{n}{ }^{\prime \prime}$ are circular arcs similar to Γ^{\prime}, $\Gamma^{\prime \prime}$ in Theorem 1.1 . It is not difficult to see that $0<d_{j}^{n}<1, j=N+2-k, \ldots, N+1$. Having used Schwartz formula in the multiply connected domain (cf. [2]), the function $f_{n}(2)$ can be represented in the form

$$
\begin{align*}
I_{n}(z)=\frac{1}{2 \pi} \int_{\Gamma_{n}}^{I_{n}(z, t) r_{n}(t) d \theta+\Phi_{n}(z)}= & F_{n}(z)+ \tag{1.9}\\
& +\Phi_{n}(z)
\end{align*}
$$

where $T_{n}(z, t)$ is the Schwarz kernel of the type
(1.10) $\quad P_{n}(z, t)=\sum_{j=1}^{N+1} P_{j}(z, t)+P_{*}(z, t) \quad, \quad t \in \Gamma^{n}$,
in which

$$
\begin{equation*}
P_{j}(z, t)=\frac{t+z-2 z_{j}^{n}}{t-z}, \quad t e \Gamma_{j}^{n}, \quad j=1, \ldots, N+1, \tag{1.11}
\end{equation*}
$$

z_{j}^{n} is the centre of Γ_{j}^{n}, and $P_{*}(z, t)$ is an analytic function in D_{n} with the boundary condition:
(1.12)

$$
\left\{\begin{array}{l}
\operatorname{Re} P_{*}(z, t)=-\operatorname{Re} Q(z, t)+b(z, t), \quad t \in \Gamma^{n}, \\
Q(z, t)=\sum_{\substack{m=1 \\
m \neq j}}^{N+1} P_{m}(z, t), z \in \Gamma_{j}^{n}, \quad J=1, \ldots, N+1, \\
I m P_{\neq}\left(t_{j}^{n}, t\right)=-I m Q\left(t_{j}^{n}, t\right), t_{j}^{n} \in \Gamma^{a}, J=2, \ldots, N+1,
\end{array}\right.
$$

where $t_{j}^{n}\left(\neq a_{j}^{n}, b_{j}^{n}\right)$ is a fixed point on $\int_{j}^{n}, j=2, \ldots, N+1$. Applying Leman 5.1, Chapter 5 in [2], we can prove the estimate:

$$
\begin{equation*}
c_{\alpha}\left[F_{n}(z), D_{n}^{m}\right] \leqslant M_{1}=M_{1}(a, b, c, d, \alpha, m), \tag{1.13}
\end{equation*}
$$

in which $\propto(0<\alpha<1)$ is a constant, a, b, c represent $a_{j}^{n}, b_{j}^{n}(j=1, \ldots, N+1-k), \quad c_{1}^{n}$ respectively, $d \quad(>0)$ is the greatest lower bound of the distances between $\Gamma_{j}(j=1, \ldots, N+1)$, D_{n}^{m} is the point-set in D_{n} whose distance from $a_{j}^{n}, b_{j}^{n} \quad(j=1, \ldots$ $\ldots, N+1-k$), c_{1}^{n} is not less then $\frac{1}{m}$ (m is a integer).
According to the method of the proof of Theorem 3.3, Chap. 5 in [2], we can obtain the following estimate of the analytic function $\Phi_{n}(z)$:

$$
\text { (1.14) } \quad c_{\alpha}\left[\Phi_{n}(z), \bar{D}_{n}\right] \leqslant \mu_{2}=H_{2}\left(\mu_{1}\right) \text {. }
$$

Consequently we way select a subsequence of $\left\{f_{n}(2)\right\}$ which converges uniformly to an analytic function $f_{0}(z)$ on any closed sot $D_{\text {. }}$ in D_{0}, it is clear that $f_{0}(z)$ is not a constant, and such function is unique, and $f_{n}(2)$ uniformly converges to $f_{0}(2)$ on D_{6}.
II. The nonschlicht mappings for elliptic complex equations, In this section, we discuss the nonlinear uniformly elliptic complex equation of first order
(2.1) $\quad w_{\bar{z}}=F\left(z, w, w_{z}\right) \quad, \quad F=Q\left(z, w, w_{z}\right) w_{z} \quad$,
in a $N+1$-connected domain D. We suppose that the equation (2.1) satisfies the condition C in D, i.e. $Q(z, W, V(z))$ is measurable in z for all functions $w(z) \in W_{p_{0}}^{1}(D) \quad\left(2<p_{0}<\infty\right)$ and $V(z) \in L_{8_{0}}(\bar{D})$, and is continuous in $w \in E$ (the whole plane) for almost every point $z \in D$ and $V \in E$, and the equation (2.1) satisfies the uniformly elliptic condition

$$
\begin{equation*}
\left|F\left(z, w, v_{1}\right)-F\left(z, w, v_{2}\right)\right| \leqslant q_{0}\left|v_{1}-v_{2}\right| \tag{2.2}
\end{equation*}
$$

for almost every point $z \in D$ and $w \in B$, where $q_{0}\left(0 \leqslant q_{0}<1\right)$ is a real constant.
shooretu 2.1. Jet tine equation (2.1) satisfy the condition C. Then there exists a solution ain)
which maps the domain D onto a $N+1-k$-sheeted Kieluann surface in $|w|<1,0 \leqslant k \leqslant N$.

Proof. Let us introduce a bounded closed and convex set B In the Banach space $L_{p_{0}}(D)\left(2<p_{0}<\infty\right)$, in which the delements are measurable functions $Q(2)$ satisfying the condition
(2.3) $\quad I_{\infty}[Q(z), D] \leqslant q_{0}<1$.

We choose arbitrarily $Q(z) \in . B$. By the principle of contraction, the integral equation
(2.4) $h(z)-Q(z) \pi h=Q(z) \quad, \quad h=-\frac{1}{\pi} \iint_{D} \frac{h(J)}{(J-z)^{2}} d \sigma_{J}$
has a unique solution $h(2) \in L_{p_{0}}(\bar{J}), 2<p_{0}<p$. ie can vertif that

$$
x(z)=z+m h=z-\frac{1}{\pi} \iint_{D} \frac{h(3)}{3-2} d \sigma_{J}
$$

is a homeomorphism on D (cf. [3]). Next we find a univalent analytic function $f(x)$ which maps the domain $X(D)$ topologically onto a circular domain H in $|\jmath|<1$, and maps $X\left(a_{1}\right), X\left(b_{1}\right), X\left(c_{1}\right)$ onto the three points $a^{\prime}, b^{\prime}, c^{\prime}$ on $|\boldsymbol{j}|=1$. Afterwards, applying theorem 1.1, we can seek a unique analytic function $w(X)$ in H, which maps is onto a $N+1-k$-sheeted Riemann surface in $|w|<1$, so that $w\left(J\left(X\left(a_{j}\right)\right)\right)=1, w\left(\zeta\left(X\left(b_{1}\right)\right)\right)=-1, w\left(\mathcal{T}\left(x\left(c_{1}\right)\right)\right)=-1$ and $w\left(j\left(x\left(\Gamma_{j}\right)\right)\right)=I_{1}, \quad|w|=1, \quad j=1, \ldots, N+1-k$. Butting $w(z)=w(\zeta(X(z))), w(X)=w(\zeta(X))$ and using the
principle of contraction, we can find a unique solution $n^{*}(z) \in L_{p_{0}}(\bar{D})$ for the integral equation

$$
\begin{equation*}
h^{*}(z)=Q\left(z, w(z), w^{*}(X)\left(1+\pi h^{*}\right)\right) \cdot\left(1+\pi h^{*}\right) \tag{2.5}
\end{equation*}
$$

Let $G^{*}(z)=h^{*}(2) /\left(1+\pi h^{*}\right)$. It is obvious that $\mathcal{C}^{*}(2)$ satispiss $L_{\infty}[Q(z), \vec{D}] \leqslant q_{0}<1$. We denote by $h=S_{1}(\&)$ a mapping from $Q(z)$ to $h(z)$, by $h^{*}=S_{2}(n)$ a mapping from $w(z)$ to $h^{*}(z)$, and by $Q^{*}=S(2)$ a mapping from $Q(z)$ to $Q^{*}(z)$. io prove that $Q^{*}=S(\psi)$ is a continuous mapping, we select $\alpha_{n}(z) \in L_{\infty}(D), n=0,1,2, \ldots$, where $\lim _{n \rightarrow \infty} L_{\bar{L}_{0}}\left[Q_{n}(z)-Q_{0}(z), \bar{D}\right]=$ $=0$. According to the method of 83 in [4], we know that $\lim _{n \rightarrow \infty} L_{p_{0}}\left[h_{n}(2)-h_{0}(2), \ddot{D}\right]=0$, where $h_{n}=S_{1}\left(Q_{n}\right), n=0,1,2, \ldots$ and the corresponding sequences of functions $\left\{\int_{n}\left(x_{n}(z)\right)\right\}$ uniformly converges to $J_{0}\left(x_{0}(z)\right)$ on \bar{D}. On the basis of Theorem 1.2, we can see that $w_{n}(z)=w_{n}(\}_{n}\left(x_{n}(z)\right)$) uniformly converges to $w_{0}(z)=w_{0}\left(J_{0}\left(x_{0}(z)\right)\right)$ on \bar{D}. In the following, we shall derive

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{p_{0}}\left[h_{n}^{*}(z)-n_{0}^{*}(z), \vec{D}\right]=0, \tag{2.6}
\end{equation*}
$$

where $h_{n}^{*}=S_{2}\left(w_{n}\right), n=0,1,2, \ldots$. For two arbitrary positive co slants ε_{1} and ε_{2}, there exists a subset D_{F} in D, so that mas $D<\varepsilon_{1}$ and $\left|c_{n}\right|\left\langle\varepsilon_{2}, \quad z \in D-D_{\text {. }}\right.$, for $\left.n\right\rangle N$, where $\quad c_{n}(z)=Q\left(z, w_{n}(z), w_{n}^{0}(\mathcal{L})\left(1+\pi h_{0}^{*}\right)\right) \cdot\left(1+\pi h_{0}^{*}\right)-$

$$
-Q\left(z, w_{0}(z) ; w_{0}^{\prime}(x)\left(1+\pi h_{0}^{*}\right)\right) \cdot\left(1+\pi h_{0}^{*}\right)
$$

and H is a sufficiently large positive number. By the Holder
inequality and the Minkowski inequality, we have

$$
\text { (2.7) }\left\{\begin{array}{l}
I_{p_{0}}\left[c_{n}, \vec{D}\right] \leqslant L_{p_{0}}\left[c_{n}, D_{*}\right]+L_{p_{0}}\left[c_{n}, \bar{D}-D_{*}\right] \leqslant \\
\leqslant L_{p_{1}}\left[c_{n}, D_{*}\right] \cdot L_{p_{2}}\left[1, D_{*}\right]+\varepsilon_{2} I_{p_{0}}\left[1, \bar{D}-D_{*}\right] \leqslant \\
\leqslant 2 L_{p_{1}}\left[1+\pi h_{0}, D_{*}\right] \varepsilon_{1}^{1 / p_{2}}+\varepsilon_{2} \pi^{1 / p_{0}} \leqslant \\
\leqslant 2\left(\varepsilon_{1}^{1 / p_{1}}+\Lambda p_{1} I_{p_{1}}\left[L_{0}, D_{*}\right]\right) \cdot \varepsilon_{1}^{1 / p_{2}}+\varepsilon_{2} \pi^{1 / p_{0}}= \\
=\varepsilon \quad,
\end{array}\right.
$$

where $\quad p_{2}=p_{0} p_{1} /\left(p_{1}-p_{0}\right)\left(c\left\langle p_{0}\left\langle p_{1}\left\langle p_{2}\langle\infty), n\right\rangle N\right.\right.\right.$ and $\Lambda_{p_{1}}$ is a constant satisfying of $\Lambda_{p_{1}}<1$. Next, from the integral equation
(2.8) $\left\{\begin{aligned} n_{n}^{\prime}(z)-h_{0}^{*}(z) & =\left(i, w_{n}, w_{n}^{\prime}(x)\left(1+\pi n_{n}^{*}\right)\right) \cdot\left(1+\pi n_{n}^{*}\right)- \\ & -i\left(z, w_{n}, w_{n}^{\prime}(x)\left(1+\pi n_{0}^{*}\right)\right)-\left(1+\pi n_{0}^{*}\right)+c_{n}(z),\end{aligned}\right.$
we can conclude
(2.9)

$$
I_{p_{0}}\left[n_{n}^{0_{n}^{*}-n_{0}^{*}}, \overline{\overline{ }]} \leqslant \mathrm{I}_{p_{0}}\left[a_{n}, \overline{\mathrm{D}}\right] / 11-q \Lambda_{p_{0}}\right) .
$$

In virtue of $\lim _{n \rightarrow \infty} L_{p_{0}}\left[C_{n}, \bar{D}\right]=0$, it follows $\lim _{n \rightarrow \infty} L_{p_{0}}\left[h_{n}^{*}-h_{0}^{*}\right.$, $, \vec{D}]=0$. Afterwards, by using Lemma 3.3 in [4], it is easy to see that $\lim _{n \rightarrow \infty} L_{p_{0}}\left[Q_{n}(z)-Q_{0}(z), \bar{D}\right]=0$. Therefore, $*^{*}=S\left(Q_{8}\right)$ is a continuous mapping on $I_{p_{0}}(\bar{D})$.

Similarly, we can verify that $Q^{*}=S(G)$ maps B into a compact set in B . It follows from tio Schauder fix point theorem that there exists a moasurable function $Q(z) \in B, 80$ that $Q=S(Q)$. We denote $h(z)=S_{1}(Q)$ and $X(z)=z+T h$, suad the corresjonding function $w(z)=w(\xi(x(z)))$ is exactly a solution of (2.1) stated as in Theorem 2.1.
saking use of the same method as that in the above theorem, we can prove the following result.
ineorom 2.2. If the nonlinear equation (2.1) satisfies the condition C, then it has a solution $w(z)$, which maps the dofuain D onto one of the following Riemann surfaces:
(1) $\operatorname{li}+1-k(0 \leqslant k \leqslant N)$-sheeted Riemann surface, the boundary of waich consists of rectilinear silte.
(2) $N+1-k(0 \leqslant k \leqslant N)$-sheeted Riemann surface whose boundary consists of sone spiral slits.

REFERENCES

[1] Goluzin, G.Li., Goometric theory of functions of a complex variable, 1969.
[2] ien Guo-chun, Conformal rappings and boundary value problems, 1985.
[3] Vekua, I.N., Generalized analytic functions, 1962.
[4] ien Guo-chun, The Ricmann-Hilbert boundary value problem for nonlinear elliptic systems of first order in the plane, Acta Latil. Sinica, 23(1980), 244-255.

STRESZCZENIE

W pracy tej wykazano, to lstnleje funkcja analltyczna nlejednollatna, która odwzorowuje obszar D o rzędzle'spojnoścl N + 1 na ($N+1-k$) Uetna powlerzchnis Rlemanna nad kotem jednostkowym, $0 \leqslant k \leqslant N$. Podano warunkl jedynotcl takiego odwzorowania. Wynik daje się uogólnić na rozwiqzanle ukiadów jednostajnie ellptycznych plerwazego rzędu.

PE3MNE

В даннои работө доказано, что существуст аналитическая неоднолистная функция, которая отобраввет ($N+1$) - свяэнур область д на ($\mathrm{N}+1-\mathrm{k}$) - дистнур Римановур поверхность над одиничным кругом, $0 \leq \pi \leq N$. Получеяро условия единства этого отобрахения. Полученнне резудьтатя обобщадтся на решении равномервых әллитических систеи первого порядка.

