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Abstract. This paper is a conclusion of [8-10] and deals with compact convex classes of
typically real functions whose ranges are in a given horizontal strip or else whose all odd coefficients
are fixed. Like in [10] extreme and support points can form dense subsets and hence every extremal
continuous problem over such class reduces to the extremal problem over its extreme (support)
points. Some applications concern with the class of all typically real functions bounded in modulus
by a common constant.

1. Introduction. Let H(A) be the linear space of all complex functions holo-
morphic in the open unit disc A, endowed with the topology of uniform convergence
on compacta. In this paper, being a conclusion of [8 10]. we shall be interested in
subsets of the class

(1.1) T={feHA): f(0)=0, Im f(z)In 2 >0 for z € A},
parallel to those considered in the previous part [10]. Since T is the smallest convex

cone in H(A) that contains the known class of all normalized typically real functions,
we have the Rogosinski representation (1932) :

(1.2) T ={z 2f(2)/(1 - 2*): f € P},
where
(1.3) Pr={f€HA): f(z2)+ f(Z) 20 for 2 € A} .

This is equivalent to the Robertson integral representation (1935) :

(1.4) T ={f:veM}.
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where

"

(1.5) fu(z) = j g(z,cos2)du(z) , qlz,t)=z/(1 =2z +2?),

and M is the family of all finite nonnegative Borel measures on the interval [0, w]. For
details see (1, 3-5, 11].

According to [8-10] we suppose that B consists of all Borel subsets of [0, 7] and
that M is endowed with the weak-star topology. Then the map v — f, is an affine
homeomorphism from M onto T (1], so we get that

(I) the equation f, = f with f € T has the unique solution v = vy € M,

(II) vy is the weak-star limit of a sequence (vy,) whenever f, f;, fg, . €T and
fn — f uniformly on compacta.

For instance, if f € T and fa(z) = f((1 — 1/n)z), then

(1.6) dvy, /dz = (2/m)Im f((1 —1/n)e'*)sinz on [0,7] and wy, 'f;-v;

(recover the function ga(2) = (1 — 2?)f,(z)/z from its boundary function g..|aA by

means of the Poisson integral and use the property : 2fn(2) = fu(2) + fa(Z) ).
Most of the paper is concerned with the compact convex sets :

(1.7) T(L)={feT:|Imf(z)] <xL for z€ A} , L>0,
(18)  T(L)={feT(L):f(0)=c} , 0<c<4L,

and

(1.9) Tll={f €T :aym-1(f) = azm-1(g) for m=1,2,...},

where g € T and a;(f) = f1(0)/5! for j = 0,1,2,... . Obviously, by subordination

principle, T (L) = Upcc<sr T (L, €) -
Moreover, for any 0 < r < 1 the real functional

(1.10) T3fm Y a(f)rd = (2fr) [ Im?f(re"*)dz
j=] Jﬁ

is continuous convex and hence

(1.11) T (BYi@ H 3w

We let add that T C H? for 0 < p < 1/2. From the theory of HP spaces (2], there
follows the existence of nontangential boundary limits f(e'*) a.e. on [0, 7] for all
f € H? with 0 < p < co. Thus

(1.12) Zaﬁ(n = (2/) /"Imzf(ei‘)dz for feTnH?
j=1 .
and

(1.13) dvg/dr = (2/m)lm f(e'*)sinz a.e. on [0,7] for ff€TNH',
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see (), (I) and (1.6), see also the proof of [10, Th.5.10].
Observe now that the map f — f, where f(z) = (f(z)— f(—2))/2, is a projection
of T onto the class T of all odd functions from 7. Thus the equivalence relation

f~g ifandonlyif f:ﬁ
decomposes T into equivalence classes (1.9) with g ranging over T. This way
T=|JTlg . f[67].
9T

Just as in [10], the classes (1.7), (1.8) and many of (1.9) are strongly convex, so
their extreme points form dense subsets. Some applications will concern the class of
all typically real functions that are bounded in modulus by a common constant.

To comply with the previous notation, let £.A4 (resp. ¢.4) denote the set of all
extreme (resp. support) points of A Moreover, let v4(B) = v(AN B) forall v € M
and A,B € B, and let h(z) = 7 — z for 0 < £ < 7. The support of v € M will be
denoted by supp v.

2. Basic results. Using (1), (II), (1.6) and the notation from [8] we get

Proposition 2.1. T(L) = {f, :v,p—v € M} = {f, : v € M'((0,7],B, )}
and T(L,c)={f, :v € M*([0, 7], B, u,c)}, where dpfdt =2Lsint, 0<t<m.

For the classes (1.9) we have

Proposition 2.2. Let g € T. Then Tlg] = {f, : v € A_i“(_\',B,,/;)}, where

orb(z) = {z,7—z}, X =[0,7]=X2 = X,UX;, X, = {n/2} and X, = X\ {x/2},
see [8].

Proof. Note first that f € T[g] if and only if f € T and 2g12) = f(z)- f(—2).
Since h = h~!, we have 2u;(A) =vg(A) + vg(h(4)) for all 4 € B. and the desired

result follows from [8, Proposition 7.1].

The classes T (L) and T (L.¢), 0 < ¢ < 4L, are strongly convex and the following
properties hold.

Theorem 2.3. Let ¢ : [0,7) -+ R be a Lebesgue sutegrable function on [0, 7]
and 0 < c < 4L. Then

(i) max{/‘wdu, . fe T(L)} oy / (¥(r) F |¥(z)]) sin.rdr
0 Jo
(i) max{A Ydvg: f € T(L,r)} =rN [le(z) — A )sinadr + Acc,

where A(A) = {z € [0,7] : ¢(z) = A} and A, = snp{.\ € R:2L _[_‘“. \) sintdr > (-}
Furthermore,
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(i) oT(L) = {fA = 2L f, q(-,cosz)sinzdz : A C [0, 7] 1s a finite union of inter-
vals } g ET(L)={fa: A€ B}={2L [, q(,t)dt: B is a Borel subset of [-1,1]}

and

(iv) 0T (L,c) = {f € oT(L): f'(0) = c} GET(Lye) = {fe€ET(L): f'(0) = c}.

Thus for A=T (L) or A= T (L,c) we have

(v) cA=FEA=A.

Moreover,

(vi) feEAIff f € Aand (rL —Im f(e'*))Im f(e'*) = 0 a.e. on [0, ).

Proof. In contrast to the proofs of [10, Th. 3.4, Remarks 3.6] it is sufRicient to ob-
serve that for 0 < 7y < 79 < -:- < 29,1 < T3, < ™ we have A ‘gu;-'_,[:tgj_l,zg,-] =
{z € [0,7] : w(z) > 0}, where w(z) = — H?:l(cos z; — cosz). Moreover, if
(f) = E::rl d;a;(f), where w(z)sinz = E};‘:l djsinjz, then & € H(A)* and
®(g(-,cosz)) = w(z). Taking A such that 2L [, sinzdz = ¢ we have f4 € T(L,c)
and max ®(7 (L,c)) = ®(f4). In the proof of (vi) we use (I), (1.11) and (1.13).

Let now T(L) € T(L)NT for L >0, T(L,e) € T(L,e)n T for 0 < ¢ < 4L,
and let 1 be a real Lebesgue integrable function on [0, r]. Clearly,

T(L)={f:feTL)} ={f€T(L):vy=vgoh)

and

T(Lye)={f:feT(Lc)}={f€T(Lyec):vy=vsoh}.

Analogously to the previous theorem we deduce

Theorem 2.4.

" _ x/2
(i) max{] Ydup: f € 'T(L)} =L / (V(2)+¥(m-z)+](z)+y(r-z)|) sinz dz,

(ii)max{jﬁ'r Ydvy: f€ 'f(L,c)}:ZL ‘/:4(/\ )(t/'(.r)+1/'(7r r)- /\c) sinz dz+A.c/2,

c

where
A = {z €[0,7/2) : ¢(a) + ¢(m — ) > A}
and

A =sup{A€ R:ZL/ sinz dr 20/2}.

A(N)
Furthermore,

(iti) 0T (L) =T NaT(L)C {2(},.\) : A is a Bovel subset of [0,7/2]} =
7

{2[. / (q(-.1) + q(-,—t)) dt : B is a Borel subset of [0,1]} =ET(L)=T NET(L)
Jn
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and

(iv) oT(L,e)=T NoT(L,c) < ET(L,c)=TNET(L,c), cf Th. 2.3.

Moreover, the classes 'f(L), f(LLc) are strongly convez so that (v) and (vi) of The-
orem 2.3 with A= T(L) or A=T(L,c) holds.

The proof is very similar. Observe only that
T(L) = {f"lonfﬂ] +Voejz 0 h Y €M, dv/dr <2Lsinz ae. on [),7/2]}

and

T(L,c)={f, € T(L): v([0,7/2]) = ¢/2) .

Ifnow 0 € 2y <75 <++: < ZTn-1 < T2 < /2, —sinz nﬁ:,(cos2:, — cos2z) =
Timt! dyj 1 sin(2 - 1)z, (f) = T8 dajoyaz; 1 (f) and A = U)_, [z25-1,225) ,
then ® € H(A)* , ®(q(-t)) = ®(q(-,-t)), A= {z€0,7/2]: ®(q(-,cosz)) > 0}
and (fa) € T(L).

Rgmarks 3.5. ” .
(i) oT(L) ¢ {f:feoT(L)}, ET(L) ¢ {f:fe€T(L)},

(ii) ai(L,c)g {f:feoT(L,c), ET(L,c) G {(f:feET(L, o).

(iii) Let g(z) = 2Llog((1 4 2)/(1 — z)). Then f € T(L,¢) (resp. f € T (L,c)) if and
only if g — f € T(L,4L — ¢) (resp. g — f € T(L,4L — c)).

Proof. (i) - (ii). Take any A € B with [AN h(A)| > 0 and let dpy/dr = 2Lsinr
a.e. on [0,7]. Then f4 € ET (L), see Theorem 2.3(iii). If B is a measurable subset
of AN[0,7/2] or of AN[r/2, ] with p(B) = 1i(A)/2, then (F)=(Fa+ fn)/2:
(fun(s) + fa\Bur(a\py)/2 ¢ ET(L).

In proving (iii) observe that for all f € T(L.c) we have ¢'(0) — f'(0) = 4L — ¢
and d(vy — vy) = 2(L — Im f(e'")/m)sinz dr a.e. on [0, 7.

By [9, Remark 3.2, Theorems 4.1, 4.2] we get

Theorem 2.6. Let 0 < ¢ < 4L and let A be one of the following sets - T(L),
T(L,c), T(L) or T(L,c). If A consists of all fo € A for which there is a complex
functional J weakly differentiable relative to A such that Re J(fy) = max(Re J)(A)
and Re J{ |A# const, then 4 = o0 A

Using [8. Theorems 8.1, 9.1, 11.2] and Proposition 2.2 we obtain
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Theorem 2.7. Letgye T and p = vs. Then

(1) ET(y) = {fu : v = pyns2) +2upand the sets D, h(D), {n/2}form a
Borel decomposition of the interval [0,7]} ,

(ii) ma,x{j[ ydvy: f€Tlgl} = / max{y(z),Y(r — )} dvp(z)
o

0

= [ wd,;+(1/2)/ [¥(x) = (r ~ )| du(z)
Jo v

for all bounded Borel functions ¥ : [0,7] —» R and all F € T [g], see [6-7]. Moreover,
f realizes the mazimum if and only if f € T|g] and vy({z € [0,7] : (7 — ) >
¥(=)}) =0.

Corollary 2.8. [6,7]. T(g) = {g} if and only if g(2) = Az/(1 + 2*) = fas,,, for
some nonnegative number A.

Proof. The original proof has been found by means of 2.7(ii) (consider all
continuous functions ¢ : [0, 7] —» R). An alternative proof of the theorem depends on
2.7(i). If T[g] = {g}, then g = g and vy = (¥4)(n/2)}-

Conversely, putting v = \,/;, A >0, g = f,, we obtain that £7 [g] = {g}, that is
T(g] = {g}.

The class T [g] can be strongly convex. Namely,

Theorem 2.9. Letg€ T and u = vy The class T [g] 1s strongly convez if and
only if either
1°  p— pyns2) 13 nonzero and nonatomic
or
2° supp pu\ {7/2} consists of 2 elements.
In the case 1° we have
(i) oT[g] = ETg] = T|g]
and
(i) oT (g] = {f, € ET [g) : supp v is the finite union of subintervals of [0, ]}.

Proof. Let a = p — pgz/2)-

"if”. If 1° holds, the proof is similar to that found in [10, Th. 3.9]. Namely,
without loss of generality we can assume that u is nonzero and nonatomic. The truth
is that T[g] = /‘({"/2})Q("7’/2) t T[fa] Next replace n, P(n;g), 9(n)» 0A and
h(z) = ex by 2, T[g], g, [0,7] and h(z) = 7 — z, respectively. In the case 2° the
class T [g] is a segment in H(A) and, hence, it is strongly convex.

"only if’. Suppose that T [g] is a strongly convex set different from a seginent.
Obviously, the measure a is nonzero, and if b is an atom of «, then also 7 — b is
an atom of a. We can assume that 0 < b < n/2. Consider now the functional
®(f) = 2ay(f)cos2b — ag(f). By 2.7(ii) we get max ®(T [g]) = ﬁ:’ ()| dp(x) =

f”/z |¥(z)|dp(z) = ®(fy) = ®(f2), where ¥(z) = 4 cosz(cos2h — cos2r), vy =
1w s2) + 200 yotm—b,x] B Vg, = gtin/2) + 20, m/2)0(x—b,x]- Cleatly. fi, f, € ET [g]
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and f, # f,, sce (I). Since T (g] is not a scgment, there is A € B, A C [0,7/2)\ {b}
with p(4) > 0, and then ®(f;) 2 2 [, |¥(z)|du(z) > 0= &(g). Finally, (f; + f)/2 €
oT [g] \ £T [g], from which it follows that a has to be nonatomic.

3. Functions with range in a strip.

Theorem 3.1. For any real numbers r, s and positive integers m,n we have
(i) max{ram(f)+san(f): fE€T(L)} =
= L[f |r sin(mz) + s sin(nz)|dz 4 r(l —(-1)™)/m + 3(1 — (—l)")/n] 1
o

In particular, for f € T(L) we obtain the following sharp inequalities :

(i) lan(f) = L(1 = (-1)")/nl<2L , n=12,... ,
(i) lam(f) £aa(f) = L(1 = (=1)7)/m F L(1 = (=1)")/n| <
!8L(A cot(r/A) — B cot(x/B))/(A* — B*) if A/2 is even,
=\ 8L(A/sin(n/A) - B/sin(r/B))/(A? — B?) if A2 is odd,

where A = 2lm £ n|/d, B = 2\m F n|/d, m # n, and d is the greatest common
divisor of m + n and |m — n|.

Proof. Apply 2.3(i) to ¥(z) = rsin(mr) + ssin(nz). To calculate the integrals
in (i) for r,s = 1 use [10, the formula (4.1), Lemmas 4.2 4.4 aud the proof of
Th. 5.1(iv)]. Then

'ﬂ‘ "

j |sinmz £ sinnz|dr = [ |sin2mz £ sin2nz|dr =2J(|m +n|. i § nl.n/2).
0 0

Corollary 3.2. Suppose that f € T, f(z) =+ a2+ -4 a, " | andl
[Im f(z)] < 7/2 for z € A. Then we have

lan = (1 =(=1)"))/(20)| <1 fornw =12 .
This result is sharp.
Proof. The extremal functions realizing equality in 3 1(ii) hetong all tothe elae

T(L,2L). Indeed, each of such functions belongs to T (L, ) witl
c=2L f“e[o &yl ff sinzdr = 2L. For L = 1/2 we get the corollars

Theorem 3.3. For all 0 < ¢ < 4L, mnx{z;il aj( [ f € Tl "
4w L%arc cos(1 —c/(4L)).

Proof. The classical arguments on subordination [3-5] lead to the inequalities :

Y dp<err Y 2j-1F<2r’l? for fET(L) , n=12..

j=1 1<3<(n+1)/2
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str 9 koniec that are sharp only in the class T(L,4L) = {z — 2Llog((1 +2)/(1 —2))}.
For the remainder we shall use the Krein-Milman theorem and Theorem 2.3(iv). Since
for any 0 < r < 1 the real functional (1.10) is convex continuous on 7T (L,c), we get
that

[o o}

a?(f)rz’ : f€ 'T(L,c)} = max{Za}(f)r” :f€ ET(L,C)}

1 j=1

s

max{

J

< sup{ia?(f) : fe 8T(L,c)} = sup{(2/7r) /:' Im%f(e'*)dr: f € E’T(L,c)} )
i=1

see (1.12). By Theorem 2.3(iii) and by formula (1.13) we obtain that

sup{Za}(f) 1 f€ E’T(L,c)} = sup{27rL2|A| tA€EB, 2L j[ sin dz = c} g
; A
i=1
Consider now the set D = {z € [0,n] : sinz < A}, where A\ = \/cv/8L — c/(4L).
It is trivial to check that |D| = 2arcsin) and 2L [,sinzdz = c. If A € B satisfies
equality 2L [, sinzdz = c, then |A| = |A\D|+|AND| < A~ Ja\psinzdz+|AND| =
! Jp\asinzdz +|AND| < |D\ Al +|AND| = |D|. Thus

max{} a¥(f): f £T(L,c)} = 2rL?|D| < sup{za}(f) . fe T(L,c)}
j=1 . j=1
< 27L?|D| = 4nL? arccos(1 — c/(4L)),

the desired result.

Remark 3.4. Since the extremal function giving equality in the last theorem is
odd, we obtain also that

max{Zagj_,(f) :fe€ T(L,c)} = 4nL?arccos(1 — ¢/(4L)) for all 0 < ¢ < 4L .

j=1

Theorem 3.5. Let f e T(L,c),n>5 and

¢(n,z,y) = (4z/n)sin’(narcsin \/y/(4z) ). Then the following sharp inequalities
hold :

(i) lan(f)] < ¢(n,L,c) if ¢ < 4Lsin*(37/(8n)) and n is even,

(ii) lan(f)] < p(n,L,4L —c) if ¢ > 4L cos?(37/(8n)) and n is even,
(iii) an(f) < ¢(n,2L,¢) if ¢ < 8Lsin*(37/(8n)) and n is odd,
(iv) an(f) > 4L/n —¢(n,2L,4L — c) if ¢ > 4L cos(37/(4n)) and n is odd.

The extremal functions for (i), (i), (iv) are univalent.

Proof. Consider w(z) = sin(nz)/sinz for 0 < ¢ < 7, n > 5, and put p(t) =
w(arceost). Since p(t) = 2"7! n;;: (t —cos(jm/n)) for =1 < t < 1, we obtain that w
strietly decreases on [0, ry] and strictly increases on [z, 27 /n], where 14 is the unique
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solution of the equation : w'(z) = 0, 57/(4n) < r < 37/(2n). To this end ohserve
that w'(57/(4n)) < 0 and w'(37/(2n)) > 0. Moreover, w(r — z) = (—1)""Yw(x) and

{ 1/sin(57/(4n)) if 57/(4n) < r < m—57/(4n),
w(z) < ¢ w(3r/(4n)) if 3n/(4n) < z < 57 /(4n)
l orr—5r/(4n) <z < w—3r/(4n) .

Thus w(z) < w(3n/(4n)) for 3r/(4n) < z < m — 3n/(4n). But Theorem 2.3(ii)
implies that maxa,(7(L,c)) = 2L [, sin(nz)dz, where A = {z € [0,7] : w(z) > A}
and 2L [, sinzdz = c, and sometimes A looks very simply.

If n is even and w(3r/(4n)) < w(a), then A = [0,a], ¢ = 4Lsin’*(a/2) <
4Lsin?(37/(8n)) and 2L [, sin(nz)dz = ¢(n, L,c).

If now n is odd and w(37/(4n)) < A < n, then w™!'()) = {a,7 — a} with
0<a<3r/(4n), A = [0,a]U [ — a,7], ¢ = 8Lsin*(a/2) < 8Lsin*(3x/(8n)) and
2L f, sin(nz)dz = p(n,2L,c). ;

This is what the theorem asserts. Since f € T(L,c) iff {2 — —f(—z)} C T(L,¢),
and by Remarks 2.5(iii), the proof is complete. In the cases (i), (ii), (iv) all the
extremal functions are close-to—convex. For (iii) all of them are not locally univalent.

Remark 3.8.. Applying 2.3(ii) we obtain easily the sharp bounds for the initial
coefficients in the class T(L,c) : max{|as(f)| : f € T(L,c)} = ¢(4L — ¢)/(2L),
minas(7 (L,c)) = ¢(c*/(12L?) — 1, max a3(T (L, c)) = ¢(6L — c)*/(12L?) and

_ [ e(4L-c)(c-2L)*/(4L?) if ¢ > 0 and |c-2L| > 2LV6/3,
max{lai(Hl: £ € T(Li W= 41 c)j(aL)+(c-2L) /(32L2) if |e-2L) < 2LVE/3,

see [12] for another proof. Now we find a global bound for the even coefficients in the
class T(L,c).

Theorem 3.7. max{|az.(f)| : f € T(L,c)} < \/e(4L-c) < 2L, f. Th.
3.1(ii), and strict inequality holds for 0 < c < 2L and 2L < c < 4L.

Before passing to the proof, let us verify the following

Lemma 3.8. Assume that 0 < A < 1, E = {z € [0,7] : sin2nz > 0} aend let
S=sup{|A|:A€B, ACE, [,sinzdr=1}. Then S = arccos(1 - ).

Proof. Take any A € B, A C E. Then 4, £ An[0,7/2) U k(AN [r/2,7]) €
B, Ay C [0,7/2), |Ai| = |[AN[0,7/2)| + |A(AN [x/2,])] = |AN[0,7/2]| +]|AN
[*/2,7])| = |A| and [, sinzdz = f,sinzdz. Thus S = sup{|]A| : A e B, AC
(0,7/2] , f,sinzdz = A}. Next apply the argument used in the proof of Theorem
3.3.

Proof of theorem 3.7. Because of 2.5(iii) it is sufficient to consider the
case 0 < ¢ < 2L. By 2.3(iii) there is B € B with 2L fzsinzdz = c such that

max aza(7 (L,c)) = 2L [gsin2nzdz. Since 2L [psinzdzr = 2L = 2L fo"“ sinzdr >
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cvwe can find C € B, C ¢ E\ B for which 2L [, . osina di < e But

2L fynpuesin2nede 2 2L fpopsin2nede 2 maxag, (T(L,c)), that is IC|
{B\ E| = 0. Hence and by 2.3(iii)) we obtain that maxa,o(T(L,c))
max{2L fisin2nede:A€B,ACE, 2L [,sinrdr = ¢}. Finally, it is less than or

cqual tosup{2L [, sin2nrdr: A€ B, ACE,|4| < S}=2nl [((: +;SS)1/."((44’:-)) sin2nx dz=

’L+in S = 2L/\2 — )), see Lemma 3.8 with A = c/(2L). Also. minag,(T(L,c)) =
-max az,{T(L,¢)) > —\/¢(4L - ¢), and the proof is complete.

4. Bounded functions. Let us consider the following classes

T, 27F e T [ < Lror 2 €
Ti(c)={feT.: f'(0)=c}, where0<c <L,
R={fePr:f0)=1, Iin f(z)Imz>0for z€ A},

and let /'y denote the set of all probability measures on X. Clearly,

(4.1) fe I if and ouly if (1/2) log((L + f)/(L — f)) € T(1/4)
(42) f € 1) if and only if (1/2)log((L + f)/(L — f)) € T(1/4,¢/L),

and
(4.3) f € R if and only if (1/2)log f € T(1/4) .

In [12], as the hasic resnlt, it was established that the both classes {f2 : f € R}
and {f/k: f €T . f'(0) =1}, where k(z) = z/(1 + z)?, are identical. In particular,
putting Q(z.1) = (1 + 2)2/(1 — 2tz + 22) we have

T(L)={Liog [ QU.0dv(t):ve Ry} and Ty = {L(f-1)/(f +1): f € R} .

J—l

Also, in [12] it has been proved that

Q(J)Q(wyl
Alr) Q[‘.T+ u +1- 27]

{fZ:fG'R, f’(O):2r}={ dr:l.r,y]:uEPA(,.)} .

where A(T) is the rectangle {(z,y) € R? : -1 <1 <27—-1<y <1},0<7<1. Thus
T(L,c)={Llogf2:feR, f'(0)=c/(2L)} , 0<e<dL,

and

T(e)={L(f-D/(f+1):feR, f(0)=2c/L} , 0<c<L.

By Remark 2.5(iii) we have another interesting property :

f € Tp(c) if and only if L(Lz — f)/(L — z2f) € T (L - c) .
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Applications given in [12] concern mainly the variablity regions of the initial four
coctlicients in the mentioned classes. By means of the method described in Theorems
2.3 2.4 we can find easily the sharp estimations for the initial five coefficients of
bounded typically real functions.

Theorem 4.1. Let f € Ti(c). Then we have
(i) la2(f) < 2¢(1 =),
(ii) laa(F) — (1 - )?] < 2¢(1 =€),
(iii) las(f) <2c(1 —c)(2—-8c+7c?)if 0<c<1/11,
(iv) |ag(£)| < (1 —¢)(1 +3c)(1 +6c—3c?)/8if1/11<c <1,
see {12],
(v) as(f) < w(c) = (1 — )(5 — 15c + 10¢% — 2¢3) if 0 < c < (4 — 13)/3
(vi) as(f) < w(c)+ (1 —c)(1 —8c+3c?)?/4if (4-V13)/3<c< 1,
and

(vii) as(f) 2 —c(1 - ¢?)(5 - c2)/4.

Proof. Let g = (1/2)log((1 + f)/(1 — f)) and f € Ty(c). By (4.2) we obtain

thatey &L lhf4; c); az(f) = aa(9), a3(f) = a3(g) — ¢*/3, as(f) = as(g) — c*az(g) and
as(f) = as(g) — c*aa(g) - ca3(g) + 2¢*/15. Because of [12] we shall show only (v),
(vi) and (vii). Since T(1/4,¢) = T NT(1/4, c), we can assume that

g€ 'f(1/4, c) and as(f) = as(g) — c?as(g) +2c/15 .

In view of Theorem 2.4 we have
max (min)as(7; (c)) = fA(sm5:z: — c?sin 31 + (2c5/15) sinz)dz, where [,sinzdz =
cand A = {z € [0,7/2] : (sinbz — c?sin3z)/sinz > A (< A)}. Notice that
(sin5z —c? sin 3z)/ sin z = w(cos z), where w(t) = 16¢* - 4(3+c2)t2 +1+4¢?, and that
max (min)as(7;(c)) = [g w(t)dt, where B = {t € [0,1] : w(t)> A (< A) and |B| =c.

Since w strictly decreases on [0, 1/(3+c?)/8] and strictly increases on
[v/(3 + c?)/8, 1], and because of w(v/3 + c?/2) = w(0), we have

1° maxas(7;(¢c)) = fl _ w(t)dt+2c°/15if 1 — ¢ > V3 + €7/2,

2° maxas(7,(c)) = . w(t)dt + f" w(t)dt +2¢5/15 if (4 — V13)/5 < c < 1y
where 0 < t) < t3,t; + (1 —t2) = c and w(t;) = w(ty),

3° minas(Ti(c)) = "l’ w(t)dt + 2¢®/15, where 0 < t; < tp, t; —¢; = ¢ and
.w(t)) = w(t;) (observe that V3 +¢c2/2> cfor 0 <c<1).

Corollaries 4.2.
(i) max{larf)]: f € Ti} = 1/2,
(ii) mina3(7;) = mina3(71(1/V3)) = —2V3/9,
(iii) maxa3(T;) = maxas(7T; ((4 = V7)/3)) = (147 — 20)/27,
(iv) max{lau(f)| : f € T} = max{laa(F)| : f € Ty(co)} = 0.508... , where ¢y =
0.515... is the only zero of the polynomial ¢ — 2 + 3¢ — 18¢% + 9¢* in [0, 1], see

[12], .y Ly
(v) minas(7;) = minas(7:(/7/5 - /2/5)) = (14V/35 — 44V/10)/125,
and

(vi) maxag(7,) = maxas(7;(c;)) = 0.571... , where ¢; = 0.4819... is the only zero
of the polynomial ¢ — 3 + 12¢ — 54c? + 36¢* — 5¢* in [0,1].
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Remarks 4.3.
(1) Each extremal function f in 4.1, 4.2 satisfies the equation :

(4.4) log((1 + £)/(1 = f)) = ﬁ; q(- 1) dt

where the set B is one of the following : [1—2¢,1], [-1, —1+42¢], [-1, —14+¢c]U[1 —¢, 1],
[=eyc), [tr,e—1/2]U[t2,1], [-1,—t2]U[1/2 ~ ¢, ~t1], [-1, -] U[-71,n]U[72,1] and
[~82, 51| U[s1,8,] with
ti+t2=1/2~c, tita=(-1-4c+33*)/4, ti<ty, n—-7m=1-c,
nmn = (—1 +8C— 3C2)/8 y 82 — 81 =¢, 818 = 3(1 =3 62)/8 -
(11) The function f satisfying (4.4) is univalent if and only if B is a subinterval
of [-1,1] (up to a set of measure zero).

5. Functions having a given part of their Taylor’s expansions. As an
application of Theorem 2.7(ii) we obtain

Theorem 5.1 [6,7]. For any positive integer n and f € T we have

(5.1) laza(f)] <) bjazj-1(f)

i=1

and

(5.2) lazns2(f) = a2a(H)] € Y ciazj2n41y41(F) — a2j2ne1)-1 ()

=0

where b; = 87~ 'n(4n? — (2j — 1)?)~! cot((2j - 1)7/(4n)),
c; =4n 1 (=1)*1(452 = 1) and a_,(f) = 0.

These inequalities are sharp tn any class T|g), i.e. for each g € T thereis f€T
with equality in (5.1) or in (5.2) such that f(z)— f(—2) = g(2) — g(—2).

Let us add that the proof needs the following Fourier's expansions :
[o ]
|sin2nt| = ) b;sin(2j — )t for 0 <t < =

j=

and

oo
|cos(2n + 1)t| = cp/2 + Zc,- cos2(2n + 1)jt fort € R .

j=1
Theorem 5.2 7). For f € T we have

(5.3) Y (a;42(f) + a;(£)? <2 (a2j41(f) + a2 ()

1=0 =1

(5.4) E(“j+2(f) —aj(f)* < QZ(azjﬂ(f) —aj-1(f))?, ai(f)=0,

=0 =0
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and

(5.5) Ef )< 2 Z az;(f) -

These estimations are sharp in any class T [g], see the previous theorem. Moreover,
if f € T NH?, then each one of equalities holding in (5.3)~(5.5) is equivalent to the
following condition : f € ET|f].

Let us add that the following facts were used in the proof :

In?(f(2) + f(=2)) <Im’(f(2) = f(=2)) for fET , z€4;

ifge T NH?, then f € £ET|[g] if and only if f € T[g] and Im £(¢) Im f(—¢) =0 a.e.
on dA.

Corollary 5.3. Let f(z) =z + ET’:I ay;jz% be univalent in A and real on the
real segment (—1,1). Then
laz| < 8/(3n)

with equality only for the univalent functions : f, 2 —f(—z), where
f(z) = z+2n V= a7 (12 +(52) ") log((1 +i3)/(1 = iz)) = z — (8/m )Z L) # | 1} J
Moreover,

oo a0 [= -]
a3 + Y (azj42 + a5 <1, aj + Y (a2j42 — az)* <3, Zag,- <1
j=1 j=1 j=1

with equality for f and z — —f(—z).

Proof. By (5.1) we have |ay(f)| < 8/(3r) for all f € T|g], where g(z) = z.
Consider the set A= {f € T|g] : az(f) = 8/(37)). Since dv, = (2/7)sin® zdz, then
by Theorem 2.7(ii) or by Theorem 2.9 we obtain that A= {f, }, where v = 2(v4)[0,/2)-
Thus it is enough to show that the function f, = f is univalent in A. Integration by
parts leads to the identity zf' () = fl(Z)fg(Z), where f)(z) = z/(1 + 2?%), fa(2) =
(4/= )f’n(l —22)(1 — 22 cost + 22)7! cos? tdt. Because f; is univalent starlike in A
and f; € Pr, we get that f is close-to—convex and so f is univalent.
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STRESZCZENIE

Praca jest zakonczeniem cyklu [8-10] i dotyczy zwartych wypuklych klas funkcji typowo rzeczy-
wistych, ktorych wartosci lezg w zadanym pasie poziomym, lub ktérych wszystkie nieparzyste wspol-
czynniki s3 ustalone. Podobnie jak w [10] punkty ekstremalne i podpierajace inoga tworzy¢ geste
podzbiory, wigc kazdy ciagly problem ekstremalny nad takg klasg redukuje si¢ do problemu nad jej
ekstremalnymi (podpierajacymi) punktami. Niektore zastosowania dotyczg klasy wszystkich funkeji
typowo rzeczywistych ograniczonych przez wspdina stala.



