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Duality Applied to Mcromorphic Functions 
with a Simple Pole at the Origin

Zasada dualności dla funkcji meromorfieznych z biegunem 
pierwszego rzędu w początku układu

ripnmutn flyazibHocnt fljut MepoMopcpHbix tpyHKnnii 
H3 npOCTbIM nOJIWCOM B TOHKe 0

1. Introduction, Let fQz) = z akzk and gtz) = \z 

k=0 k=0
be analytic in the unit disk D = fz t fz[ j and noraalizod 

by f(0) = g(0) = 1 . We denote the class of functions with this 

property by . The convolution QKadamard product) of f and

g is defined by

<X>
(,f*g)(z) = £7 akbkzk 

k=0

For U C A the dual set U* is defined in the following way

U* = £g£AQ : for each f£U < Cf»g)(,z) f 0 , z€D

We denote (U*)* by U** and call it the second dual of U .
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Thia concept was introduced by Ruocheweyh [5] in connection 

with. the work loading to the pi’oof o£ the rolya-Schoenberg con­
jecture [b]. The central reference on convolutions ond properties 

of duality in AQ is the book of Ruscheweyh: Convolutions in 
Geo.'.etric Junction Theory [h].

..e introduce the clans B of functions analytic in 

>3 U ( 1 Tilth a simple pole at the origin and the subclass

3 consisting of functions with the series expansion

(1.1) £(?) = ~ + 21 akzk

lt»O

I.e. f f B if and only if si < A .0 0
-h j purpose of tho present paper is to show some results from 

tho transfer of the theory of convolutions and duality from A 

to Bo .

for f , g £ 3C the convolution is defined in the obvious

■<ey y. '

C'f
(1.2) (f*s)(z) = “ + 2T 8kbkzk

k=0

The concept of duality can also be transformed in a natural way, 

because for f and g 6 B . we have

i*g f Q , 0 < I a I < 1

if and only if
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zf zg j 0 , z e D

The basic theorem for the duality theory in AQ is the 

Duality Principle which is stated end proved in £4}. Before 

stating the Duality Principle in Bq we shall give two defini­

tions which will be needed later.

Definition.

1» U C Bq is called complete if for all f f U , 0 | x I 1

we have fx e U , where fx(z) = xf(xz) .

2. Let U C. Bq . T C Bq is called a test set for U if

T C U C T**

and write 1 U .

The definition, of a test set in BQ is exactly the same as 

in AQ . In the definition of completeness the function fx(z> 

is defined slightly different in BQ because we want to keep 

the normalization on fx .
(.The corresponding definitions in AQ are in £4}.)

2, The duality principle in Bq . In the topology of 

uniform convergence on compact subsets of the punctured disk

B is. a locally convex topological vector space. 

Let yl be the space of continuous linear functionals on B .

Theorem 1. (Duality Principle). Let 0 C Bo be compact 

and complete. Then
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(, 1) for each X c 71 : \(U) = Ao**) !

(.ii) cô (U) = cô (Ü**)

The Duality Principle in AQ is stated in exactly the same 

way ['t-J, and the proof runs the same way for both Aq and BQ .

'.ie '/.’ill therefore not go into details of the proof, but only point 

out that the proof rests on the representation theorem for conti­
nuous linear functionals by Caccioppoli flj which in our case is 

a slight modification of the theorem of Toeplitz £7], This the­

orem will be formulated in the following way for the class B ,

theorem. A e -A if and only if there is a function g i B 

such that for f € B

Au) = tf«g)u) .

■

3. Applications to univalent functions. We now turn to the 

class of univalent functions in Bq , here denoted by .
By 2?' we denote the subclass of 27 which consists of the 

functions with constant term zero. The following theorem shows 

row 27 Can be described as the dual set of a two parameter 

family of functions.

Theorem 2, Let

0.1) V-_ ff f B. fO) = 11'
xyz

■xz 1-yz )
x,y« D
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Then V* = £ and Q C.V** .

Proof. Let g € BQ and f £ V . Then we have

U«g)^) = (} - pr-xW-y^) *SU) =

« + —1 _ _1____ 3-).Kt«) _
x-y lyz 1-yz xz 'i-xzj * &'ZJ

_ xv elyz)-Klxz)
” J x-y

From this computation we see that f*g | 0 if and only if g 
is univ-alent. Thus we have proved that V* = .

To prove that ¿. Q C. V we use the following well known

fact:
«o ao

If f(z) = 1+ 2Z -«V* « and g(.z) = -J + X bkzk « 2?0 ,

k=0 k=1

then 27 klakbkl , and this implies that f»g is starlike 

k=1 ' ■

(For reference, see e.g. Goodman [2], p. 154-135.)

This means in particular that (£»g)(z) | 0 , 0 |z[ 1 ,
so Z0^Z* = V** .

A relevant type of problem in this context is to find a sui­

table test set for a given set. It would in particular be an 

interesting problem to try to find a test sat for 5? . Because

of the Duality Principle we then could get infoi-aation about 2?

by investigating the functions in the test ser. Theorem 2 is a
«=- *4=

small step in thia direction because of the inclusion 2 0 GV
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But we obviously do not have V C. since by appropriate

choices of x and y the coefficients of the functions in V 

will be so large that the area theorem is violated.

Our next idea is to introduce a set of functions related to 

V , but with smaller coefficients. A function f £ V can be 

written f(z) = 4 “ xyz “ xy(x+y)z2 - xy(x2 +xy+y2)z^ - ...

Let Z(z) = 7 + log(1-z) » i - z - ■jz2 - jz^ - ... . Define

a function h(z) = (f(z) * Z(z)) * Z(z) , f €■ V , and let W 

be the set consisting of functions of this form. That is

(3.2) '.Î = fh 6 Bo: b(z) = J - Z 5 x.y£D , xf=y) .

1 . ' k=1 k

Por functions in W it is clear that the kth coefficient is 

bounded by j in absolute value, so these functions are "closer" 

to the univalent functions as far as the size of the coefficients 

is concerned.

Por h < W , f £ Bq we get

(3.3) z(z(f»h)')'(z) = xy U™.)

which means that for f £ , h £ W

(3.4) z(z(f»h)')'(z) | 0 0 < |z| < 1
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A natural question is to ask whether for arbitrary f and h 

in , (5.4) will be true. As previously mentioned the

convolution of two functions f and g in 21 Q is 3tarlike.

In particular we will then have Qf*g)\z) |0 , 0 I z I 1 .

If f and g are in 2T 0 (or in 2. ), it is therefore clear 

that

(5.5) z(z(f g)')'(z) t 0 , 0 <|z| <1

is equivalent to

(5.6) 1 + x o , 0 < |z| .
(f*g) (z)

We notice the similarity between (5.6) and the condition for 

convexity of f#g which is

(5.7) He fl + /0 , o <|z|< 1 .

t (f*g) (z) J

This is a stronger condition than (5.6), and it is tempting to 

ask whether the convolution of two meromorphic univalent functions 

(in £ ) is a convex function. If this were true, it would 

indeed be a surprising result, but we will soon give an example 

showing that neither (5.7) nor (5.5) is true in general.

Still we fill that it would be of interest to characterize

the subset of the univalent functions for which (5.5) holds
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,Ve denote this subset by C and define it in the following way.

(3.8) C = c ! for each f € zE » z(z(f*g)')'(z) t 0 , 

0 I z I <( 1 j

From (3.3) it is immediately clear that C 3 W n . «Ve notice

that it is no restriction to define C as a subset of 

because if g is a function that satisfies (3.5), then any 

function £ + cQ , cQ a complex constant, will also satisfy 

(3.5).

It is well known that the convolution of a convex univalent 

function with an arbitrary univalent function (both in 3Q) is 

convex £3], so we know that C contains all functions, in 3° 

that are convex.

,Ve will raturn to the class C latsr. First we give the 

example showing that C does not contain all of 2? .

4. The counterexample. Let

X 1 4x1/2F(z) = ^(1+z4)
4k-1 

z
k=1

and

4k 4k-1 
r z

4 k-'l

o°
________i_______i . V

kr(z) " z(1 - (rz)4) “ z p,

îhen
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1 <4?/2
F(z)*kr(z) = ^(1 + (rz)*)

F ia univalent, so if we can find some r for which kr is

univalent and the same time z(z(F kr)z)*(z) = 0 for some z ,

0 I z J <^1 , then we have constructed a counterexample to (5.5).

In order to decide when kr is univalent we choose z^ f z2 

and compute

(4.1)

kriz1^ “ ______ 1__________________ 1________ _
zq(1 - (rz^)4) z2(1 - (rz2)4)

z2 - z1 - (r4z25-r4zn5)
znz2(1 - (rz1)4)(1 - (rz2)4)

(z2-zq)[l - Az^+z^z^z^z^z^z^

z1z2(1 “ Hi “ (rz2) )

If r4^ , (4.1) will never be zero for 0 [z^lJzgl 4^1 ,

and if r4 > , it will be possible to find z^ , z2 such that 

kr(z1) - kr(z2) = 0 . Thus we have found that kr(z) is univalent

if and only if r ~ 0.6687 .

In order to decide when ziziF*!^,) *) *(z) » 0 we get the

equation

4 ¿.1/2 a =5 n “V2
4 (1 + (rz)4) + 4r4z-5(1 + (rz) )2

- 4rSz?(1 + (rz)4) =o

(4.2)
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ibis equation has a solution in 0 Izl 1 if and only if 

r )► (5 - 2 & 0.6456 .

By geometric considerations ono can see that this r value 

Iso will be the radius of convexity for the functions
-1 4 1/2

(1 + (rz) ) . So in this case condition (5.5) and condition

(5.?) will be equivalent.

‘lho conclusion is that if we choose r in the interval 

0.6456 r 0.66S7 , then kr(z) will be the convo­

lution of two functions from 2" , and there is a z ,

0 i z | 1 , such that z(z(F* fc^)') '(z) = 0 .

5. more about the class C . From the preceding example we 

have seen that C , as defined in (5.8)» does not contain all 

univalent functions. But we notice that the interval of periaissa- 

ble r values was rathei' small, and that could be a hint towards 

guessing that C is a fairly big subset of X 0 • It would 

therefore be interesting to find a good characterization of C .

She following result, although not very informative, is an 

immediate consequence of the definitions we have made.

theorem 5. As before let

and

0 = fg« Xo « for each f < Z , z(z(f»g)')'(z) ¿ 0 , □< , z|
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Then C = zE~„ nW** •

Proof. Let f(z) = akzK and define
k=0

F(z) = (f(z)*/(z)) X ^(z) , where £(z) = ~ + log(1-z) .

Keeping in mind that a function from W can be expressed as a 

function from the set V , as defined in (5.1), convolved twice 

with /(z) , it is clear that with h € W

(5.1) f(z)*h(z) = [f(xz) - F(yz)J

From (5.1) we deduce that f € '.V* if and only if S is univa­

lent ( 6 ZQ) . With F as above we can write

(5.2) (f#g)(z) = z(z(F*g)')'(z)

for arbitrary g € Bo with constant term zero.

Now assume that F is univalent (f € W*) and g €. C . 

Then z(z(Firg)')'(z) / 0 , 0 |z| £ 1 , and from (5.2) we

get (f<g)(z) t 0 , 0 4 Ul O • Thus we have Proved that 
C C W** . In fact we have z(z(FHP g)')'(z) / 0 if and only if 

g € W , so W ’ consists exactly of those functions g

having the property that z(z(F#g)')'(z) / 0 for any F 6 

Since we have' defined C to be a subset of zt , we get that 
C = Zonw** .
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Remark. < The ultimate goal of the investigations of the 

present type is to find a suitable test set for zi . From what
ip*

we now have seen, it is clear that V/ will not contain all 
of 2Z0 , so H is not a suitable candidate for a test set. 

Nevertheless the class C seems to be an interesting and 

fairly large subset of 2 0 . and hence it would be interesting 

to make further investigations of '.V in order to get a better 

characterisation of the class C .
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STRESZCZENIE

W pracy tej wprowadzone przez Ruscheweyh 'a pojęcie zbiorów 

dualnych (ze względu na splot Hadamarda ) funkcji holomorficznych 

f w kole jednostkowym, f (o) - 1, przeniesiono no klasę Bq funkcji 
holomorficznych w obszarze | z : O < /|«'| <1} , mających w zerze 

biegun pierwszego rzędu z residuum 1. Sformułowana została zasa­

da dualności dla Bq. Badana była podklasa £ C Bq składająca 

się z funkcji jednolistnych. Wyznaczono zbiór dualny do X .

PE3EME

B otoR paÓOTe BseneHo PymeBafloM noHHTHe .nyanbrnix MHOsecTB 
/no OTHomeHMk k CBepTKe Afla&iapa/ aHannTmtecKnx JyHKuwS f b enwHK— 
nnou «pyrę f(o)=1, nepeHoczTcn «a KJiacc B„ $yHKunii ananHTimec-

{'• À *5 Oz:o<lz|<1j KMe»upix b z=o npocTOÎÎ nonce c Bave- 
TOM 1. i>opMynnpoBaH npnanun ayanbHOCTH Rxst BQ. ZccnenoBaH noflicnacc 
£ C 30 OAHonucTHNx <}>yHXUMfi u onpeneJieHO ero nyanbHoe MHostecTBO.




