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Introduction. In view of the representation tacoren,
(_Q,F.) -solutions, i.e. solutions of a system f—=dIf + u -
have a lot of properties in common with analytic functions,
Especially, the notions of zeroes and poles and tneir orders are
well defined. Namely,.a (< ,/u) -solution f hes a zero of
order n at the point z, if and only if any representation of
£ , according to the representation theorem, reads f£(z) =

FeX(z) with a quasiconformal mapping X of a neighbourhood

U of 2z, and a function F(X) analytic in 2 (U) waich has
a zero of n-th order at X(zo) . Of course, the property of
z, to be a zero of order n oI.a (v ./L) -golution is indepen-
dent of the choice of X end F . In an analogous mannor, poles
and their orders are defined.

If there are no additional conditions on 2 3 /v s @as

0.1 J, M CLW‘(C) y @]+ '.""‘/k = const. {1
8.0, in C (C the finite complux

plans) ,
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the order of a 2zero or pole has nothing to do with any asymptotic
behaviour. This cen be shown by rather simple examples (cf. [4? h
pe 72). But tnera is enother question, where the answer is open

in the most guneral cese of v y b Namely, let £ , g be

two (W tr-) -solutions in a neighbourhood U of z with zeroes
of order n resp k at Ly Of course, f + ¢ nas again a zero

av 2 of a certein order m , but is always

D.2 m:z ain (o, k) 7

1w corresponding quustion exists if 2z, is a pole of order =n
resp k of £ resp g .

Bota ¢uustions have an answver corresponding to the classical
cose if D, M satisfy some additional conditions, for exaxplse,

il we heve

7 P A
a3 q J_!D(z,.)-.'vgzo)l . (R pia) [ “F
U L' T4 : 2= %

U any noighbourhood of 2y .

Lhis condition assures the"netqral“ correspondence between the

(]

vior at 25 e he asymptotic behavior of (9 ,}() =-solutions at

soles or zeroes is the topic of the next chapter, and these re¢sults

order of the zero or the pole z and a certein asymptotic beha-

sre basic for the coacept of generalized powers, introduced and
Ureated itn the second chapter. As one application we obtain an

integral formula for the(first) derivatives of (4 1 ) -solutions
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which is the counterpert of the classical foraula

£°(2.) = = —L) .
QZO m é (z_zo)d Z
lz=2,| =r

1. Asyuptotic Expansions. ‘Ine followiny, functlion epace
Y !
plays an iaportant role for tne asyumptotic oenuviour or
= solutions.

1,1 Definition. Let GCC be a weasuratle set, O :zon esci-

trary (rot necessarily measurable) subsst of & , and 3 =

real number » 1 . By HLp(D,G) we denote the set of wull zuic-

tions f defined and measurable in G waica satisiy

_f(z)—f(zo)

1) —— € LPLG) (as a function of 2) for esc:
zo e D
and

" .
H)f(z)—szo)

2 « 42D
(II uanLp(D,G) a E:hL” (G) + Sup, W 2z - zo i Lp(G) T To" !

rd
{ =

Instead of aLp(D,c) we write HLP(D) 5

The space HLp(D,G) equipped with the norm (II) is & Banach
space, but we will not use this fact in the following.
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In [4], P. ©9, it has been sanown the

1.2 Theoreun. Let G be a dowain cc , D’ an arbitrary

set savisfyins L C D, D°CC G, and be p >2 . Then every

£ @ L (D,6) 4is continuous and bounded in D’ , and each boun-

ded set in HLP(D,G) is cowpact in C(D") ( C(D’) the usual

spece of functions continuous in D° with the suprecum norn)..

Perhups it is possible to ssy much more about HLP(D,G) 3
In any case, the kind of continuity of the functions from
.Lp(D,G) with p :‘) 2 1s anything between tne usual continuity
end JBlder continuivy (perhups equal to idBlder continuity under
cortain additional conditions on D, G, and p). Of course,

sneorea 1.2 makes po sense if U consists only of isolated pointis,

1.5 befinition. lLet G be a domain, 2z, € G, apd w(z)

ve a (%, w) -solution in G\fzo} . The point 2%, 1s called
- — F ————— - o .

a point of order n of w(z) , if either n is a nogative inte-

cer and w(z) has a pole ol order -n at 2, Oor n is s nonne-

getive intezer and w(z) has at z, @ zero of order n (a zero

of ordex O at 1z, mears that w(zo)#o).

Yroz now or we will assume additionally to 0.1 that @ iy
ere c¢efined not onrly a.e. but everywnere in T=c¢ v {w} Ubvio-
usly this is no loss of yenorality.

in f_.w:!, p. 72 (cf. also [3], D. 130) it has been shown the

1.4 Tloorem. Let L, 00 be a point of order n of the

(Y4 J1) -solution %(z) , und be %, ME ELLD({ZO}) v P > 2,
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Then w(z) has the asyuptotic development

I3

(I) wlz) =c [z-zo +b(z-z°)]n - bE['zTE; +-I):(Z-Z°)]|n + 0(‘,z-z°} L+

with certain constants ¢ # O , u>0 ( 0(.) <Zenutes tre uczual

Bachmann-Landau synbol), and

weX) ., b=w(b) ,

(II) b

i

= -pmlz) /O iz )2 - [0z )]2)
6= Diz) 70 | D€z )12 - | utzg)[?)

=
where ¢ (.) is the function W(x) = 2x /(1+ ","1-4:(2 ) . lhese

b, Ir satisfy the estimate |b] £x, |kl % zfor every 2 G

Under additional assumptions on 0,/1.1. wore can be caid on
% , ct. [4], p. 73.

Tlé want now to extend this theorem to the case R A
This requires an assumption on ) y )L vith respect to 2z_ = - ,

(o]
5
which is analogous to -+ , ,/u'("HLp({zok) for finite z_ .

1.5 Definition. (I) wWe will say that £ & HLp(f'f;) if and

only if £ 4is defined everywhere in [ , end f£(1/z) - £(»)

belongs to HL,({0}) .
(I1) Let D be an arbitrery subset of €, 5D, D #.:.

Wo will say that f € HL (D) if and only if f < HL (D o)
o HLp( {w} )' .

Then we have the following completion of theorem 1.4.



222 H, Renelt

1.6 Theorem, Let o> be a point of order n of the (D ,u)

-solution w(z) , and be ', & uLp({n}) » P2 . Then, with

respect to the point ~° , tne usymptotic expansion

w(z) = ¢ z+/-% "B = be g+ /-2 "B+ 012" ")
: '} ;

i0lus with certain coustauts ¢ # 0, . O, uand with b, [r

es in 1.4(11), takiug taere =z, =« .

Proof., Let w(z) be any ( ,!.) -solution in a domain G .

-y Luo afrine trausformation

1.7 =z+lz+d, yd arbitrary but fixed constants < C ,

W=,

toe w(z) 1s carried iuto a ( 4 ,IL1) -solution w1(_’) in the

iaege dowain G1 of G wunder the mapping 1.7. At this we have
e TYa (FEE - w f e Sl e D) oy

0T = e LR Ly

ooz =l [nCoa (@ir i€ o =1 (a2t f)) » o=z,
wOw We apply tue afiine wappiug

1.9 g = Wa + bWy b am arbitrary out fixed constant with

b\ 1 ’

to tme ( , , 4) -solution wq( ') . By tnis transformation we

carry W1( ) into a { 2 2) -8olution g( ) in the dogain
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G with

1.10 V,(3) ['511“ -1+ 3 )¢ -l}L|2)b’ +-0]-(1-l'012) yir=t

}la(.s) 5 [}lba + (14 I}A.l2 - 19]%)0 +/¢].(1_Uyl2) L5
¥ = (- lbl%-[—‘ém 1912 = 1p|9 1]2) = 2 Reb's] t
+ G- bl 2) [gm Ipl? - 19121+ 1bl2) - 2 Re bﬁj ,

V= V(7)) p=pe(3) .

As to 02 » M, we have the estimate

1.11 102(5 )I + ],uz(])[-\<1 - tﬁ-k,\{,ll}l'%’l-%?l—:}%'r}—

for each 3 €C .

which may be shown by weans of the geouwetrical interpretation
(i.e., arithwetically, by representing J B by new paraweiers),
cz. [4], p. 49.

According %0 1.10 it is

1.12 02(30) = M(T,) =0 at the point 7J, = z°+).x'z‘°+d :

if we take for Jr, b tae expressions from 1.4(1I), and this
holds true especially if 2y = IO = e . Because the absolute
values of that M0 , 0 are restricted by k , the estimate 1.11

Yyielas in case of such b’, b

1.13 Iad'-f)] 5 lﬁzk]),l-‘{q 9 _l{‘l_:_ki_i = .
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iow, l¢t oo bu a poin of order n of the (9,Mm) -solution
w(z) . #ith the [ ,b corresyonding to 2, = 00 accordiug to
1.4(11), we apply tne transforuwations 1.7, 1.y to w(z) . By a
suvseguent inversion, appiied to the corresponding Laa ,)téj -
-solution §(J), we ovtalu a (9%, x*) -solution h(t) = g(1/t)

io & certain set 0 ltl {r with
1.4 V) = V) = A = uog)

secouse of J, p € n.LPL{-o}} we nave D, U, € H.I..p({oa})
witah D (@) = M(w) =0 . ine ¥ ,u* taerefore belong
to’ an({OD . Of course, h(t) bhas a point of order n at t=0 .

raeorom 1.4 tnen gives
n(e) = ¢ -2 4+ o(ls|* ™)
io a neigubourbood of t=0 , which is equivalent to the assertion

ol theorem 1.0.

2. Generalized rowers. #o now ask for a cerilain converse of

theorem 1.4. Let be given a constant ¢ # O and the integer n .
Are thexe (V,M) -solutions with ‘an expansioa 1.4(I), and what
acditional counditious may be prescribed for such (¥ ,M) -solu-
tions if they do exist ? Of courss, the case n = 0 4is uaninteres-
ting and way be owitted because, vopether with w(z) , w(z)+const.
is again a (4 ,4) -solution.

Tae ‘following considerations are pased on the

2.1 Condition. Lev # 00 be san arbitrary out fixed point,

and &, M aure to satisfy IO(z)l + ‘/l- (2)] £ k = coast, {1
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Tor each 2z € C as well as 0,/.:. ede({zo ,00}) with p >< .
The following tneorem holds.

2.2 Theoreuw. Let n # O oe an integer and ¢ # 0 e&eu wroi-

trary couplex nwsver. Uuder conaitioun 2.1 tusre is exuctly ous

(0."‘_) -solution w(z) in C\[zol wita taue piopertics

(I) w(z) has at 2, Xhe asywptotic expeusiou

w(z) = c[z—zo +17L;_z°)]n - b'E:'[E--?.'o +.};'\z-z°)]l‘ +
+ OClz-2 ) % %) '

with b,l,« as in theorea 1.4 , and

(II) the point <% is a point of order =n of w(z) .

This unique w{(z) will be cailea generalized n-~tu power aud
p a , bmag O
will be denoted oy [f:kz zo) ](0 '}") or siuply uy [-w. 2./ J |

if no misunderst:andliug is possiole.

As the following proof will show, the existeuce oI u .ilz,
with the properties (I) aad (II) in 2.2 is assured uacaer <.1
without <, M E HLPK {w}) oui we cannot prove uniqueuvss.

At firast, let us notice a certain topological property of

[c(z-zo)n] .

2.3 Corollary. <lnere are exactly |n| quasiconforual map -

PinEs L X.dswvuse X of C outo itself witn X(z)=u ,
207 1 o] — 8 "0

X (o) =w0., and
[_ckz—:u)“](o'ﬂ) = \XJ-QZ))H v 3=Vyeasy Inf
and thesa X

3 ©ray be arramged in sucn an 0rdel vinat we uuve
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x;ju‘) = eajrij /n, :X,,leJ , T O Y |t

»roof of the corollary. #itaout loss of generality we way

uBsuLe  z, = O . By the repruseuntation tneoreuw we nave

[czn] = 10X (2)

witi a quasicoutorwal wmapping X of C onto itself with
X(U)=0, X(o)=z=e , aud f an analytic function in
G\{u} . Bocause of 2.2(I), (II), £.has at z = O a point oz

ordsr n wnd at 2z = o0 a point of order -n ., Hence,

(X ) = a-X™ with a certain constant a # O .

futting W-X = X, we obtain [czn_] = (k,](z))n . Of course,
this is also valid for X;j = 02X /n.x1 sy 3=15eee,In] .

It remains to suow tuat there are no furtner such X = X' .
ror coutinuity, ior euca z‘ e C\ {0} toere is a whole neighvo-
urnood U(z*) and a j with X*z) = Xj(z) for each

2 € U(z‘) « Because there is no continuous change from a )(;j to

a Xm with j #u in C\{O} » the assertion 2,3 follows,

Proof oif theorem 2.2, «ithout loss of generality let be

2, =0, and let us at first assunme V() = M) =0,

G,ﬂ, EﬂLp({o}) . for each ('Os}l-J -solution f in C\{O} .

a(z) = £(z) z " 4is a solution of

(o]
7
[,
(@]
.~

=0 -0 —
2.4 “H_ = OHE +}L°€) ‘[-_{z + -D%ﬁ + }(.(E) é H in
< 2 2

2

and conversly, if H 1is any solution of 2.4, then Hz® 18 a

(9, M) -solution iu C\{O} . Of course, the same is true if we
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replace O, M oy Om v g wioua

2.5 V,=9 wd pmy =g dor |zlfu

11}

Dg=Mhg=0 dFor [z[>u ,

u & positive integer,

2.6 Lewna. ror cacu nuwoer ¢ € C  nere exists exscuil, oac

golution h of tne systuw

-, b * |
= : 20 N jaE Iy 3 &)
2.0, ::xE = 'Om“z - ‘umkg) a, + Oﬂ\,‘)l- + },Lmki) S=2F Las
witn 0(0) = ¢ aod h Dounded in C . if C # U , L
ulz) £V for eacu 2z € C .
rroof. e try determine a g € LP = LPLC) sucy W Vay

that
n(z) = ¢ - &1 II ;:.U'-)[?};- %] dﬁ-u = C 4+ x’ob\z)
c

will bocowe a solution of Z.6.1. Tnis leds Lo Tue cyuubiou .or

2.7 L = A+ 53 + Rg
) . ~n = _ 2 -1
with 4 = n [—8c + ’9;—"‘--(-3) o8af zanv BB Fob |TpRsEL* éxf)
2 2 Z Z

o =l —
8g = \)m’l‘g +).{mb:) Te ,  dgls) = - = ff Alt? &b

toe two-dimeunsional ailovert transforuatiou.

ouCaust col 1uwaius vrue ir wd l6u P UcCredss e aav

o

o
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assume p sufficieutly near to 2 such that the morm C(p) of

I in Lp satisfies
2.6 xC(p) {1 (Cfe) ©.Ee, [ﬂ], chapter V ).

lacu S 1is a coatraction operator in l‘p « The operator R is
a

coupuct 1n Ly (cf, 0uEey [4]s section 0.4, and note that —B,

——z~—“' nave bounded support and belong to I.-p « Consequently, 2.7

uus ¢xactly one solution for each A € L. if the corresponding

P
nomegex?oua cquation g = Sg + Rg has only the trivial solution
€0 in Ly, cf. [5]) . 176. Tne latter follows as in [5],
P. 1/0f, ¢

Suppose g * O 1is a solution of g = Sg + Rg in L_ . This means

P
that h = Pog is a solution of 2.6.1. Therefore, according to the
Bers-Nirenberg representation theorem (cf. [4], P. 46), " h = Pos

moy be represented by
2.9 a(z) = 6242 B(X(2))

where s8(z) 1is boundcd in C, F is an anﬁlytic function in C,
end X is a quasiconformal mapping of C onto itself, Because
g=0 for lz| Dum, P g as well as F uust be bounded in C ,
hence F(X )E counst. Then F =0 follows from n(0) = 0 , and
this gives g =0 because of (Pos)i = hi = g8 « Since the homoge-
neous equation has only the trivial solution, the inhowogeneous

equation- 2.7 has a unique solution g for each A € L and

p L}
this g is =0 for lz|>m . Hence, h(z) = c+P g 1s indeed
bounded in C . Because this Ah 1is a solution of 2.6.1 and has

thereiore a representation 2.9, the corresponding Y is always =

= const. This wmeans that h is identically zero i and only if
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bh(z) vanishes for any 2z € C . The leuma is proved.

with this h(z) = hm(z) we ootain a gom ,}1 4’ -solution
fm(z) = hm(z)zn in C\ {0} . Because of tue ubBlder coutinuity
of Pog(z) » e©specially at 2=0 , this fm(z) has at 2=0 the
asymptotic expansion

2.10 fm(z) = cz™(1 + Oklzl* )) with a positive o }1-

o in

wiaere p has to satisfy only 2.1 and 2.8.
The function £ is analytic for m(lzl(to and has vaere

a expansion (note taat Pog has a zero at o)

2.11 £ (2) = cz® + cflf,)‘ 22 4oi. = e2® 02T
By the represeatation tneorem it holds £ (z) = ¥ (X (z)) with

a certain Beltrami nomeoworphism X - of C onto itself witn
'me)-= O and a function F, analytic in C\{O} . logetner
with 9, M also VU, » M, belong to ﬂka{O}) tor eaca u=

=1y 2rereter = 4pukand; Om(o) =/Lm(0) = 0 . Hence, Xm nas at z=0
an asymptotic expansion Xm(z) =dgz + o Izl I"'m:') with a positive
oL (cf. [4], theorem III.5.2), and dj # O . By siuple caauge
of Fm we wmay assume dm =1, i.e,,

2.12 X, (2) = 201 + 0(121%))  with w0 .

This X 1is conformal for Izl>m, hence

alm)

.15 A (2) = a®) 2y a})m) - -?_ ¢ ve.  with a'®l Z0
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Together with fm also i-‘m has a point of order n at 2 =0
and a point of order -n at e . Then 2,10-2.13 give FE(XJ =
cXP & OQIXI“”) in a neignoourhood of X =0, F (X) =
= al@yn o(Jx] 8-1y 45 a neighbourhood of ¢ , hence

o]

WX = cX® tor each w=1,2,... , and tais means
" n

2.14 £.(2) = c | X (2) .

We noed now a lewma on convergence.

2.15 Leawa, Let M be a set of quasiconformal mappings X_

of C onbo itself satisfying the following conditions: there
exists a k(z) € HLpg[o}) with pd2, k(0) =0,
0 ,\< k(z) \< k = const. <1 for each 2z €GC , such that nolds

2.15.1 lXI /le \(k(z) a.e. in C for each Xeu ,

and each X €u has at 2z = O an asywptotic expansion

2.15.2 X() =2+ 04z ") withan o’ DO

(possivly depending on X ) .

: i . k :
Toen i is compact in the set Q of %*:E - quasicouforwal map-

pings of C onto itself, tnere are two positive constants K

and & , 8such that in {jzl (1} the inequality

2.15.3 Iszzl -1

\(Klz[.< for each X €

X -
dolds, and each limit X = of any convergent sequence X 2 € i
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has an asywptotic expausion 2.15.2 at z = O .

rroof. By well-kKnown coupactuess criteria for qguasicoaioruwal
wappings, w 18 couwpact in 4 ii (aduitioually to N u) = U
and X (C) = C for eacn AXei ) vhe set (1) = {xm) i XE€ ..-.}
is bounded away from tho points U and « . Consequentiy, tue
set of mappinks W = X/X(1) with X €ud is coupact in & .
By theorems Il.5.2. 11 and 11.5.47 of [ 4.l tnere are two con-
stants m,, m, with ;..151\? 3(.0)!511\‘-‘.. But we have also cf.[4] 11.y.22
\}’2(0) = 1/ X(1) , and this weans taat k(1) cannot aave the
limit points O or 2 ., Furthemore, vy the compactness just pro-
ved, the AX €L are uniformly bounded, say for |z| \<1 . ‘lne
asgertion 2.15.5 is then a consequence of the result in [4],
II.5.22 . Finally, 2.15.3 iunplies the last statewent of tne lewuu. *

Tne lemma is proved.

0f course, the X m Wweationed in 2.12-2.14 satisiy tue
conditions of the last lemwa (especially, |Lqu_ /X ) \ {
\< ]\'}kz)l-& [/uz), a.e. in C ). v g
Tnerefore, if w——"e0 , there is a subsequence of thne Xm waich
i3 convergent to & wapping X of @ onto itself witn an expan-
sion as in 2.12, and which yields simultaneously a (- ,/u) -solu-
tion £(z) = c¢(X (2))® in C\{O} (vecause this Z(z) is the
linit of a suosequence of ('Dm WM ) -solutions f = c}(mn )
ct. [4], II.4.1). Obviously this £ wuas a point of order n at
2ero and & point of order -n at @ , Zacause of the asymptotic
expansion of X at 2 =0, this f hus at 2z = 0 the uxpan~
sion

£(z) = cz® + oz %) .
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tnereforoc tne existence of a w(z) with the properties 2.2(I1),
(I1) is proved under the udditional assumptions 2z, = 0 , V(0) =
=M (V) = 0 . By means of tne transforuations 1.7, 1.9, tais
iaplies tie validity of 2.2(I), (II) for arbitrary - » M unager
toe condivions 2.1, but without 0,)1 € HLp({w}) 3

To prove uniqueness let O,}g now satisfy all of 2.1, and
let us assuwe tuat there are two w(z) , w’(z) mentioned in 2.2(1),
(1I). 8, theorew 1.4 it follows that the (4 ,M ) -solution
h(z) = w(z) - w’(z) nas a point of at least (n+1)th order at
2z = U . On the otaer hand, H(z) has at @ a point of a certain

order, say of order -J , aud by thecrem 1.6 we have
a’..]é [H(z) 27| £ K, in a neighdourhood of @

where H"l ’ K2 are certain positive constants. But w(z) as well
as w*(z) nuve a point of order -n at @ |, and this wmeans in

B i1g bounded in a neighbourhood

conjunction with 1.6 that l(z) 2z~
of o0 ., Ihis implies n> J « By the_ represeantation theorem and
because every rational fuaction # O takes oaca value € C

squally often, we arrive ut a contradiction if H + O . Theorem

2.2 i8 proved.

A8 an oovious consequence of theorem 2.2 it follows that eve-
ry (0.}{) -golution nas a unique representation, analogously to

the Luurent expansion of amalytic functions, at each of its poles,

5o Souwe Furtoer Rcsults on Generalized Powers, sSurprisingly,

generalized powers nave a certain importent property in coawon

with tihe usuul powers, This is stated in tae foliowing
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5.1 Yocorew. et O, M EHL(T) , pD>2, saw |9l+iu|(

\( K = const. <1 Ior eaca 2€éC , n , j o0¢ arvitrsr, intec.cis.

Tnen we nave
Re = ﬁ [a(z-z )“] a[c(z-z )3] =
BE $1 o’ J(IJ, 1) o’ Jv, ;)
lz—zol =T

= L1-|D|‘:)36n'_d Re ac

for each r €(0,90) witn b as in 1.4(Il), c‘J_u & s _srouecker
os(chs (Hedodo) siay —MGHOIIVCROT

symbol ( =1 if n=m , and =0 otherwise).

Thisg theorem is obviously a generalization of the clussical

- B apos -l i

la-zg) =r ‘z“" gy )

relation

The proof of 5.1 is anything but a brief watter aud uay be owltted
here. As a consequence of 3,1 one obtains a genocralizeda Cauczy

integral formula for the derivatives of (& ,/4) -soluvions,

3.2 Theorem. Let ) , M be as in 3.1, aud £ 0¢ & (O.}U-

-golution in the domain G € C . with tae constants JAr, o corses

ponding to z, , J, - accoraing to 1.4(I11), we have

Re ET;II )/3 £(2) dl‘:;tz—so)""](o ) "

lz-z ) =T

e -
- %%i%‘lﬂ- Ro {IH_L;;OJKO-CDAJ]}

for eachh zoeG end any r MO such 8such bhat f[ -z[ } is
L
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couteiucd in G .

hote taat, io view ol tae geuweralized Cauchy integral tneorem
(ci. [4], pe. ©b), vue special shape of tue cOutour of integration
iu 21, Je< is unessentiual. Tone proois oi 3.1, 3.2 are to be pub-

lisaed elsewnere.
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STRESZCZENIE

Wprowadzono pojecie n-tej uogélnione] potegi (v. P) - rozwig-
zania (tzn. rozwiqzania ukiadu b=V, + f‘-('z') I wykazano istnie-
nle | jedynoéé¢ takich poteg dla dowolnego, catkowitego n. Z topo=
loglcznego punktu widzenla potqgi te sq w istocle zwyktymi asuper-
pozycjami quasikonforemnych homeomorfizméw ptaszczyzny. Super-
pozycje te majq pewne wiasnoéci zwyktych potgg, jesll chodzl o
pewne coltk! po konturze. Pocliqga to za sobs, m.In, uogélniony
wzér caltkowy Canchy ‘ego dla pochodnych (V .,u) - rozwigzan,

PE3IME

BeeseHo momaTue n -TOR  oGoCueHHOR cTememm (y, u ) -peme-
Ans (T.e. peuweHms cucreuu fy = vf2+ }*’Ei ) u moxasamo cyue-
CTBOBAHME M @AUHCTBO TAKMX CTENeHHNX QyHKuUu# aorsa aonGoro
ueaoro 1 ., C ronoxaorumueckoA Touxku 3peHus ITH CTENEeHM BTO OOHK-
HOBEHHNE CYNeprnoanUMu KBAIUKOHPOPMHNX OTOOpaxeHult naockocti.
OTu CynepnosuuuM MMEDT HECKOAbKO CBOACTB OONYHHX creneHxefi,
HanpuUMEp OO OTHOWEHMYM K HEXOTOPHM KOHTYPHHM MHTErpasam. I3TO
paever 23a co6ofl, Hp. 0606meHHYD MHTerpaabayn dopuyay Houwm nxas
npousaonmix(v,f.)-pemennn.






