ANNALS

VOL. XL, 22
section a
1986

Bektion Mathematic, Martin-Luther-Universitit
Halle, GDR

H. RENELT

Generalized Powers in the Theory of (v, μ)-Solutions

Обобщенные степенные функции у теории (v, μ)-решений

Introduction. In view of the representation tiooren, (ν, μ)-solutions, i.e. solutions of a system $I_{\bar{z}}=\lambda I_{z}+\mu \overline{I_{z}}$, have a lot of properties in common with analytic functions. Especially, the notions of zeroes and poles and their orders are well defined. Nainely, a (a, μ)-solution f hes a zero of order n at the point z_{0} if and only if any representation of 1, according to the representation theorem, reads $f(z)=$ $=F \circ X(z)$ with a quasiconformal mapping x of a neighbourhood U of z_{0} and a function $P(X)$ analytic in $X(U)$ winch has a zero of n-th order at $\chi\left(z_{0}\right)$. Of course, the property of z_{0} to be a zero of order n of a (ν, μ)-solution is independent of the choice of X and F. In an analogous manner, poles and their orders are defined.

If there are no additional conditions on ν, μ, as
0.1

$$
\text { D, } \mu \subset L_{\infty}(C)
$$

$$
\begin{aligned}
& |\nu|+!\mu!!k=\text { const. }\langle 1 \\
& \text { a.o. in } C(C \text { the finite complex. } \\
& \text { plans), }
\end{aligned}
$$

the order of a zero or polo has nothing to do with any asymptotic behaviour. Phis can bo shown by rather simple examples (cf. [4$]$, p. 72). But there is another question, where the answer is open in the most funeral case of 2 , /6. Namely, lot \mathcal{P}, \mathcal{E} be tiv (ν, μ) -solutions in a noigkbourizood U of z_{0} with zeroes of order n resp k at z_{0}. Of course, $f+\mathbb{E}$ has again a zero at z_{o} of a certain order m, but is always

```
J.< m) ain (n,k) ?
```

Lieu consespondine question exists if z_{0} is a pole of order a Lisp k or i resp E.

Botha questions have an ansiver corresponding to the classical case if D, μ satisfy some additional conditions, for example, il we have

This condition assures the"natural" correspondence between the order of the zero or the pole z_{0} and a certain asymptotic belavier at 2_{0}. Tho asymptotic behavior of (ν, μ)-solutions at jules or zeroes is the topic of the next chapter, and these results are basic for the concept of generalized powers, introduced and treated in the second chapter. As one application we obtain an integral formula for the (first) derivatives of ($\nu, \mu)$-solutions
which is the counterpart of the classical Formula

$$
f^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{\left|z-z_{0}\right|=r} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

1．Asymptotic Expansions．The followime function spice plays an important role for the asymptotic oesisviour or －solutions．

1．1 Definition．Let GCC be a measurable $3 \theta t, D$ an Eli．－ tracy（cot necessarily measurable）subset of G ，and $\hat{\text { an m }}$ real number $\geqslant 1$ • By $H U_{p}(j, G)$ we denote che set oi kill ごしi．c－ tions 1 defined and measurable in G winch satisfy
（I）$\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \in I_{p}(G) \underline{\text {（as a function of }}$ 2）for eq

$$
z_{0} \in D
$$

and

Instead of $\quad \operatorname{H}_{p}(D, C)$ we write il $_{p}(D)$ ．

The space $H_{p}(D, G)$ equipped with the norm（II）is a Banach space，but we will not use this fact in the following．

In $[4]$, p. 05 , it pas been shown the
1.2 Shores. Let G be a domain CC, D^{0} an arbitrary sot satisfyife $U^{\circ} C D, D^{\prime} C C G$, and be $p>2$. Then every If $f \Gamma_{\mathrm{p}}(D, G)$ is continuous and bounded in $~^{\circ}$, and each bourjed set in $\mathrm{KL}_{\mathrm{j}}(\mathrm{D}, G)$ is compact in $C\left(D^{\circ}\right)\left(C\left(D^{\circ}\right)\right.$ the usual space of functions continuous in D^{\prime} with the supramum nora).

Perhaps it is possible to say much more about $i I_{p}(D, G)$. Ir any case, the kind of continuity of the functions from $\therefore L_{p}(D, G)$ with $p \geqslant 2$ is anything betweon tie usual continuity End siblair continuity (perhaps equal to gilder continuity under curtain additional conditions on D, G, and P. Of course, uneorem 1.2 makes no sense if i consists only of isolated points.
1.3 Definition. Let G be a domain, $z_{0} \in G$, and $w(z)$ De a $(2, \mu)$-solution in $G \backslash\left\{z_{0}\right\}$. The point z_{0} is called a point of order n of $R(2)$, if either n is a nočative intoSer and wo) has a pole oi order $-n$ at z or n is a monogeitive integer and $n(z)$ hos at z_{0} a zero of order n (a zero of order 0 at z_{0} means that $\left.w\left(z_{0}\right) \neq 0\right)$.

Fran noil on we mill assume additionally to 0.1 that ν, μ are corine not only a.e. but everywioce in $\vec{c}=c u\{\infty\}$. Ubviously this is no loss of senorality.

In [4], p. 72 (cf. also [3], D. 130) it has bon shown the
$\left(\dot{i}, \frac{1.4 \text { ri.curea. Let }}{} z_{0} \neq \infty\right.$ solution a point of order n of the

Then WIz) has the asymptotic development
(I) $w(z)=c\left[z-z_{0}+b\left(\overline{z-z_{0}}\right)\right]^{n}-b \bar{c}\left[\overline{z-z_{0}}+\vec{f}_{y}\left(z-z_{0}\right)^{n}+u\left(i z-z_{0} b^{n}+\right.\right.$
with certain constants $c \neq 0, \infty>0(0($.$) enctos tie usual$ Bachmann-Landau symbol), and
(II) $b=\omega(X), \quad b=\omega(6)$,

$$
\begin{aligned}
& \gamma=-\mu\left(z_{0}\right) /\left(1+\left|\mu\left(z_{0}\right)\right|^{2}-\left|\nu\left(z_{0}\right)\right|^{2}\right), \\
& \sigma=\nu\left(z_{0}\right) /\left(1+\left|\nu\left(z_{0}\right)\right|^{2}-\left|\mu\left(z_{0}\right)\right|^{2}\right)
\end{aligned}
$$

where $\omega($.$) is the function \omega(x)=2 x /\left(1+\sqrt{1 \sim 4 x^{2}}\right)$. these b, b satisfy the estimate $|b| \leqslant k,|b| \leqslant k$ for every ${ }^{2} 0: C$.

Under additional assumptions on V, μ wore can be said on α, cf. [4], p. 7.3.

We want now to extend this theorem to the case $z_{0}=0$. This requires an assumption on ν, , with respect to $z_{0}=\cdots$, which is analogous to $\nu, \mu \in H_{p}\left(\left\{z_{0}\right\}\right)$ for finite z_{o}.
1.5 Definition. (I) We will say that $\left.P \in \operatorname{iiL}_{p}\left(i^{*}\right\}\right)$ if and only if \mathcal{f} is defined everywhere in \vec{C}, and $f(1 / z)-f(v)$ belongs to $\mathrm{H}_{\mathrm{p}}(\{0\})$.
(II) Let D be an arbitrary subset of $\vec{C}, \quad-\infty \in D, D \neq \cdots$. We will say that $f \in H L_{p}(D)$ if and only if $f \in H_{p}(D, ~ i n ?) a$ $\therefore \mathrm{HL}_{\mathrm{p}}(\{\infty\})$.

Then we have the following completion of theorem 1.4.

$$
\begin{aligned}
& 1.6 \text { Theorem. Let } \because \text { be a point of order } n \text { of the (} \because, 11 \text {) } \\
& \text {-solution } \left.w(2) \text {, and be }, \mathcal{L} \in \mathbb{K}_{p}(\{0\}\}\right), p \geqslant 2 \text {. Then, with } \\
& \text { respect to the point } n \text {, the asymptotic expansion } \\
& v_{v}(z)=c[z+i-\vec{z}]^{-n}-b c\left[\tilde{z}+[-z]^{-n}+O\left(\left.i z\right|^{-n-x}\right)\right. \\
& \text { arius with certain constants } c \neq 0, \geqslant 0 \text {, and with } b, \text {, t } \\
& \text { as } \operatorname{in} 1.4(I I) \text {, taking tire } z_{0}=\cdots \text {. } \\
& \text { Proof. Let } W(z) \text { be any (}, \|) \text {-solution in a domain } G \text {. } \\
& \text { ~」 tho aftinc transformation } \\
& 1.7=z+1 \cdot \vec{z}+d, 1 / d \text { arbitrary but fixed constants © } C \text {, } \\
& \text { tue wiz) is carried ilito a (} 1, \|_{1} \text {) -solution } w_{1}(j) \text { in the } \\
& \text { imeje domain } G_{1} \text { of } G \text { uncier the mapping 1.7. At this we have } \\
& 1.0 \quad 1()=\left(10^{2}-\left(1+i^{2}-14^{2}\right) b+2\right) / N_{1}, \\
& \left.{ }_{1}()=(1-i)^{2}\right) / \operatorname{li} i_{1}, \\
& \left.N_{1}=1-2\right)^{2}-11,2=(2(\eta)), \quad u=u(z(\%
\end{aligned}
$$

No: we apply tic affine mapping
$1.9 \mathrm{~b}=\mathrm{w}_{1}+\mathrm{bw}, \mathrm{b}$ an arbitrary but fixed constant with b: 1 ,
to the $\left(1,1\right.$, -solution $\left.w_{1}(\}\right)$. By tais transformation we carry $w_{1}()$ into a $(2,2)$-solution $g(\%)$ in the domain

G1 with
1.10

$$
\begin{aligned}
& \nu_{2}(\zeta)=\left[\bar{\nu} b^{2}-\left(1+|\nu|^{2}-|\mu|^{2}\right) b+\nu\right] \cdot\left(1-|0|^{2}\right) / \mathrm{N}, \\
& \mu_{2}(\zeta)=\left[\bar{\mu} b^{2}+\left(1+|\mu|^{2}-|\nu|^{2}\right) b+\mu\right] \cdot\left(1-|b|^{2}\right) / b, \\
& N=\left(1-|b|^{2}\right) \cdot\left[\frac{1}{2}\left(1+|\nu|^{2}-|\mu|^{2}\right)\left(1+|b|^{2}\right)-2 \operatorname{ke} b \bar{\nu}\right]+ \\
& +\left(1-|b|^{2}\right)\left[\frac{1}{2}\left(1+|\mu|^{2}-|\nu|^{2}\right)\left(1+|b|^{2}\right)-2 \operatorname{Re} b \bar{\mu}\right], \\
& \nu=\nu(2(\zeta)), \quad \mu=\mu(2(\zeta)) .
\end{aligned}
$$

As to ν_{2}, μ_{2} we have the estimate
$\left.\left.1.11 \quad \mid \nu_{2}(\}\right)|+| \mu_{2}(\}\right) \left\lvert\, \leqslant 1-(1-k) \frac{(1-|b|)(1-|b|)}{(1+|b|)(1+|0|)}\right.$ for each $J \in \bar{C}$,

Which may be shown by weans of the geometrical interpretation (1.0. arithmetically, by representing ν, μ by new parameters), cf. $[4]$, p. 49.

According to 1.10 it is
1.12

$$
\left.\nu_{2}(\}_{0}\right)=\mu_{2}\left(\zeta_{0}\right)=0 \text { at tine point } \zeta_{0}=z_{0}+b \bar{z}_{0}+\dot{\alpha},
$$

If we take for b, b the expressions from 1.4(II), and this holds true especially if $z_{0}=J_{0}=\infty$. Because the absolute values of that b, \dot{b} are restricted by k, the estimate 1.11 yields in case of such b, b
1.13

$$
\left.\left|\nu_{2}(了)\right|+\mid \mu_{2}(\}\right) \left\lvert\, \leqslant 1-\frac{(1-k)^{3}}{1+k^{2}} \equiv k^{\prime}\right.
$$

Snow, let ∞ bu a pain of order n of the (ν, μ)-solution $w(z)$. with the b, b corresponding to $z_{0}=\infty$ according to 1.4(II), we apply the transformations 1.7, 1.y to wiz). Dy a suivsequent inversion, appiled to the corresponding $\left(\nu_{2}, \mu_{2}\right)$ --solution $\overline{\mathrm{B}}(\boldsymbol{\zeta})$, wo obtain a $\left(\boldsymbol{\nu}^{*}, \mu^{*}\right)$-solution $h(t)=g(1 / t)$ is a certain set $0<|t|<r$ with
1.14

$$
\nu^{*}(t)=\nu_{2}\left(\frac{1}{t}\right) \frac{t^{2}}{t^{2}}, \quad \mu^{*}(t)=\mu_{2}\left(\frac{1}{t}\right)
$$

because of $\nu, \mu \in \operatorname{Hi}_{p}(\{\infty\})$ we a avo $\nu_{2}, \mu_{2} \in \operatorname{HL}_{p}(\{\infty\})$ with $\nu_{2}(\infty)=\mu_{2}(\infty)=0$. Lie ν^{*}, μ^{*} therefore belong to $i_{\mathrm{p}}(\{0\})$. Oİ course, $\mathrm{b}(\mathrm{t})$ has a point of order n at $\mathrm{t}=0$. sweorow 1.4 then gives

$$
b(t)=c \cdot t^{n}+0\left(|t|^{n+\alpha}\right)
$$

is a seifibbourbood of $t=0$, which is equivalent to the assertion of tho orem 1.
2. Generalized fuwers. He now ask for a certain converse of theorem 1.4. Let be given a constant $c \neq 0$ and the integer n. Are tinge (ν, μ)-solutions with an expansion 1.4(I), and what auditioual conditions may be prescribed for such (ν, μ) -soluthous if they do exist ? Of course, the case $n=0$ is unduteresting amd way be omitted because, together with w(z), w(2)+const. is again a $(\nu, \mu)-$ solution.

The following considerations are based on the
2.1 Condition. Let $z_{0} \neq \infty$ be an arbitrary but fixed point, and ν, μ are to satisfy $|\nu(z)|+|\mu(z)| \leqslant k=$ cons. <1
for each $z \in \bar{C}$ as well as $\nu, \mu \in \operatorname{LL} L_{p}\left(\left\{z_{0}, \infty\right\}\right)$ with $p>z$. The following theorem holds.
 tracy complex number. Under condition 2.1 there is exactly olio (ν, μ)-solution $w(z)$ in $C \backslash\left\{z_{0}\right\}$ with tito properties (I) $w(z)$ has at z o the asymptotic oxperisioL

$$
\begin{aligned}
w(z) & =c\left[z-z_{0}+b\left(\overline{z-z_{0}}\right)\right]^{n}-b \bar{c}\left[\overline{z-z_{0}}+\bar{b}\left(z-z_{0}\right)\right]^{L}+ \\
& +o\left(\left|z-z_{0}\right|^{n+\alpha}\right),
\end{aligned}
$$

with b, b, α as in theorem 1.4 , and
(II) the point ∞ is a point of order -n of $\mathbb{M}(\mathbb{Z}$). This unique $w(z)$ will io coiled generalized $n-t_{l}$ power and will be denoted by $\left[\left(\left(z-z_{0}\right)^{n}\right](\nu, \mu)\right.$ or simply by $\left[c\left(z-z_{0}\right)^{n}\right]$, if no misunderstanding is possiole.

As tine following proof will show, the existence of a " "(2) with the properties (I) and (II) in 2.2 is assured under 2.1 without $\nu, \mu \in H_{p}(\{\infty\})$ but we cannot prove uniqueness.
at first, let us notice a certain topological property of $\left[c\left(z-z_{0}\right)^{n}\right]$.
2.3 Corollary. There are exactly $|u|$ quasiconformal map pings $x_{1}, \ldots, x_{|G|}$ of \bar{c} onto itself with $x_{j}\left(z_{0}\right)=u$, $x_{j}(\infty)=\infty$, and

$$
\left[c\left(z-z_{0}\right)^{n}\right](\nu, \mu)=\left(\chi_{j}(z)\right)^{n}, \quad j=1, \ldots,|n|,
$$

ana tinese X_{j} may be arranged in mucin un order that we ate

$$
\chi_{j}(z)=e^{2 \pi i j / n} \cdot \chi_{1}(z) \quad, \quad j=1, \ldots,|n| .
$$

spoor of the corollary. Without loss of generality we way ussulie $z_{0}=0$. By the representation theorem we have

$$
\left[c z^{n}\right]=10 x(z)
$$

with a quasicontiorwal napping X of \bar{C} onto itself with $X(u)=0, \quad X(\infty)=\infty$, and f an analytic function in $c \backslash\{\cup\}$. Bucause oi f 2.2(I), (II), f, has at $z=0$ a point or prior n and at $z=\infty$ a point of order -11 . Hence,

$$
f(X)=a \cdot \chi^{n} \text { with a certain constant } a \neq 0 \text {. }
$$

rutting $\sqrt[n]{a} \cdot \chi=\chi_{1}$ we obtain $\left[c z^{n}\right]=\left(\chi_{1}(2)\right)^{n}$. Or course, this is also valid for $X_{j}=\theta^{2 \pi i j / n} \cdot \chi_{1}, j=1, \ldots,|n|$. It remains to show tact there are no further such $X=X^{*}$. for coutinuity, jor ouch $z \in C \backslash\{0\}$ there is a whole neighuouriood $U\left(z^{*}\right)$ and a j with $X^{*}(z) \equiv X_{j}(z)$ for each $z \in U\left(z^{*}\right)$. Because there is no continuous change from a X_{j} to a $X_{\text {上 }}$ with $j \neq \mu$ in $C \backslash\{0\}$, the assertion 2.3 follows.

Proof of theorem 2.2. Without loss of generality let be $z_{0}=0$, and let us at first assume $\nu(0)=\mu(0)=0$, $\nu, \mu \in H_{p}(\{0\})$. For each (ν, μ)-solution f in $C \backslash\{0\}$, $h(z)=f(z) z^{-L}$ is a solution of
$2.4 \cdot H_{\bar{z}}=\nu H_{z}+\mu \cdot\left(\frac{z}{\frac{z}{z}}\right)^{-n} \overline{H_{z}}+\nu \frac{n}{2} H+\mu \cdot\left(\frac{z}{z}\right)^{-n} \frac{n}{z} \bar{H}$ in ci \{0\} , ~
and conversely, if i is any solution of 2.4 , then $H z^{n}$ is a (ν, μ)-solution is $C \backslash\{0\}$. Of course, the same is true if we
yopiace $\quad \nu, \mu$ vj $\nu_{0,}, \mu_{\text {is }}$ witu
$2.5 \quad \nu_{\Delta}=\nu \quad$ i.sd $\quad \mu_{m}=\mu$ ior $|z| \leqslant \omega \quad$,

$$
\left.\nu_{\mathrm{ia}}=\mu_{\mathrm{a}}=0 \quad \text { ior } \quad|z|\right\rangle m
$$

In a yositive integer.
 solution b of the systom
witn $a(0)=c$ and b bounded in C. If $c \neq u$, thon $u(z) \neq U$ for each $z \in C$.
rroof. we try ciatermint a $\& \in L_{p}=L_{p}(C)$ is sucis u wou that

$$
h(z)=c-\frac{1}{\pi} \iint_{C} s(t)\left[\frac{1}{t-2}-\frac{1}{t}\right] d \sigma_{t}=c+r_{0} t(2)
$$

will bocome a solution of c.b.1. inis leus to the cyustion or
2.7

$$
b=A+S B+K g
$$

$$
\begin{aligned}
& \text { with } \dot{s}=\Delta\left[\frac{\nu_{m_{c}}}{z}+\frac{\mu_{\mu}}{\bar{z}} \cdot\left(\frac{z}{\bar{z}}\right)^{-n} \cdot \bar{c}\right], \quad R_{\delta}=u\left[\frac{\nu_{\mu_{0}}}{2}+\frac{\mu_{0}}{\bar{z}}\left(\frac{z}{z}\right)^{-\frac{1}{2}} \bar{z}_{0}\right] \\
& i_{S}=U_{m} T_{i}+\mu_{m}\left(\frac{z}{z}\right)^{-n} \cdot T_{G}, \quad I E(z)=-\frac{1}{\pi} \iint_{C} \frac{E(t)}{(v-z)^{2}} \text { } u \sigma_{i}
\end{aligned}
$$

tien tino-ulintasional riluezt truruformatiou.
socalize col lo山aidus wrue if wo lat p diccreuse we mav
assume p sufficiently wear to 2 such that the norm $C(p)$ of I' in L_{p} satirises
$2.0 \quad \Delta C(p)<1 \quad$ (cf., egg., [1], chapter V).

Then S is a contraction operator in L_{p}. The operator $R{ }^{2}$ is compact in L_{p} (cf., evE., [4], section U.4, and note that $\frac{\rangle_{m}}{2}$, $\frac{\mu_{p}}{2}$ Lave bounded support and belong to L_{p}. Consequently, 2.7 Lu B Exactly one solution for each $A \in L_{p}$ if the corresponding nous end us equation $g=S g+R g$ has only the trivial solution $\mathrm{B} \equiv \mathrm{O}$ in L_{p}, cf. [5], p. 176. The latter follows as in [5], p. 170f. :

Suppose g 丰 0 is a solution of $g=S g+\mathbb{R g}$ in L_{p}. This means that $h=P_{0} g$ is a solution of 2.6.1. Therefore, according to the Bers-livenberg representation theorem (cf. [4], p. 46), $h=p_{0} g$ may be represented by

$$
a(z)=e^{B(z)} P(X(z)),
$$

where $s(z)$ is bounded in C, F is an analytic function in C, and X is a quasiconforaal mapping of C onto itself. Because $B=U$ for $|z|\rangle_{\mathrm{in}}, P_{0} g$ as well as F must be bounded in C, hence $P(X) \equiv$ canst. Then $F \equiv 0$ follows from $n(0)=0$, and this $\bar{G} i v e s \quad G \equiv 0$ because of $\left(P_{0} g\right)_{\overline{2}}=h_{\overline{2}}=g$. Since the homagenous equation has only the trivial solution, the inhomogeneous equation • 2.7 has a unique solution g for each $A \in I_{p}$, and this E is $=0$ for $|z|\rangle$. Hence, $h(z)=c+P_{0} g$ is indeed bounded in C. Because this b is a solution of 2.6 .1 and has therefore a representation 2.9, the corresponding F is always \equiv三const. This ne ans that b is identically zero if and only if
$h(z)$ vanishes for any $z \in C$. The lemma is proved.

With tais $h(z)=h_{G}(z)$ we ootain a $\left(\nu_{\text {a }}, \mu_{\omega}\right)$-solution $f_{\text {nu }}(z)=h_{\text {m }}(z) z^{n}$ in $C \backslash\{0\}$. Because of tue inlier continuity of $P_{0} g(z)$, especially at $z=0$, this $\mathcal{f}_{m}(z)$ has at $z=0$ tine asymptotic expansion
2.10

$$
f_{m}(z)=c z^{n}\left(1+0\left(|z|^{\alpha}\right)\right) \text { with a positive } \alpha \geqslant 1-\frac{2}{p},
$$

where p has to satisfy only 2.1 and 2.8.
The function I_{m} is analytic for $m\langle | z \mid<\infty$ and has there a expansion (note tilt. $P_{0} G$ has a zero at ∞)
2.11

$$
f_{m}(z)=c z^{n}+c_{n-1}^{(m)} z^{n-1}+\ldots=c z^{n}\left(1+u\left(|z|^{-1}\right)\right) .
$$

By the representation theorem it holds $f_{m}(z)=F_{\mathrm{mi}}\left(X_{\mathrm{m}}(z)\right)$ with a certain Beltrami nomeoworphisu X_{m} of C onto itself with $X_{m}(0)=0$ and a function r_{m} analytic in $C \backslash\{0\}$. Together with ν, μ also $\nu_{\text {in }}, \mu_{\text {mill }}$ belong to $H_{\mathrm{p}}(\{0\})$ for each $t=$ $=1,2, \ldots$, and $\nu_{m}(0)=\mu_{m}(0)=0$. Hence, $X_{\text {m }}$ has at $z=0$ un asymptotic expansion $\quad X_{m}(z)=d_{m} z+O\left(|z|^{1+\alpha} j\right.$ with a positive α (cf. [4], theorem III.5.2), and $\mathrm{d}_{\mathrm{m}} \neq 0$. By simple change of f_{m} we may assume $d_{m}=1$, 1.e..
$2.12 \quad \chi_{m}(z)=z\left(1+0\left(|z|^{\alpha}\right)\right)$ with $\quad \alpha>0$.

This x_{m} is conformal for $\left.|2|\right\rangle \omega$, hence
$2.13 \quad X_{a^{2}}(z)=a^{(m)} z+a_{0}^{(m)}+\frac{a^{(m)}}{2}+\ldots \quad$ with $a^{(m)} \neq 0 \quad$.

Together with $f_{\text {u }}$ also f_{m} has a point of order n at $z=0$ and a point of order $-n$ at ∞. Then 2.10-2.13 give $F_{m}(X)=$ $=c X^{n}+u\left(|X|^{n+1}\right)$ in a neisioourhood of $X=0, B_{m}(X)=$ $=A^{(01)} x^{n}+u\left(|X|^{n-1}\right)$ in a neighbourhood of ∞, hence $F_{m}(X)=c X^{n}$ for each $m=1,2, \ldots$, and this means
2.14

$$
f_{m}(z)=c\left[X_{m}(z)\right]^{n}
$$

we need now a leman on convergence.
2.15 Lumina. Let 4 be a set of quasiconformal mappings X of C onto itself satisfying the following conditions: there exists a $k(z) \in K L_{p}(\{0\})$ with $p>2, k(0)=0$, $0 \leqslant k(z) \leqslant k=$ const. $\langle 1$ for each $z \in C$, such that holds 2.15.1 $\quad\left|X_{2} / X_{2}\right| \leqslant k(2) \quad$ a.e. in c for each $X \in i$ and each $X \in$ bis at $2=0$ an asymptotic expansion

$$
\text { 2.15.2 } \quad X(z)=z+0\left(|z|^{1+\alpha^{\prime}}\right) \quad \text { with an } \alpha^{\prime}>0
$$

Then si is compact in the set Q of $\frac{1+k}{1-k}$ - quasicouformai mappings of C onto itself, there are two positive constants K and \propto, such that in $\{|z|<1\}$ the inequality $2.15 .3 \quad\left|\frac{X(z)}{z}-1\right| \leqslant K|z|^{\alpha} \quad$ for each $x \in$ ir Holds, and each limit X^{*} of any convergent sequence $X_{\text {mil }} \in \mu$

Froof. By weld-known compactuess criteria for quasicomiormal mapjings, mis coispact in \& ir (aduitioualiy to $X(u)=0$ and $X(c)=c$ for each $X \in$ w the set ai $(1)=\{X(1): X \in$ in $\}$ is bounded aray from tho joints \cup and oo. Consequeatij, tue get of mappinfis $\psi \equiv X / X(1)$ with $X \in$ is is cowpactin $\&$. By theorems II.5.2. II and 11.5.47 of 44.1 tnere are two constants \mathbb{m}_{q}, m_{2} with $m_{1} \leqslant\left|\psi{ }_{2}(0)\right| \leq \mathbb{m}_{2}$. but we have alsocf.[4i II.5. 22 $\psi_{2}(0)=1 / \chi(1)$, and this means tiat $k(1)$ cancot aave the limit points u or ∞. iurtinomore, uy the compactress just proved, the $x \in h i$ are uniformly bounded, say for $|z| \leqslant 1$. die assertion 2.15 .3 is then a consequence of the result in $[4]$, II.5.22 . Einally, 2.15.3 implies tize last statement of tne leumi. . Tine lemma is proved.

Of course, tine X_{m} mentioned in $2.12-2.14$ satisiy tine conditions of the last lema (especially, $\left.\mid X_{i n}\right)_{\bar{z}} /\left(X_{\text {iin }}\right)_{2} \mid \leqslant$ $\leqslant|v(z)|+|\mu(z)|$ a.s. in $c)$.
Therefore, if $m \rightarrow \infty$, there is a subsequence of the χ_{\ldots} walch 18 converegent to a rapping X of 0 onto itself with an expansion as in 2.12 , and which yields simultaneously a (ν, μ)-solution $f(z)=c(X(z))^{n}$ in $C \backslash\{0\}$ (vecause this $I(z)$ is the limit of a suisequence of $\left(\nu_{m}, \mu_{m}\right)$-solutions $f_{m}=c X_{m}{ }^{n}$, cf. [4], II.4.1). Obviously this f as a point of order n at zero and a point of order $-n$ at ∞. Because of the asymptotic expansion of X at $z=0$, this f bas at $z=0$ tine uxpansion

$$
f(z)=c z^{n}+0\left(|z|^{n+\alpha}\right) .
$$

Inerefore tuo existence of a w(2) with tia properties 2.2(I), (II) is proved under the adidtional assumgtions $z_{0}=0, \nu(0)=$ $=\mu(0)=0$. By means of tae transformations 1.7, 1.9, taie inplices tice validity of $<.2(I)$, (II) for arbitrary ν, μ uncier tae conditions 2.1, but without $\nu, \mu \in \pi L_{p}(\{\infty\})$.

To prove uniqueness let ν, μ notv sutisfy all of 2.1, and let is assume taat there are two $w(z), W(z)$ mentioned in 2.2(I), (II). By thoorem 1.4 it follows that the (ν, μ)-solution $h(z)=w(z)-w^{*}(z)$ aas a point of at least $(n+1)$ th order at $z=U$. On the other hand, $H(z)$ has at ∞ a point of a certain orcier, say of order -j, and by thecrem 1.6 we have
$K_{1} \leqslant\left|H(z) z^{-j}\right| \leqslant x_{2} \quad$ in a neignbourhood of $\infty \quad$,
where K_{1}, K_{2} are certain positive constants. But $w(z)$ as well as $w^{*}(z)$ nuve a point of order $-n$ at ∞, and this ineans in conjunction with 1.6 that $H(z) z^{-n}$ is bounded in a neighbourhood of ∞. linis implies $n \geqslant j$. By tine representation theorem and Decause every rational function $\neq 0$ takes oaca value $\in \bar{C}$ equally ofton, we arrive ut a contradiction if H 丰 0 . Theorem 2.2 is proved.
is an oovious consequence of theorem 2.2 it follows that every $(\boldsymbol{\nu}, \mu)$-solution ias a unique representation, analogously to the Luarent expansion of analytic functions, at each of its poles.
3. Sowe Furtaer Results on Generalized Povers. surprisinsly, generalized pozars Lave a certain important property in coacoon with the usual powers. This is stated in tie foliowing
j. 1 d能oren. int $\left.\nu, \mu \in H_{p}(\bar{c}), p\right\rangle 2$, and $|\nu|+|\mu| \leqslant$ \leqslant is = const. $\langle 1$ jor each $z \in \bar{C}, ~ ц, j$ oe aruitrarjinttecis.
Then we Lave

$$
\begin{aligned}
\text { Re } \frac{1}{2 \pi} i \oint_{\left|z-z_{0}\right|=r}\left[a\left(z-\varepsilon_{0}\right)^{i}\right](\nu, \mu)^{\alpha}\left[c\left(z-z_{0}\right)^{j}\right](\nu, \mu) & = \\
& =\left(1-|b|^{2}\right) j \delta_{n,-j} \text { Re ac }
\end{aligned}
$$

 symbol ($=1$ if $n=m$, and $=0$ otiuerwise).

This theorem is obviously a generalization of the clusiical relation

$$
\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{d z}{\left(z-z_{0}\right)^{n 0}}=\delta_{1, n}
$$

The proof of 3.1 is anything but a brief matter acid way io omitted here. As a consequence of 3.1 one obtains a genoralizea cauchy integral formula for the derivatives of (ν, μ)-solutions.
3.2 Theorem. Let ν, μ be as in 3.1, and 1 de a (ν, μ) -solution in the domain G CC. with ta constants b, b cortes pending to $z_{0}, \boldsymbol{\nu}, \mu$ according to 1.4 (II), we have

$$
\begin{aligned}
& \operatorname{Re} \frac{1}{c \frac{1}{i} \int_{\left|z-z_{0}\right|=r}} f(z) d\left[c\left(z-z_{0}\right)^{-1}\right](v, \bar{\mu})= \\
&=-\frac{1-|0|^{2}}{1-|b| v \mid} \operatorname{ko}\left\{\hat{I}_{z_{2}}\left(z_{0}\right)(c-\overline{c b} b)\right\}
\end{aligned}
$$

$$
\text { for each } z_{0} \in G \underline{\text { and any }} r>0 \text { sucir that }\left\{\left|z-z_{0}\right| \leqslant i\right\}
$$

coutajuta 1r. G.

Note taat, ia view of bae geueralized Cauchy intogral taeorem (ci. [4], p. 06), the gpecial suape of tad contour of integration
 iisaed elst:vaere.

hisimikallas

[1] fililiors, L.V., Lucturcs on quasiconformal mappings, frinceton, N.J., Van Nostrand , 1906.
[ट] Lebto, O., Virtaren, L.I., vuasicouformal maypiugs in tne plune, znä ed., Springer-Verlas, Berlin, Heidelberg, liew Yor's, 1773.
[ว] Položy, G.N., Tieory and application of p-analytic and (ρ, q)-analytic functions, Kiov, 197j (in Russian).
[4] Kenelt, L., quasikonforme sobilaunen und elliptische Systene erster Ordnung in der ebone, Yeubner-Texte zur Hathouatix, Bd. 46, 'reubner-Verlag, Leipzint, 1932.
[j] Vekua, I.Ne, Verallgemeinerte ainklytiscue Funktionon, hicademie--Verlaf, Berlin, 1963.

STRESZCZENIE

Wprowadzono pojecie n-lej uogolnionej potegi (v, μ) - rozwiqzania (tzn. rozwiqzania ukiadu $f_{z}-V f_{z}+\mu \overline{l_{z}}$) 1 wykazano istnienie I jedynóé taklch poteg dla dowolnego, calkowitego n. Z topologlcznego punktu widzenia potagi te 89 w istocie zwyktymi auper pozycjaml quasikonforemnych homeomorlizmow plaszczyzny. Super pozycje te maja pewne wiasnoścl zwykłych poteg, jeśll chodzlo pewne calkl po konturze. Pociaga to za soba, m.ln. uogólniony wzbr calkowy Cancky ego dla pochodnych (V, μ) - rozwiazań.

PE3DME

Введено понятие $n-т о и ̆ ~ о б о б щ е н н о и ̆ ~ с т е п е н и ~(~ v, ~ \mu)-р е ш е-~$ пия (т.е. решения системы $\mathcal{I}_{\text {т }}=v f_{2}+\mu \bar{I}_{\bar{z}}$) и доквзяяо суцествование и единство таких степенннх функций для лобого целого n. С топологической точки зреиия эти стелени это обнкновеннне суперпозиции квазиконформных отображений плоскости. Эти судердоэиции имешт несколько свойств обнчных степеней, например по отношеныи к некоторым контурним интегралам. Это влечет аа собой, вр. обобщеннуд интегральнур фориулу Коши для проияводннх (v, μ)-решении.

