
ANNALES UNIVERSITATIS MARIAE CURIE SKŁODOWSKA

LUBLIN POLONIA

VOL. XUII, 4_________________________SECTIO A__________________________________ 1989

Politechnika Lubelska

L. KOCZAN

Typically Real Functions Convex in the Direction 
of the Real Axis

Funkcje typowo rzeczywiste wypukłe 
w kierunku osi rzeczywistej

Abstract. We consider the class of holomorphic functions univalent on the unit disk that are 
convex in the direction of the real axis and that have real coefficients. It appears that this class is 
more complicated than the known class of univalent functions that are convex in the direction of 
the ¿-axis and that have real coefficients. For instance, the convexity direction of functions from the 
first class does not preserve for smaller disks contrary to functions from the second class.

1. Introduction. A plane set D is said to be convex in the direction of a line 
I (resp. of a vector e'7) if for every line I' parallel to I (resp. to e'7) the set D D I1 is 
either empty or a connected set. Let i/( A) denote the class of all complex functions 
that are holomorphic on the disk A = {z : |z| < 1}. We say that f € -ff(A) is convex 
in the direction of I if f maps A univalently onto a domain convex in the direction 
of/.

Any function which is convex in one direction can be rotated so that it is convex 
in the direction of the real or imaginary axis. Let

(1) CV(e’7) = {/ € ff(A): /(0) = /'(O) -1=0, /is convex
in the direction of e'7 }.

A representation formula for the set (1) has been found by Royster and Ziegler
[9], see also [2], v.I, pp. 193--206. In fact, they used some earlier results of Hengar- 
t n e r and S c h o b e r [5] to extend a formula of R o b e r t s o n [8].

Theorem 1 (Royster, Ziegler). A function f 6 CV(i) if and only if f € R(A), 
/(0) = /'(0) — 1 = 0 and there are real numbers a,0 6 [0, zr] such that

(2) Im [(e‘a - 2z cos 0 + ?e-te)/’(z)] > 0 for all z 6 A.

Furthermore, if f € CV(»), then there are a,0 G [0, zr] and sequences (zn), (Gi) *n A 
with zn —> e’(a~&\ G» —♦ e,lQ,+^) as n —+ oo such that (2) holds and Re /(zn) —♦ 
sup( Re /)(A), Re /(Gi) —♦inf( Re /)(A) as n —♦ oo.
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Dv (2) it follows that CV(i) is the union of a two-parameter family of compact 
convex sets being affinely homeomorphic to the known class

(3) P = {/G (A):/(0) = 1, Re/>0 on A}.

Hengartner and Schober [6] observed first that if f G CV(i) and 0 < r < 1, this 
does not imply that the function z *—> f(rz)/r is also in CV(i). A concrete example 
of such a function was given by Goodman and Saff [3], see also [2], vol.l, p. 196. 
Namely, the univalent function

= l(i - *?3*)2/(i - n*)2 - i]/[2(n - r/3)] with |n| = i, n2 # l,

maps A onto the complex plane minus a vertical slit, so it belongs to CV(i). However, 
all the functions z i-> F(rz)/r with \/2 — 1 < r < 1 are not in CV(i).

For a class with real coefficients the choice of a convexity direction influences the 
complexity of the subclass which is distinguished by this direction. Indeed, let us 
consider the known set

(4) TR = {/e/f(A):/(0) = /'(fl)-l, Im/(:)Imz>0 for z G A} 

of all normalized typically real functions and let

CVP(e^) = {/ € CV/e*7) : f is real on (-1,1)}.

The Rogosinski result states that

(5) z TR={f-.(l-z2)f/zeP and/is real on (-1,1)},

see (1, 2, 4, 10], and CVR(i) consists of all normalized univalent functions with Steiner 
symmetric ranges, cp. [5].

The both classes (4) and CVP(t) are joined by the well known

Theorem 2 (Robertson, see [5] and [2], vol.l, p.206). / G CVR(i) if and only 
if zf G TR and /(0) = 0.

Hence it follows that for each / G CVR(i) the property that /(A) is convex in 
the direction of the ¿-axis is always preserved for smaller disks. However, for univalent 
functions with real coefficients the condition to be convex in the direction of the real 
axis makes our considerations more involved. For instance, the functions

(6) A 9 2 m GA(z) = (A/2) log[( 1 + z)/(l - z)] + (1 - A)z/(1 + z)1

with 0 < A < 1 will be shown to be in CV7i(l). But if A is close to 1, A < 1, then the 
real direction of convexity of G\ is not preserved for disks close to A, see Theorem 3.

In the paper we shall show that the class

(7) r = cvp(i)
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is the union of a one-paraineter family of its compact convex subclasses, each subclass 
being affinely homeomorphic to (4), and hence having a simple form of its extreme 
points, see Theorems 4, 5. Let us add that (7) is compact but not convex, so the 
coefficients regions for (7) are not convex, see Theorem 6.

The Koebe domains for the most often considered classes have been determined, 
see [2], v. II. Let A C 77(A). The Koebe domain for A is the collection K(A) of all 
points ip such that w is in /(A) for every f 6 A, i.e.

K(A) = Q /(A).
fCA

In most cases K(A) is really a domain what justifies the name ’’domain”. For instance, 
Reade and Zlotkiewicz [7] and later Goodman and Saff [3] proved that

K(CV(*)) = {r e“ : 0 < r < l/[4sin(37r/4 - |t|/2)], -*<t< %}.

In 1977 Goodman found, see [2], vol.2, p.117, that

A'(TR) = {rc":0<r< sin |t|/(4|t|(% - |t|)], -n<t< tt}.

Thus we have 7<(T) Z) i K(CV(iy) U K(TR). In Theorem 7 of our paper we describe 
the Koebe domain for the class (7).

2. Main results.

Theorem 3. The functions (6) are in T for all 0 < A < 1. If (2 + >/3)/4 < 
A < 1, then there exists r\ close to 1, r\ < 1, such that the functions z •—> G\(rz)/r, 
r\ < r < 1, do not belong to T.

Proof. Since Re [(l+2)2G'A(z)] = Re [A(l+2)/(l-2)+(l-A)(l-2)/(l+2)] > 0 
for z € A and all 0 < A < 1, the function z t-> — iG\(iz) belongs to CV(i), see 
Theorem 1 with a = ir/2, 0 = 0. But G\ is real on (—1,1) so that G\ £ T for till 
0 < A < 1.

Let now 2 = r e,(, 0 < r < 1, t 6 R. Observe first that dG\(z)/dt = izG'x(z) 
and 0 Iin G\(z)ldt = r(l — r2)Q(r,t, A)/|(l — z)2(l + 2)®|, where

(8) Q(r,t,A) i|l — 2|2[3r + (1 + r2)cost - r cos2t]+
+ 4Ar[2r cost + (1 + r2) cos2t].

Fix arbitrarily (2 + \/3)/4 < A < 1. Then

Q(l,t, A) =4(1 + cost)[2(l — A) + (4A — 3) cost + cos2t]

and

(9) Q(l,0, A) = Q(l,2?r, A) = 16A > 0,
(10) lim Q(l,t, A)/(l + cost) = 24(1 — A) > 0,

(11) Q(l, tA, A) = Q( 1, 2tt - tA, A) = -(5 - 4A)( 16A2 - 16A.+ l)/2 < 0,
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where t\ = arccos[(3—4A)/2] € (arccos[(l —\/3)/2], 2%/3) C (77r/12,2x/3). Moreover, 
from (8) we get

(12) Q(r, it, A) = (1 — r)2[4Ar — (1 + r)2] < — (1 — r)4 for 0 < r < 1.

By (10) there is 0 < 6\ < x/6, e.g. 6\ = arccos(4A —3), for that Q(l, 7r±i>, A) > 0, so
by (9), (11) we have - min{Q(l,0, A), -Q(1,<a,A), Q(1,x-6a, A)} > 0. Since the 
functions r i-> [Q(l, t, A) — Q(r, t, A)]/( 1 — r) are polynomials of the third degree with 
continuous coefficients, there exists a constant M such that |Q(r, f, A) — Q(l,t, A)| < 
M(1 — r) for all 0 < r < 1, 0 < t < 2tt, 0 < A < 1. If now 0 < Ai(l — r\) < d\ and 
r\ < r < 1, then

Q(r,0,A) = Q(r, 2t,A) > 0 > Q(r, t>,A) = Q(r,2»r - f*,A),
Q(r,ir - 6a, A) = Q(r,ff + A) > 0 > <?(r,7r, A).

This means that for (2 + \/3)/4 < A < 1, r* < r < 1 the trigonometric polynomial 
t (-♦ Q(r,t, A) of the third degree has exactly six changes of sign on the interval 
(0,27r). Thus, the domains bounded by the level curves {G>(z) : |z| = r} with 
(2 + v/3)/4< A< 1, r\ < r < 1 are not convex in the direction of the real axis.

Theorem 4 ( representation of T ). f £ T if and only if f £ /f(A) ,
/(0) = /'(0) — 1 = 0, f is real on (—1,1), and there exists 0 £ [0, ir] such that

(13) Re {(1 — 2zcos/J + z2)/'(z)} > 0 for all z £ A.

Proof. Since CV(1) = {z w —t$r(tz) : g £ CV(«)}, Theorem 1 implies that 
f £ CV(1) if and only if f £ ¿(A), /(0) = /'(0) -1 = 0, and there are 
r £ [-7r/2,7r/2] and 0 £ [0, rr] such that

(14) Re {e’r(l — 2ze-<r cos)? +z2e-2<r)//(z)} > 0 on A.

For r = 0 the condition (14) becomes (13) so the case ”if’ is proved.
Let now f £ F._ Then for some r £ [—ir/2, ?r/2] and 0 £ [0, ir] we have (14).

Moreover, /'(z) = /'(z), whence

(15) Re {e~’r(l - 2zeircos/l + z2e2ir)/'(z)} > 0 on A.

Adding (14) and (15) we get

(16) Re {(cost — 2zcos/3 + z2 cosr)/'(z)} > 0 on A.

For z = 0 we have cos r > 0. If cos r = 0, then cos 0 = 0 and
/(z) = (1/2) log[(l + z)/(l — z)], so (13) holds when 0 = 0 or 7r/2 or else ir. Suppose 
that cos t > 0. Since each member of T is univalent and has real coefficients, we have 
the inequality /'(r) > 0 for all —1 < r < 1. Hence, according to (16),

cos r — 2r cos 0 + r2 cos r > 0 for all - 1 < r < 1.
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Passing to the limit as r —> ±1 we get that |cos/J| < cost, and (13) follows from (16) 
with arccos(cos/?/cos r) instead of ft.

Further on let P[_i flj denote the set of all probability measures on the interval 
[—1,1] and let

(17) k(z,t) = z/(i — 2tz + z2) , zGA, -1<<<1.

It is well known that the set {&(•,<) : —1 < t < 1) is identical with E(TR), the set 
of all extreme points of the class TR, and that TR is identical with conv E(TR), the 
closed convex hull of E(TR}, see [4, 10].

The full particulars on the set T are contained in the 

Theorem 5. Let c,t £ [—1)1] and, let

((2t-2c) 1 log[fc(z,t)/fc(z,c)] , t ± c, 
7c-‘(2) - I lim/e,r(z) = fc(z,c) ,t = c,

where k is defined in (17). Then

(is) r= J rC)
-1<C<1

where

(20) rc = {y'i/c,(^(/)://ePHl,1)}. 

Moreover,

(21) ETc = {fc,t :-!</<!}.

Proof. Let $/(?) = z2f'(z)/[(l — z2)fc(z,c)]. By Theorem 4 and the property 
(5) we get (19) with rc = {/ € 77(A) : /(0) = 0, $/ £ TR}. Thus (20) follows from 
the Robertson formula for the class TR, see [1, 2, 4, 10]. Since / i-> <$/ is an affine 
homeomorphism between Tc and TR, we have <!>(E(Tr)) = E(TR), i.e. (21) holds.

Corollary. E(T) = {k(-,t): — 1 < t < 1).

Proof. We know that E(TR) = {k(-,t} :-1 < t < 1} = { f,,r : -1 < c < 1} C T 
and that T C TR. Hence E(TR) C £(H C {fc., : -1 < c,t < 1} by (19). (21). 
Suppose that c, t £ [—1,1], c^-t. Then

/c.t = (1 - A)/c.x + AA., I £(r)

for all x lying in the open interval with end points <• and /, where
A = (t-x)/(t-c)£(0,l).
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3. Applications.

Theorem 6. Let aj(f) = and let A2i3(/) = (a2(f),a3(f)). The
coefficient region A2,3(T) is identical with the set

{(a, y) : -2 < a < 2, a2 - 1 < y < (4|x| + l)/3}.

Proof. Let -1 < d < 1. By Theorem 5 we have

A2,3(rrf) = cônv A2,3(E(rd)) = cônv {(/ + d, -1 + 4(<2 + td + d2)/3) : -1 < f < 1} 
= {(a,y) .d-l<x<d+l, -1 +4(a2 — dx + d2)/3 <y< (4dx + l)/3}.

Thus

A2)3(ra) C {(a,iz) : -2 < x < 2, x2 - 1 < y < (4|a| + l)/3}
= U {(^»y) S A2|j(rc) : x = 2c} U A2i3(r_i) U A2>3(ri) C

-1<c<1

cA2)4(r)= (J A2,3(rc).
-1<C<1

Theorem 7.

A\r) = {(a, y) ■: |a| < \y/n| log(-l + ?r/(4|y|)) + 1/4, |y| < ttA0/4},

where Ao = 0.782... m the only positive solution of the equation Alog(l/A —1) + 1 = 0. 
Hence K(T) is a domain symmetric with respect to the coordinate axes and whose 
upper and lower halves are convex.

Proof. Observe first that the set R"(r) is convex in the direction of the real axis 
and symmetric with respect to the coordinate axes (because of conjugation and the 
real rotation in F). Denote the set on the right-hand side by A and let H\(z) =■ 
—Gx(—z), where G\ is defined in (6) with 0 < A < 1. For all 0 < r < 1, 0 < t < n 
we have

Re Ga(c'‘) = [A logcot2(</2) + (1 - A)/cos2(</2)]/4 >
> [A log(l/A - 1) + l]/4 = Re Gx(l - 2A + 2«VA(1 - A))

and Im Gx^e*1) = Att/4. Hence Ga(A) is the plane slit along two horizontal halflines 
{tz>A + t : t > 0}, {wa + t : t > 0}, where Wa = [Alog(l/A — 1) + 1 + *A7r]/4. Thus, 
by Theorem 3,

K(r)c n Ga(A)DRa(A) = A.
0<A<l

Since T is compact, it follows that to each point a of dK(T), the boundary of 
K(r), there corresponds at least one fa € T such that a /„(A). By symmetry of the 
set K(T) we may assume that Re a > 0. Then fa is subordinate to Ga in A, where 
A = 4 Im q/tt, which means that f„ = Ga so that dK(T) = dA. For the boundary
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of A(F) lying in the first quadrant we have the equation (0, Ao) 9 A t-> w(A) = 
[1 + A log(l/A — 1) + »7rA]/4, from which d arg w'(A)/dA=|w'(A)|~J Ini [w"(A)w'(A)]= 
7r/[16|«’'(A)|JA( 1 — A)2] > 0 and w'(0+) = +oo + iir/l, w'(l_) = —oo + ttr/4. The 
prtwif is complete.

Remark, (added in proof). After this paper was accepted for publication, we 
learned that the Koebe domains for the subclasses T_i, Ti were found by J. Krzyz 
and M.O. Reade [ Koebe domains for certain classes of analytic functions, Journal 
D’Analyse Math. 18 (1967), 185-195]. Let us add that. A'(T) = A'(T_i) fl A^Ti).
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STRESZCZENIE

Rozważamy klasę funkcji holomorficznych i jednolistnych na kole jednostkowym, które są wy­
pukłe w kierunku osi rzeczywistej i które mają rzeczywiste współczynniki. Okazuje się, że ta klasa 
jest bardziej skomplikowana niż znana klasa funkcji jednolistnych wypukłych w kierunku osi uro­
jonej, których współczynniki są rzeczywiste. Na przykład, kierunek wypukłości funkcji z pierwszej 
klasy nie zawsze zachowuje się dla mniejszych kól w przeciwieństwie do funkcji z drugiej klasy.




