ANNALS

UNIVERSITATIS MARIA CURIE-SKLODOWSKA LUBLIN-POLONIA

SECTIO A

Division of Numerical Mathematics The Norwegian Institute of Technology

The University of Trondheim

F. R \varnothing NNING

Duality Applied to Meromorphic Functions with a Simple Pole at the Origin

Zasada dualnosci da funikeji meromorficznych z biegunem pierwszego tzedu w poczatku ukladu

Принии дуальности для мероморфных функций из простьп полосом в точке 0

1. Introduction, Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ and $\delta(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ be analytic in the unit disk $D=\{z:|z|<1\}$ and normalized by $f(0)=g(0)=1$. We denote the class of functions with this property by A_{0}. The convolution (Hadarard product) of f and B is defined by

$$
(f \circ g)(z)=\sum_{k=0}^{\infty} a_{k} b_{k} z^{k}
$$

For $U C A_{0}$ the dual set U^{*} is defined in the following bay

$$
U *=\left\{g \in A_{0}: \text { for each } f \in U:(f(g)(z) \neq 0, z \in D\}\right.
$$

This concept was introduced by Ruscheweyh [5] in connection With: thu work ladin to the proof of the folyo-Schoowbere conjecture [U]. the central reference on convolutions end properties of duality in to is tho book of Ruschewoyh: Convolutions in Geometric Function theory [4].
.e introduce tho class B of functions analytic in
$0<|<|<1$ with a simple pule at the origin and the subclass Z. consisting of functions with the series expansion

$$
\begin{equation*}
f(z)=\frac{1}{2}+\sum_{k=0}^{\infty} \varepsilon_{k} z^{k} \tag{1.1}
\end{equation*}
$$

Zoo. $f \in B_{0}$ is and only if wi f $\in A_{0}$.
Tho purpose of tho prescut paper is to show some results from tho frenafer of the theory of convolutions and duality from A_{0} to E_{0}.

- For is b $\in \bar{S}_{0}$ the convolution is doping in tine obvious 389
(1.2)

$$
(\text { In })(2)=\frac{1}{z}+\sum_{k=0}^{\infty} \varepsilon_{k} b_{k} z^{k}
$$

Th a concept of quality can also be trensformed in a natural way, becalise for i and $f \in B_{0}$ w have

$$
1 \pm z \neq 0, \quad 0<|z|<1
$$

```
zf*2g\not=0, z\inD .
```

She basic theorem for the duality theory in A_{0} is the Duality Principle which is stated end proved in [4]. Before stating the Duality Principle in B_{0} we shall give two definitions which will be needed later.

Definition.

1. U CB B_{0} is called complete if for all $\& \in U, 0<|x| \leqslant 1$ we have $f_{x} \in U$, where $f_{x}(z)=x f(x z)$.
2. Let $U C B_{0}$. T $C B_{0}$ is called a test set for U if

TCUCT**

and write $T \longrightarrow U$.
The definition of a test sot in B_{0} is exactly the sane as In A_{0}. In the definition of completeness the function $f_{x}(z)$ is defined slightly different in B_{0} because we pant to keep the normalization on f_{x}.
(The corresponding definitions in A_{0} are in [4].)
2. The duality principle in B_{0}. In the topology of uniform convergence on compact subsets of the punctured disk $0<|2|<1, \quad B$ is a locally convex topological vector space. Let Λ be the space of continuous linear functional on B.

Theorem 1. (Duality Principle). Let iv C Bo be compact and complete. Then

$$
\begin{aligned}
& \text { (i) for each } \quad \lambda \in \Lambda: \lambda(U)=\lambda\left(U^{* *}\right) \text {; } \\
& \text { (ii) } \overline{\mathrm{co}}(U)=\overline{\mathrm{co}}\left(U^{* *}\right)
\end{aligned}
$$

Lice Duality Principle in A_{0} is stated in exactly the same way [4], and the proof runs tho sane way for both A_{0} and B_{0}. ie :ill therefore not 50 into details of the proof, but only point out tilt tia proof rests on the representation theorem for contrsous linear functionals by Caccioppoli [1] which in our case is a sliefi modification of the theorem of Toeplitz [7]. This theores will be formulated in the following may for the class B.

Theorem. $\lambda \in \Lambda$ if and only if there is a function $E \in B$ such that for $f \in B$

$$
\lambda(2)=(\mathbb{P} * \text { E })(1) .
$$

3. Applications to univalent functions. We now turn to the class of univalent functions in B_{0}, here denoted by \sum 。 $y y \quad \sum_{0}$ ie denote the subclass of \sum which consists of the Functions with constant term zero. The following theorem shows $3017 \sum$ can be described as the dual set of a two parameter sourly of functions.
```
L'huorem 2. Let
```

(3.1)

$$
V=\left\{f \in B_{0}: f(z)=\frac{1}{z}-\frac{x y z}{(1-x: 2)(1-y z)} ; x, j \in \bar{y}, x y\right\} \text {. }
$$

Then $V^{*}=\sum$ and $\sum{ }_{0} C^{* *}$.

Proof. Let $g \in B_{0}$ and $\mathcal{I} \in V$. Then we have

$$
\begin{aligned}
(f(E)(z) & =\left(\frac{1}{z}-\frac{x y z}{(1-x z)(1-y z)}\right)+B(z)= \\
& =\frac{x y}{x-y}\left(\frac{1}{y z}+\frac{1}{1-y z}-\frac{1}{x z}-\frac{1}{1-x z}\right)+B(z)= \\
& =x y \frac{g(y z)-g(x z)}{x-y}
\end{aligned}
$$

Prom this computation we see that if $\mathcal{F} 0$ if and only if B is univalent. Thus we have proved that $V^{*}=\sum$.

To prove that $\sum_{0} C V^{* *}$ we use the following well known Pact:
If $f(z)=\frac{1}{2}+\sum_{k=0}^{\infty} a_{k} z^{k} \in \sum$ and $E(z)=\frac{1}{2}+\sum_{k=1}^{\infty} b_{k} z^{k} \in \sum_{0}$, than $\sum_{k=1}^{\infty} k\left|a_{k} b_{k}\right| \leqslant 1$, and this implies that for is starlike. (For reference, see e.8. Goodman [2], p. 134-135.) This neans in particular that (fit) (z) $\neq 0,0<|z|<1$, so $\sum_{0} c \sum^{*}=V^{* *}$.

A relevant type of problem in this context is to find a suitable test set for a given set. It would in particular be an intercstine problem to try to find a test set for \sum. Because of the Duality Principle we then could et infurination abolit \sum by investigating the functions in the test sat. Theorem 2 is a small step in this direction because of the inclusion $\sum{ }_{o} \mathrm{CV}^{\text {** }}$.

But wo obviously do not have $V \subset \sum_{0}$ since by appropriate choices of x and y the coefficients of the functions in V will be so large that the area theorem is violated.

Our next idea is to introduce a set of functions related to V, but with simpler coefficients. A function $I \in V$ can be written $f(z)=\frac{1}{z}-x y z-x y(x+y) z^{2}-x y\left(x^{2}+x y+y^{2}\right) z^{3}-\ldots$. Let $\ell(z)=\frac{1}{2}+\log (1-z)=\frac{1}{2}-z-\frac{1}{2} z^{2}-\frac{1}{3^{2}} z^{3}-\ldots$. Define a function $h(z)=(f(z) * \ell(z)) * \ell(z), f \in V$, and let W be the set consisting of functions of this form. That is
(3.2) $\quad J=\left\{h \in B_{0}: h(z)=\frac{1}{2}-\frac{x y}{x-y} \sum_{k=1}^{\infty} \frac{x^{k}-y^{k}}{k^{2}} z^{k} ; x, y \in \bar{D}, x \neq J\right\}$.

For functions in W it is clear that the $K^{\text {th }}$ coefficient is bounded by $\frac{\hat{k}}{\sqrt{k}}$ in absolute value, so these functions are "closer" to the univalent functions as far as the size of the coefficients is concerned.

For $\mathrm{h} \in \mathbb{W}, \mathcal{I} \in \mathrm{B}_{0}$ we get

$$
\begin{equation*}
z\left(z(f-h)^{\prime}\right)^{\prime}(z)=x y \frac{f(y z)-f(x z)}{x-y} \tag{3.3}
\end{equation*}
$$

Which means that for $f \in \sum$, $h \in W$

$$
\begin{equation*}
z\left(z(h)^{\prime}\right)^{\prime}(z) \neq 0 \quad, \quad 0<|z|<1 . \tag{3.4}
\end{equation*}
$$

A natural question is to ask whether for arbitrary f and b in \sum, (3.4) will be true. As previously mentioned the convolution of two functions f and G in \sum_{0} is starlike. In particular we will then have $(\mathrm{I} G)^{\circ}(2) \neq 0,0<|z|<1$. If f and g are in \sum_{0} (or in \sum), it is therefore clear that

$$
\begin{equation*}
z\left(z(f g)^{\prime}\right)^{\prime}(z) \neq 0, \quad 0<|z|<1 \tag{3.5}
\end{equation*}
$$

is equivalent to
(3.6) $\quad 1+\frac{z(f * g)^{\prime \prime}(z)}{(f * g)^{\prime}(z)} \neq 0, \quad 0<|z|<1$.

We notice the similarity between (3.6) and the condition for convexity of far which is

Ibis is a stronger condition than (3.6), and it is tempting to ask mistier the convolution of two meromorphic univalent functions (in \sum) is a convex function. If this wore true, it would indeed be a surprising result, but we will soon give an example showing that neither (3.7) nor (3.5) is true in general.

Still we fill that it would be of interest to characterize the subset of the univalent functions for which (3.5) holds.

Ne denote this subset by C and define it in the following way. (3.8) $C=\left\{E \in \sum_{0}:\right.$ for each $f \in \sum, z\left(z(\text { (} \times E)^{\circ}\right)^{\prime}(z) \neq 0$,

$$
0<|z|<1\} .
$$

From (3.3) it is immediately clear that $C \supset W \sum$. We notice that it is no restriction to define C as a subset of \sum_{0} because if B is a function that satisfies (3.5), then on y function $E+c_{0}, c_{0}$ a complex constant, will also satisfy (3.5).

It is well known that the convolution of a convex univalent function with an arbitrary univalent function (both in B_{0}) is convex [3], so we know that C contains all functions in B_{0} that are convex.

He will return to the class C later. First we give the example showing that C does not contain all of Σ.
4. The counterexample. Let

$$
F(z)=\frac{1}{2}\left(1+z^{4}\right)^{1 / 2}=\frac{1}{z}+\sum_{k=1}^{\infty} a_{4 k-1} z^{4 k-1}
$$

and

$$
k_{r}(z)=\frac{1}{z\left(1-(r z)^{4}\right)}=\frac{1}{2}+\sum_{k=1}^{\infty} r_{z}^{4 k} z_{z}^{4 k-1}
$$

Then

$$
P(z) * k_{r}(z)=\frac{1}{2}\left(1+(r z)^{4}\right)^{1 / 2}
$$

F is univalent, so if we can find some r for which k_{r} is univalent and the same time $z\left(z\left(F k_{r}\right)^{\circ}\right)^{\circ}(z)=0$ for some z, $0<|z|<1$, then we have constructed a counterexample to (3.5).

In order to decide when k_{r} is univalent we choose $z_{1} \neq z_{2}$ and compute
(4.1)

$$
\begin{aligned}
k_{r}\left(z_{1}\right)-k_{r}\left(z_{2}\right) & =\frac{1}{z_{1}\left(1-\left(r z_{1}\right)^{4}\right)}-\frac{1}{z_{2}\left(1-\left(r z_{2}\right)^{4}\right)}= \\
& =\frac{z_{2}-z_{1}-\left(r^{4} z_{2}{ }^{5}-r^{4} z_{1}{ }^{5}\right)}{z_{1} z_{2}\left(1-\left(r z_{1}\right)^{4}\right)\left(1-\left(r z_{2}\right)^{4}\right)}= \\
& \frac{\left(z_{2}-z_{1}\right)\left[1-r^{4}\left(z_{2}^{4}+z_{1} z_{2}{ }^{3}+z_{1}{ }^{2} z_{2}{ }^{2}+z_{1}{ }^{3} z_{2}+z_{1}^{4}\right)\right.}{z_{1} z_{2}\left(1-\left(r z_{1}\right)^{4}\right)\left(1-\left(r z_{2}\right)^{4}\right)}
\end{aligned}
$$

If $r^{4} \leqslant \frac{1}{5},(4.1)$ will never be zero for $0<\left|z_{1}\right|,\left|z_{2}\right|<1$, and if $r^{4}>\frac{1}{5}$, it will be possible to find z_{1}, z_{2} such that $k_{r}\left(z_{1}\right)-k_{r}\left(z_{2}\right)=0$. Thus we have found that $k_{r}(z)$ is univalent If and only if $r<5^{-1 / 4} \approx 0.6687$. In order to decide when $z\left(z\left(F+k_{f}\right)^{\prime}\right)^{\prime}(z)=0$ we get the equation
(4.2) $\quad \frac{1}{2}\left(1+(r z)^{4}\right)^{1 / 2}+4 r^{4} z^{3}\left(1+(r z)^{4}\right)^{-1 / 2}-$

$$
-4 r^{8} z^{7}\left(1+(r z)^{4}\right)^{-3 / 2}=0
$$

This equation has a solution in $0<|2|<1$ if and only if $x>(3-2 \sqrt{2})^{1 / 4} \approx 0.6436$.

By geometric considerations ono can see that this r value Also will be the radius of convexity for the functions $\frac{1}{2}\left(1+(57)^{1 / 2}\right)^{1 / 2}$. So in this case condition (3.5) and condition (\%.7) will be equivalent.

Tho conclusion is that if me choose r in the interval $0.5430<r<0.6687$, then $B(2) * k_{x}(2) \$ 111$ be the convoIution of two functions from \sum, and there is a z, $0<|z|<1$, such that $z\left(z\left(p * k_{i}\right)^{\prime}\right)^{\prime}(z)=0$.
5. Wore about the class C . From the preceding example we Lave fen that C, as defined in (3.8), does not contain all univalent functions. But we notice that the interval of pernissabile I values was rather small, and that could be a hint towards fusing that C is a fairly bile subset of Σ_{0}. It would therefore be interesting to find a good characterization of C. Tine following result, although not very informative, is an immediate consequence of the definitions we have made.

Iheorow 3. As before let

$Z=\left\{h \in B_{0}: h(z)=\frac{1}{2}-\frac{x y}{x-y} \sum_{k=1}^{\infty} \frac{x^{k}-y^{k}}{k^{2}} z^{k} ; x, y \in \bar{D}, \quad x \neq y\right\}$
and
$C=\left\{E \in \sum_{0}:\right.$ for each $\left.\& \in \sum, 2\left(z(1 * B)^{\circ}\right)^{\circ}(z) \neq 0,0\langle | z \mid<1\right\}$

Then $\quad C=\sum_{0} \cap W^{* *}$.
Proof. Let $f(z)=\frac{1}{2}+\sum_{k=0}^{\infty} a_{k} z^{k}$ and define
$P(z)=(f(z) * \ell(z)) * \ell(z)$, where $\ell(z)=\frac{1}{z}+\log (1-z)$.

Keeping in mind that a function from il can be expressed as a function from the set V, as defined in (3.1), convolved twice with $\ell(z)$, it is clear that with $h \in W$

$$
\begin{equation*}
f(z) w h(z)=\frac{x y}{y-x}[F(x z)-F(y z)] \text {. } \tag{5.1}
\end{equation*}
$$

From (5.1) we deduce that $f \in \mathcal{W}^{*}$ if and only if If is univalent ($\in \sum_{0}$). With F as above we can write

$$
\begin{equation*}
(f * g)(z)=z\left(z(P * g)^{\prime}\right)^{\circ}(z) \tag{5.2}
\end{equation*}
$$

for arbitrary $g \in B_{0}$ with constant term zero. Now assume that P is univalent $\left(f \in W^{*}\right)$ and $g \in C$. Then $z\left(z(F * g)^{\circ}\right)^{\prime}(z) \neq 0,0<|z|<1, \quad$ and from (5.2) me get $(f * g)(z) \neq 0,0<|z|<1$. Thus wo have proved that $C \subset H^{* *}$. In fact we have $z\left(z(F * G)^{\prime}\right)^{\prime}(z) \neq 0$ if and only if $g \in \mathbb{N}^{* *}$, so $\mathbb{W}^{* *}$ consists exactly of those functions \mathcal{E} having the property that $z\left(z(F * E)^{\circ}\right)^{\prime}(L) \neq 0$ for any $F \in \Sigma_{0}$. Since we have defined C to be a subset of Σ_{0}, we get that $c=\Sigma_{0} \cap W$

Remark., The ultimato goal of the investigations of the prosent type is to find a suitable test set for Σ. From what We now have seen, it is clear that W will not contain all of \sum_{0}, so il is not a suitable candidate for a test set. Neverthonless the class C scems to be an interesting and fairly large subset of \sum_{0}, and hence it would be interesting to wake further investications of $w^{* *}$ in order to get a better ciasactarisation of the class C.

Acknowleugenents. I want to thank professor Stephan Ruscheweyh, who has initiated my wor's by suggesting some of the ideas presented in this paper.

IEFERENCES
[1] Cacciojoli, R., Sui funzionali lineari nel campo delle funzioni analitiche, Atti \&ccad. Naz. Lincei दend. Cl. Sci. Fis. Liat. Natur. 13(1931), 263-256.
[2] Goodman, A.W., Univalent Functions, vol. II, liariner Publ. Co. Inc. 1983.
[3] Pomnerenlse, Ch., Über einige Klassen meromorpher schlichter Puaktionen, Lath. Zeitschrift 78(1962), 263-284.
[4] Ruscheweyh, St., Convolutions in Geometric Punction Theory, Les Presses de l’Univeraité de Montreal 1982. [5] Fuscieweyh, St., Duality for Hadamard products with applications to extremal problems for functions regular in the unit disk, Trans. Ain. 山̈ath. Soc. 210(1975), 63-74.

```
[6] Ruscheveyh, St., Sheil-Small, T., Hadamard Products of
    Schlicht Functions and the Polya-Schoenoerg Conjecture,
    Comment. hiath. Helv. 48(1973), 119-135.
[7] Toeplitz, O., Die lincaren vollkcinmenen zlume der runktionen-
    theorie, Comment. Math. jielv. 23(1949), 222-242.
```


STRESZCZENIE

W pracy tej wprowadzone przez Ruscheweyt a pojecie zblorbw dualnych (ze wzgigdu na splot Hadamarda) funkcfi holomorficznych \& w kole jednostkowym, \& (0) - 1, przeniesiono na klase Bo funkcjl holomorficznych wobezarze $\{\equiv: 0<|z|<1\}$, majacych w zerze blegun plerwasego rzedu 2 residuum 1. Sformulowana zostata zasada dualnốcl dla B_{0}. Badana byia podklasa \sum c. Bo ektadajaca ale z funkcy fodnollatnych. Wyznaczono zbior dualny do Σ.

PE3DME

В отой работе введено Рушевайом понятие дуальных инодеств /по отношении к свертке Адамара/ вналитических ғункций \mathcal{f} в единитном круге $f(0)=1$, переносится на класс B_{0} функций ачвлитических в области $\{z: 0<|z|<1 j$ имеющих в $z=0$ простой полос с вычетом 1. Формулирован приндип дуальности для B_{0}. Исследован подклясс इC B_{0} однолистныз функдий и определено его дуальное мнодество.

