## ANNALES

# UNIVERSITATIS MARIAE CURIE-SKZODOWSKA LUBLIN-POLONIA 

VOL. XL, 8
sectio a

Sektion Mathematile/Physilk
d. Padagorischen Hochschule ${ }^{\text {N N }}$. K. Krupakaja"

## S. KIRSCH

## Remarks on Extremal Problems in a Class of Quasiconformal Mappings in the Mean

Uwagi o problemach ekstremalnych dla odwrorowad

## Замечания об экстремальньх проблемах для отобрахений квазкхонформоных в средием


#### Abstract

1. Incroduction. Extremal problems for quasicouforiual Lappines in the mean are closely related to the extremal prooleins for quiasiconformal mappings with a prescribod illatation oound ioulch is a oounded function of a complex variable, whereas now tue dilatation is only bounded in the nean (ó). It was P.A. Biluta [1], [2] who first investigated such probleus. He derivga a necessary condition for extremal functions if they do exist. R. sunnau [8] proved, taat under some further conditions tals necessary condition is also sufficient. Tais condition ceans, tiat tae extremal function is connected with a quasilinear elliptic systew of differential equations and inequaities maicis appears in eas dynamics, see [7], [8]. In his peper [9]R. Luncau used tilis Lecessary and sufilcient condition to coustruct analyticaliy tice extremal function and to deteraine the extreme value oí tne considerea functional in a special case.


But it is also possible to eco just toe other way. Our main
 value of tia considered functional and on tine geometrical characterization of those ranges of integration $G$ in (6) for which ت̈:cextrewal problem admits solution and construction of tie cxtreiral function and the extreme value of the functional is equal to the upper, or lower pound.

In General tie proof for the existence of solution of these 2NODLEصS 13 rather complicated. In e class of cuasicontormal mapSires saitiafyice (o) is usually not compact. 'the existence of Gyibewal functions depends or the wean function in (6) and on the Uolinuary of $G^{\prime}$. To illustrate tings we consider the case where $G$ is a soilure ard $\Phi$ is a linear function. In order to sake clear the waifs ideas we choose as an example a functional of Gryuzsch - Teichmuller type whose associated quadratic. differenvial is a coujlu le square.
2. Notations and the problem. Let $G 9 \infty$ be a n-tuply soficicted Jordan domain in the complex plane with the boundary $\Gamma=\Gamma_{1}+\ldots+\Gamma_{n}, G^{\prime}:=\mathbb{G}, I:=I\left(G^{\prime}\right)$ is the area of $G$ and 6 tine vibo-dimensional Lebesgue measure. Further, let $j:=p(z) \geqslant 1$ be a real valued bounded and measurable function mich is define on and identical 1 in $G$.
.10 demote by $\tilde{S}_{6}$ the uniquely determined quasicontorinal HEROin of $I$ onto * with aydrodjnamical norinalization $z+a_{1, \ddot{v}} z^{-1}+\ldots$ Lear $z=0$, where $\quad H=U+1 V:=1 e^{-1 \theta_{\theta}}$ sacissies

$$
\begin{equation*}
W_{z}=-\frac{p-1}{p+1} W_{2} \quad 6-\text { almost everywhere. } \tag{1}
\end{equation*}
$$

moreover, Te deñote by $G_{\theta}$ tie univalent conformal mapping of
$G$ onto a $\theta$ - parallel sift domain, $0 \leqslant \theta \leqslant \pi$, alta sydroayoamical normalization $z+A_{1, \theta} 2^{-1}+\ldots$ near $z=\infty$. vo put
(2)

$$
u_{\theta}+i v_{\theta}:=1 \theta^{-i \theta} \quad\left(v_{\theta}(z)-z\right), \quad z \in \mathbb{},
$$

(3) $\hat{u}_{\theta}:= \begin{cases}R e\left(1 \theta^{-1 \theta}\left(G_{\theta}-z\right)\right), & z \in G \\ R_{\theta}-\operatorname{Re}\left(1 e^{-i \theta} z\right), & z \operatorname{uitain} \Gamma_{v}, \nu=1, \ldots, \ldots, \\ \ldots, n,\end{cases}$ where $R_{\theta}:=\operatorname{Re}\left(1 e^{-1 \theta} G_{\theta}\left(\Gamma_{\nabla} 2\right)=\right.$ const. $, ~ จ=1,2, \ldots, n 2$,
(4) $\quad \hat{v}_{\theta}:= \begin{cases}\operatorname{Im}\left(i \theta^{-i \theta}\left(G_{\theta+\pi / 2}-2\right)\right) & \quad z \in G \\ \operatorname{I\theta }-\operatorname{Im}\left(i e^{-1 \theta} 2\right), \quad z \text { within } \Gamma_{\hat{*}}, \nu=1,2, \ldots, n,\end{cases}$
where $I_{\lambda}:=\operatorname{Im}\left(1 \theta^{-1 \theta} G_{\theta+\pi / 2}\left(\Gamma_{\Delta}\right)\right)=$ canst. $, \lambda=1,2, \ldots, n$ and

$$
\begin{equation*}
\varphi+\boldsymbol{\Psi}:=1 \theta^{-1 \theta} \mathrm{z} \tag{5}
\end{equation*}
$$

Let $\mathcal{L}_{\hat{2}}^{\hat{1}}$ be the class of all real valued piecewise bimooun functions $u=u(z)$ defined on $t$ wits inDite Diricaiot integral and $\lim _{z \rightarrow \infty} u(z)=0$. Denote by $\mathrm{H} g$ tie class of all univalent conformal mappings of $G$ with quasiconformal continuation into $G^{0}$ and hydrodynamical normalization $z+a_{1} z^{-1}+\ldots$ ar $z=\infty$. The dilatation $p(2)$ satisfies

$$
\begin{equation*}
\int_{G} \Phi(p(z)) d \sigma_{z} \leqslant c \tag{6}
\end{equation*}
$$

where the constant $c>\boldsymbol{\Phi}(1) \cdot I\left(G^{\prime}\right)$ and $\Phi:[1, \infty) \rightarrow R^{1}$ is a prescribed continuous, monotone and convex function for which $\Phi$ " exists. Denote by $\$^{-1}$ the inverse function of $\Phi$. de study the following extremal problem:
(7) $\mathrm{Fo}\left(\theta^{-2 i \theta} a_{y}\right) \rightarrow \sup =s_{\theta}$,

Hery the suprewill is taiken over A . Bocause of the extremal property of $\mathrm{B}_{\mathrm{B}}$, see $[5, \mathrm{p} .98]$, it is clear, that for maximiza:1on it is sufilcient to consider only such $G \in A \Phi$ for waich $1 \mathrm{c}^{-1 \theta_{g}}$ satisfies tine system (1).
3. A variational characterization for $u_{Q}$ and $v_{0}$.
-o دegjn initn lot $p$ and $G$ be sufficiently smootin, so that Gous's smeorcu is applicaile. Because of (1) $u_{\theta}$ sutisfies the = untiou $\operatorname{aiv}\left(p \nabla\left(u_{\theta}+\varphi\right)\right)=0$ in s.
fatrefore we beve
(0) $\quad \int_{d}\left(p \Delta u_{\theta}+\nabla p \nabla u_{\theta}+\nabla p \nabla \varphi\right) u d \sigma=0, \quad u \in \mathcal{L}_{2}^{1}$. 3y a ply1n Caus'is Theorem (8) yields
(j) $\quad\left(u, u_{\theta}\right\rangle_{2}-I(u)=0, u \in \mathcal{L}_{2}^{1}$
ïi=c $(u, v)_{p}:=\int_{\mathbb{c}} p \nabla_{u} \nabla_{v} d \sigma, 2(u):=\int_{\mathbb{C}} \nabla p \nabla \varphi$ ud $\sigma$, $u, v \in \mathcal{L}_{2}^{1}$.

Fieace we obtain
(10) $\quad 0 \leqslant\left\|_{u}-u_{\theta}\right\|_{p}^{2}=F(u)-F\left(u_{\theta}\right), u \in \mathcal{L}_{2}^{1}$,
instre $\bar{F}(u):=\|u\|^{2}-21(u)$.
low we co:apute $r\left(u_{\theta}\right)$. Because of (9) we a ave for $u=u_{\theta}$
(11) $\cdot F\left(u_{\theta}\right)=-1\left(u_{\theta}\right)=-\int_{c} \nabla p \nabla \varphi \cdot u_{\theta} d \sigma=-\int_{\phi} \nabla p \nabla \varphi(U-\varphi) d \sigma=$

$$
=\int_{c} \nabla(p-1) \nabla \varphi \cdot \varphi \mathrm{d} \sigma-\int_{c} \nabla_{\mathrm{c}} \nabla \varphi \cup \mathrm{~d} \sigma=
$$

$$
=-\int_{G}(p-1) d \sigma+\int_{|z|=R}\left(\varphi \frac{\partial U}{\partial n}-u \frac{\partial \varphi}{\partial n}\right) d s=
$$

$$
\begin{aligned}
& =-\int_{G}(p-1) d \sigma-I_{B} \int_{|\dot{G}|=R}\left(1 \theta^{\left.-i \theta_{\theta_{\theta}}\right) d(1 \theta-i \theta} z\right)= \\
& =-\int_{G}(p-1) d \sigma+2 \pi i \theta\left(1-21 \theta a_{1, \theta}\right)
\end{aligned}
$$

wnere ( $|2| \leqslant R$ ) cositains $\Gamma$ and $r$ is tioo outwara jointine unit noreal vector on $|z|=R$.
puts $_{u}=\hat{u}_{\theta}$ we ovtiain

$$
\nabla q^{2}=\int_{G}(p-1)|\nabla u|^{2} a \sigma+\int_{G}|\nabla u|^{2} d \sigma=\int_{G}(p-1) d \sigma+I\left(G^{\circ}\right)+\int_{G}|\nabla u|^{6} \sigma .
$$

Further calculation shows

$$
\begin{aligned}
& \int_{G}|\nabla u|^{2} d G=\int_{\Gamma} \frac{\partial u}{\partial n} d s=\int_{\Gamma} \varphi \frac{\partial \eta}{\partial n} d s-\int_{\Gamma}\left(\varphi \frac{\partial R \theta\left(1 e^{-i \theta_{G}}\right)}{\partial x}-\right. \\
& \left.-\operatorname{Re}\left(i e^{-i \theta_{\theta}}\right) \frac{\partial \varphi}{\partial m}\right) d s=-I\left(G^{\prime}\right)+I m \int_{\|=G}^{I}\left(1 \theta^{-i \theta_{G}}\right) d\left(i \theta^{-i \theta} z\right)= \\
& =-I\left(G^{\prime}\right)+X \operatorname{Re}\left(0^{-21 \theta} \dot{H}_{1, \theta}\right)
\end{aligned}
$$

bence $\| \hat{u}_{\theta} H^{2}=\int_{G}(p-1) d G+2 \pi \operatorname{Ke}\left(\theta^{-21 \theta} A_{1, \theta}\right)$
and $I\left(\hat{u}_{\theta}\right)=\int_{\rho} \nabla \nabla \varphi \hat{u}_{\theta} d \sigma=-\int_{G} \nabla(p-1) \nabla \varphi \cdot \varphi d \sigma=\int_{G}(p-1) d \sigma$.
Putting $\quad \lambda:=1\left(\dot{u}_{\theta}\right) / M \hat{u}_{\theta} H^{2}=$

$$
=\int_{G}(p-1) d \sigma /\left(\int_{G}(p-1) d \sigma+c \pi \operatorname{Re}\left(e^{-\hat{2} \hat{\theta}_{\dot{A}_{1}}, \partial}\right)\right)
$$

we bave
(12)

$$
P\left(\lambda \hat{u}_{\theta}\right)=-\lambda \int_{G^{\prime}}(p-1) d^{6}
$$

Tnus (10), (11) and (12) yield
(13) $0 \leqslant d \lambda \hat{u}_{\theta}-u \eta_{p}^{2}=2 \pi\left[\lambda \hat{\theta}\left(0^{\left.\left.-2 i \theta_{A_{1, \theta}}\right)-2 \theta\left(e^{-2 i \theta_{1}} a_{1, \theta}\right\rangle\right]}\right.\right.$
raking into account tiat $v_{A}$ satisfics tae equation
$\operatorname{Liv}\left(\frac{1}{p} \nabla\left(v_{\theta}+\psi\right)\right)=0$, we outain aualogiously
(14)

$$
\begin{aligned}
& u \leqslant \|-\hat{\lambda}_{\hat{v}}-v_{\theta} H_{1 / p}^{2}= \\
&=-2 \pi\left[\hat{\lambda}_{1 ; \theta\left(e^{-21(\theta+\pi / 2)}\right.}^{A_{1, \theta}} \boldsymbol{\pi / 2}\right)-\operatorname{Re}\left(\theta^{\left.\left.-21 \theta_{a_{1, \theta}}\right)\right]}\right.
\end{aligned}
$$

$$
\left.\lambda:=\int_{G}\left(1-\frac{1}{p}\right) d \sigma \int\left(2 \pi \operatorname{Ro}\left(e^{-21(\theta+\pi / 2)} A_{1, \theta+\pi / 2}\right)-\int_{G}\left(1-\frac{1}{p}\right) d \sigma\right)\right)
$$

.. Lso undur nore general assungtions on $p$ and $\Gamma$ we bave tu. 1 ollowins Variational characturization of $u_{\theta}$ and $v_{\theta}$ in
jumぁ 1. If $p$ and $G$ satisfy the assumptions stated in sect. 2, tinen we bave for all $\theta, 0 \leqslant \theta \leqslant \pi$, the inequalities
(15) $\hat{\lambda}_{\mathcal{L}} \in\left(e^{-21(\theta+\pi / 2)} f_{1, \theta+\pi / 2} \leqslant \operatorname{Ke}\left(e^{-21 \theta} a_{1, \theta}\right) \leqslant\right.$

$$
\leqslant \lambda R_{0}\left(0^{-21 \theta} A_{1, \theta}\right)
$$

anore $\lambda, \hat{\lambda}$ wre tire saus constants as in (12), (13) and (14). Lize equality on lue rigat and left nolds iff
(15) $\quad \lambda \hat{u}_{\theta}=u_{\theta} \quad$ on
and
(17) $-\hat{\lambda} \hat{v}_{\theta}=v_{\theta}$ on $c$ respectively.

Proof. Secause of (13) and (14) the inequalities (15) are valid for sufficiently swooth $p_{n}$ and $G_{n}$, and also for $p$ wil is : 'rio latter case is ootained by applying weil-known Fatoreus [11, I.3] about the convergence for contormal mappines of seovences of doinains $G_{n}$ and quasiconformal mappings $G_{8, n}$ for Waich $10^{-i \theta} \varepsilon_{\theta, n}$ sutisfies (1) for $p:=p_{n}$, wnereas
(15) $\quad G_{n} \rightarrow G$ in the sense of karnel convergence and $p_{n} \rightarrow p$ 6 - almost everywhere with $\operatorname{supp}\left(p_{n}^{-1}\right) \subset G_{n}^{\circ}$. .
wo now prove (10). Lot 0 de ar aroitrary cumiduct set in Taore exists a natural mumbor $n_{0}(0)$ suca taat o CCG $G_{D}$ lor ail $n>n_{0}(e)$. Considering (13) we have tino ineyuality
(19)

$$
\begin{aligned}
& \int_{\theta}\left|\nabla\left(\lambda_{n} \hat{u}_{\theta, n}-u_{\theta, n}\right)\right|^{2} \sigma \leqslant \\
\leqslant & 2 \pi\left[\lambda_{n} R \theta\left(e^{-21 \theta} A_{1, \theta}\left(G_{n}\right)\right)-R 0\left(\theta^{-21 \theta} a_{1, \theta}\left(G_{n}\right)\right)\right]
\end{aligned}
$$

for $a>n_{0}(e)$. Because of (18) and by aplying tuc tavorem on the convergence for sequences of quasiconformal wapuints [12] , $[11, I .3]$ and the theorem on cernel couvergerce for costrorinal hidipiags we ootain from (19)
(20) $\quad \int_{\theta}\left|\nabla\left(\lambda \hat{u}_{\theta}-u_{\theta}\right)\right|^{2} d \sigma$

$$
\leqslant 2 \boldsymbol{J}\left[\operatorname{Re}\left(e^{-21 \theta} A_{1, \theta}(G)\right)-\operatorname{Re}\left(e^{-21 \theta} a_{1, \theta}(G)\right)\right]
$$

for all coupact eCCI厂 . Inerefore, if tue Equality ú tae right-iand side in (15) holds, tinere uust be vecessarily $\lambda \hat{u}_{\theta}-u_{\theta} \equiv 0$ on every compact eC nydrodynanical normalization of $g_{\theta}$ and $G_{\theta}$ near $z=\infty$ unc tia continuity of $G_{\theta}$ in $G$. II on the other aand (10) is valici wit conclude that $E_{\theta}=(1-\boldsymbol{\lambda}) z+\lambda G_{\theta}$ in $G$. Theretore ve save $\operatorname{Re}\left(e^{-21 \theta} a_{1, \theta}\right)=\boldsymbol{\lambda} \operatorname{Re}\left(e^{-21 \theta} A_{1, \theta}\right)$.

Analogously one can prove the assertion in cowisction with (17).
4. Siarp ostimates for the extreme value $S_{\theta}$. Is tae iciiowing ife use tio inequality of Jeagen $[3, p .150]$ in tho formi

$$
\begin{equation*}
\int_{G} p d \sigma \leqslant I \Phi^{-1}\left(\frac{1}{1} \int_{G} \Phi(p(z)) d \sigma\right) \tag{21}
\end{equation*}
$$

Here tae equality $u$ olds iff $p \equiv$ const. in $G^{\prime}$, or $\Phi^{\prime \prime}>0$.
accoraldily we nave
(aL) $\quad \int_{G}, p a \sigma \leqslant I \Phi^{-1}(C / I)$
lor all $p$ saiisiyiug (ó) ana by applying the inequality of sccuatu
$I^{2}=\left(\int_{G} p \cdot p^{-1} d \sigma\right)^{2} \leqslant \int_{G} p d \sigma \cdot \int_{G} p^{-1} d \sigma \leqslant \int_{G} P^{-1} d \sigma \cdot I \cdot I^{-1}(C / I)$.
-uis :ie outain
(2D) $\quad \int_{G}\left(1-\frac{1}{p}\right) d \sigma \leqslant I \cdot\left(1-\frac{1}{\Phi^{-1}(C / I)}\right)$
for all $p$ satisfying (ó). Equality in (22) and (23) holds iff
P $\Phi^{-1}(C / I)=$ coast. in $G^{\circ}$ and $\Phi^{\prime \prime}>0$. From this in conLection "its Lewma 1 , (15), we bave except for the assurtion on u..e uqualicy tine following suarpend form of (31) in [8].


(차) $\hat{\dot{a}} \hat{\lambda}:=\frac{\dot{\dot{a}} I\left(1-1 / \Phi^{-1}(C / I)\right)}{\tilde{H A}-I\left(1-1 / \Phi^{-1}(C / I)\right)} \leqslant B_{y} \leqslant \frac{2 I\left(\Phi^{-1}(C / I)-1\right)}{C \alpha_{a}+I\left(\Phi^{-1}(C / I)-1\right)}=: a \lambda$, NEUTe $a:=\operatorname{Ra}\left(e^{-2 i \theta} A_{1, \theta}\right) \quad \hat{a}:=\operatorname{Re}\left(e^{-21(\theta+\pi / 2)} A_{1, \theta+\pi / 2}\right)$. If in addition $\Phi^{\prime \prime}>0$ and the extremal problem is solvable, wueb tiae ecualities on tiae rleht anu left in (24) aiways bola
ismulumousiy. This is tae case iff
(25)

$$
\alpha G_{\theta}(z)+\beta G_{\theta+\pi / 2} \equiv z \text { in } \bar{G} \text {, }
$$

wiure $\alpha=\lambda / \lambda+\hat{\lambda}), \quad \beta=\hat{\lambda}(\boldsymbol{\lambda}+\hat{\lambda})$. Lne extrewal function Eg Bith the regressatation
(zu) $\quad t_{\theta}= \begin{cases}(1-\lambda) z+\lambda G_{\theta}(z), & z \in G \\ \left(1-\frac{\lambda-\hat{\lambda}}{2}\right) z+\frac{\lambda+\hat{\lambda}}{2} 0_{0}^{2 i \theta} \bar{z}-I_{\lambda} \hat{\lambda}_{\theta} \dot{ }-1 R_{\Delta} \lambda e^{i \theta},\end{cases}$
where $R_{\lambda}:=\operatorname{Be}\left(1 e^{-i \theta} G_{\theta}\left(\Gamma_{\partial}\right)\right), I_{\lambda}:=i m\left(1 e^{-i \theta} G_{\theta+\pi} \pi\left(\Gamma_{\partial}\right)\right)$ $จ=1,2, \ldots, n$, is uniquely $a \in t e r n i n o d$.

Proof. If the equality on tine rigut (loyt) is (24) Lolds, then by Lerma we have recessarily (10) ((17)) and vecalisé of (22) ((23)) pझ $\Phi^{-1}(C / I)=$ const. in $G^{\circ} \cdot \operatorname{FroL}(10)((17))$ in connctiou with (1) wG conclude, that $\mathbb{B}_{\forall} \in \mathbb{A}_{\Phi}$ is wh alliue waping witin $\Gamma_{\partial}$ of the form

$$
\frac{1}{2}(1-\lambda)(1+p)\left(z+q \theta^{21 \dot{\theta}} \bar{z}\right)+c_{2}
$$

W1th $q:=(p-1) /(p+1), C_{q}$ constaut $, ~ จ=1,2, \ldots, n$. Werejorv (25) foilows froul
[6, Ineorem 1, p.ài?]. Because of [t, Theorem 2 and 3] (25) is valia iff the equality on tre ricut arici loft in (24) bolds simultaceously. From (10́) and (17; ..y votaía (26). Conversly, one can prove that $b_{G} \in A$ is ropresemted o (26) as in [6] by considering (25).

In tine case $\overline{\text { is linear, tise class of ciuains is for }}$ whicn the equality in (24) solds is widor tian in taie siricu convex case of $\Phi$. A completo eoouetrical characterization of thone domalns is giver in

Theorem 2. Let $G$ be a dowain ooundec by eadiytic ciosed Jordan curves, $\Phi(p) \equiv p$ 。
I. Ine extremal prooleir (7) is solvaule and tire extreme vallie

$$
s_{\theta}=\frac{a(C-I)}{2 x_{\theta}+C-I}=: \mathbf{a} \cdot \boldsymbol{\lambda} \quad \text { (tue upper bound in (24j), wisere }
$$

$$
a:=\operatorname{He}\left(e^{-21 \theta} A_{1, \theta}\right) \text { ifI tae foilowimg taree coucitions are }
$$ Iulfilled:

(1) tnere is wo tangent on $\Gamma$ subtenuluE the anele of $\pi / 2$ wits tiae positive real exis exceijt for taose joints or. $\Gamma$
inch correspond to the end points of boundary seciutats of the $\dot{\theta}$ - parallel slit domain $G_{\theta}(G)$;
(ii) for every pair of points $z^{\prime}, z^{\prime \prime} \in \Gamma_{\gamma}$ satisfying $\tilde{r} u\left(e^{-i \theta}\left(z^{\circ}-z^{\circ}\right)\right)=0$ and every $v=1,2, \ldots, n$ $G_{\theta}\left(z^{\prime}\right)=G_{\theta}\left(z^{\prime 0}\right) ;$
(iii) In all exceptional points under (i) $\Gamma$ has a non-vanis hing curvature.

Hae extreual flinction is uniquely determined and has the
rujircisentation
(2)

$$
E_{\theta}= \begin{cases}(1-\lambda) z+\lambda G_{\theta}(z), & z \in G \\ (1-\lambda) z+\lambda G_{\theta}\left(z^{\circ}\right), & z \in G^{\circ}\end{cases}
$$

LeI' $z^{\prime}$ is one of the two points of intersection of the line through z $G^{\circ}$ subtending tine angle $\theta+\pi / 2$ with the positive Toul axis anu tao closed curve $\Gamma_{0}$ containing $z$ inside. II.'i'ine extraaul problem (7) is solvable and tue extreme value
$s_{\theta}=\frac{\hat{a} I(O-I)}{\pi(\hat{\pi}-I(C-i)}=: \quad \hat{\lambda} \hat{a} \quad$ (the. lower bound in (24)),
where $\hat{\dot{u}}:=\tilde{R} \in\left(e^{-2 i(\theta+\pi / 2)} A_{1, \theta+5 / 2}\right)$, ff $G$ fulf118 (25). the uniquely determined extrewal function is given by (26). Ire constants $\lambda, \lambda$ are given under I。 and II。

Remark 1. Domains G satisfying (i), (ii) and (iii) are for instance those with the property (25) or analytic bounded domains G fiulfilliae (i) and (iii), which are symmetric with respect to WU Ubitrary fixed line subtending toe angle $\theta$ pita the positive raul axis and intersecting every closed curve $\Gamma_{2}, \boldsymbol{T}=1,2, \ldots, n$.

Remark 2. How by considering domains bounded by piecewise malytic closed Jordan curves with the property of syminetry as no led in Kemaris 1 , Theorem 2, I is also valid in tue case of
analytic corners (exterior anile $\gamma, \pi<\gamma<2 \pi$ ) corresponding to the end points of tie straight lines of tine $\theta$ - parallel slit doinain $G_{\theta}(G)$.

Proof of Theorem 2. I. Let $G_{q} \in A_{p}$ be an oxtreaul function for which $s_{\theta}$ is equal to the upper bound in ( $<4$ ). Because of $p \equiv 1$ in $G$ and Lew na 1, (17), we have for $\mathrm{g}_{\mathrm{y}}$ tine following representation

$$
\begin{equation*}
g_{\theta}=(1-\lambda) z+\lambda G_{\theta}(z) \text { in } G \tag{28}
\end{equation*}
$$

and
$U:=\operatorname{Re}\left(i e^{-1 \theta} \varepsilon_{\theta}\right)=(1-\lambda) \operatorname{Re}\left(i e^{-1 \theta} z\right)+\lambda R_{\Delta}, R_{\rightarrow}=\operatorname{const} .$, for $z$ witinia $\Gamma_{\nu}, \lambda=1,2, \ldots, n$. Because $U+i V:=10^{-i \theta} \mathcal{E}_{\theta}$ satisfies the system (1) for which tine corresponding ailatabiou $p$ realizes the equality in ( 6 ) the level ines ( $U=$ canst.) which are straight lines are necessarily orthogonal to ( $V=\operatorname{const}$ ) in $G^{\circ}$. Therefore by considering ( 28 ) and tue continuity of $\hat{\mathrm{B}} \mathrm{g}$ we concluâe
$V:=\operatorname{Im}\left(1 \theta^{-i \theta_{\theta}}\right)=(1-\lambda) \operatorname{Im}\left(1 e^{-i \theta_{2}}\right)+\lambda \operatorname{Im}\left(1 \theta^{-i \theta_{G}}\left(z^{\circ}\right)\right)$ for $z \in G^{\circ}$.
Here $z^{\prime}$ is one of tie fiNo points of intersection of tie line through $z G^{\circ}$ subtending tho 2 nile $\theta+\pi / 2$ "it the positive rose axis and the closeci curve $\Gamma_{\lambda}$ containing $z$ insicie. particularIf to every $z$ wititin $\Gamma_{\downarrow}$ there may be at most two such points of intersection $z^{\circ}$ and $z^{\prime \prime}$ satisfying (ii) irma Theorem 2. Those points $z \in \Gamma$ for which $z^{\circ}=z^{\prime \prime}$ obviously correspond to the end points of the straight lines of the $\theta$ - parallel slit domain $G_{\theta}(G)$. This yields tao representation (27). Evidently G. maps rectangles with sides parallel to the axis of the co--ordinate system after a rotation $\boldsymbol{\zeta}:=\boldsymbol{\xi}+\boldsymbol{i} \boldsymbol{\eta}=e^{-i \theta} 2$ into

2cctanijes wita sidos parallel to toe axes in tine imase plane． By considerine infiuiteaizal rectangles we ovtain for tae ratio 02 tie sido－leduras
（29）$p(z)=1+\frac{\boldsymbol{\lambda}}{1-\lambda} \frac{d}{d} \frac{\operatorname{R\theta }\left(e^{-1 \theta} G_{\theta}\left(z^{\circ}\right)\right)}{\xi}=1+\frac{\lambda}{1-\lambda} \frac{\left|{ }_{\theta}^{0}\left(z^{\circ}\right)\right|}{\cos (\varepsilon-\theta)}$ ， $\dot{z} \in G^{\prime}$ ，
＂uereas the lareer siac is parallul to the real axis of tho rota－ ted co－ordinato system．we uenote by $\alpha$ tho angle betiveen the targeat ou $\Gamma$ at $2^{\circ}$ and the gositivo real axis．Obviously $p$（ii）is the dilatation of the i山ajping íg in $G^{\circ}$ ．From（29） ：ic conclucio necessarily（i），otberiwise $p(z)$ would not be pounded． iakiug into account that every oxceptional point $z_{o}$ is a simple LORO Of $G_{\theta}^{\prime}(2)$ ，We Geduce from（くう）and $p<\infty$
 whare $c_{0}=\lim _{z \rightarrow z_{0}}\left|\frac{G_{\theta}^{\prime}(z)}{z}\right| \neq 0, \infty$ anci $k$ denotes tine curvaturo $01 \Gamma$ at $z_{0}$ ．Yrou this（iii）İollows．

Conversly，if $G$ flulilis tine conaitions（i），（ii），（iii）of itvorem 2，ono proves üs in［9］tnat for evory $\lambda, 0<\lambda<1$ ， be biven by（2＇）is a bydrodynamically normalized quasiconformal Mappine of $C$ onto $t$ ．Using（29）and mritting $J=C+i \boldsymbol{j}=$ $=i^{-i \theta}$ \＆we outain after a short calculation
（北 $\int_{\dot{\alpha}} p d \sigma=I+\frac{\lambda}{\eta-\lambda} k \theta \int_{J(\Gamma)} e^{-i \theta_{G}} d \boldsymbol{d} \boldsymbol{\eta}=$

$$
=I+\frac{\lambda}{1-\lambda} k \theta\left(\frac{1}{2 I} \int_{J(\Gamma)} t^{-1 \theta} G_{\theta} d(J-\bar{J})\right)=
$$

$$
=I+\frac{2 \pi \lambda}{1-\lambda} R_{\theta}\left(e^{-\lambda i \theta} A_{\gamma, \theta}\right)=I+\frac{2 \delta a \lambda}{1-\lambda}
$$

 in (6) holds, timer $g_{\theta}$ snows to be an adiaissiole mujulfac for watch the equality on the rioht-hanc side in (24) holes.
II. The assertion under II. can oe proved in the same wander as in Theorem 1.

Reinaris 3. R. ullinau [0] proved that in the case $G=(|z|\rangle 1)$ and $\lim _{Q \rightarrow \infty} \frac{\Phi(Q)}{\mathbb{Q}}=0$ an extremal function can not exist vecause $s_{\theta}=\operatorname{Re}\left(e^{--21 \theta} A_{1, \theta}\right)$. Because of (24) this situation is obviously not possible in the case of an arbitrary domain $G$ and convex

In tue following we illustrate the cieptacence or the solveability of the extresal problem (7) on the boundary of $G$ in the case $\Phi(\mathrm{p}) E \mathrm{p}$ 。
 center at tue origin and tai sides or length $\ell$ parallel to the axes of the coordinate system, $\Phi(p) \equiv p, \theta=0$.

Then extremal function for tile problem (7) does not exist and we have

$$
\begin{equation*}
s_{0}:=\sup \operatorname{Re} a_{1}=\frac{a\left(c-\ell^{2}\right)}{2 \pi a+c-l^{2}} \tag{31}
\end{equation*}
$$

where tine supramull is taken over $A_{p}$ and $a:=R e A_{1,0}=$ $=\frac{\boldsymbol{l}^{2} \Gamma^{4}(1 / 4)}{16 \pi^{3}}, \Gamma(0):$ Ganiza - function.

Proof. At first ne prove (31). Because of (24) for $\Phi(p) \cong p$ it is sufficient to construct a maximizing seçuenco ( $\tilde{0}_{0}, \mathrm{n}$ ) , $E_{0, n} \in A_{0}$, where (fe $a_{1}\left[5_{0, n}\right]$ ) converges to tho exorossion on tie right-hana Bice of (31). Let $G_{n}$ be tie exterior of tie pieceaise analytic closed Jordan curve given by the eccuation

$$
\left|\frac{2 y}{l}\right|+\left|\frac{2 x}{l}\right|^{n}=1, \quad n \geqslant 2, \quad 2=x+i y \in
$$

ILU iwo analytic arcs of $\Gamma_{n}=\partial G_{n}$ beet at $z_{1,2}= \pm 1 / 2$ under tine sane exterior angle $\gamma=2(\pi-\arctan n)$. Obviously ( $G_{L}$ ) converges to $G$ in the sense of the kernel convergence. lionce ( $a_{n}:=\operatorname{Re} A_{1,0}\left(G_{n}\right)$ ) converges to $a:=\operatorname{Re} A_{1,0}(G)$ and $\left(I\left(G_{n}^{\prime}\right)\right)$ to $I\left(G^{\circ}\right)$ for $n \rightarrow \infty$.
according to Remarks 2 and Theorem 2, (27), the napping ${ }_{0} \operatorname{con}_{\mathrm{n}} \mathrm{A}_{\mathrm{p}}$ :

$$
E_{0, n}= \begin{cases}\left(1-\lambda_{n}\right) z+\lambda_{n} G_{0, n}(z), & z \in G_{n} \\ \left(1-\lambda_{n}\right) z+\lambda_{n} G_{\theta, n}\left(z^{\prime}\right), & z \in G_{n}^{\prime},\end{cases}
$$

Is admissible if $\lambda_{n}$ is chosen so that

$$
c=l^{2}-I\left(G_{n}^{*}\right)+\int_{G_{n}} p_{n} d \sigma=l^{2}+\frac{\lambda_{n}}{1-\lambda_{n}} 2 \pi a_{n}
$$

munich is obtained by using (29) and (30).
Consequently we have
$\lim _{n \rightarrow \infty} R e a_{1}\left[E_{0, n}\right]=\operatorname{Lim}_{n \rightarrow \infty} \quad \lambda_{n} \cdot a_{n}=\frac{a\left(c-l^{2}\right)}{2 \pi a+c-l^{2}}=s_{0} \quad$.
isecause of the symmetrical configuration of $G$ evidently $a:=A_{1,0}=d^{2}$. He denote by $d$ the exterior conformal radius OI $G$ moose numerical value is $d=l \cdot f^{2}(1 / 4) /\left(4 \pi^{3 / 2}\right)=$ $=\ell \cdot u, 59017 \ldots$, see. [10].

Suppose there exists an extremal function $\mathbb{G}_{0} \in \mathbb{A}_{p}$. Then uccordire to Thoorem 2. I $g_{0}$ would have necessarily the representtation (27). But from (29) oreo concludes tat the dilatation $p(z)$ of En would be unbounded if $z \in G^{\circ}$ converges to $z_{q}=1 / 2$. moreover, $S_{0}$ would oo discontinuous along the vertical sides of tic square G. Accordingly $B_{0} \& A_{p}$.
5. Geometrical bounds for the douala or tar values $a_{1}$ and $w\left(z_{1}\right), w \in A \&$ Lot oe
$K_{\Phi}:=\left\{a_{1}:\right.$ weAr $\left.\boldsymbol{K}^{\prime}\right\}, \Phi^{\prime}, \Phi^{\circ}>0$. Because of tiv iact, tint

$$
a:=\operatorname{Re}\left(e^{-21 \theta} A_{1, \theta}\right)=r+\operatorname{Re}\left(\theta^{-21 \theta_{\Delta}}\right) \leqslant r+1 w i
$$

wisere $r:=\left(A_{1,0}-A_{1, \pi / 2}\right) / 2, w:=\left(A_{1,0}+A_{1, \pi / 2}\right) / 2$, ana that tin upper and lower bound of $s_{e}$ in (24) increases and decreases by increasing $a$ and $\hat{a}$ respectively wo outinin the following

$$
\text { Corollary 1. The boundary of } \mathrm{K} \text {. lies mitinin the closed }
$$ annulus with centre at the origin ard tho interior and exterior radii

(32)

$$
R_{1}:=\frac{(I+\mid=I) \cdot I \cdot\left(1-1 / \xi^{-1}(C / I)\right)}{2 \pi(I+|\operatorname{Ln}|)-I\left(1-1 / \Phi^{-1}(C / I)\right)}
$$

and

$$
R_{e}:=\frac{(r+|m|) \cdot I \cdot\left(\Phi^{-1}(C / I)-1\right)}{2 \pi(r+|m|)+I\left(\Phi^{-1}(C / I)-1\right)}
$$

whereas $R_{1}=R_{\theta}$ iffy.

$$
G_{0}(z)+G_{\pi / 2}(z) \equiv 2 z \text { for all } z \in \bar{G} \text {. }
$$

In this case $K_{\mathbb{E}}=\left(|z| \leqslant R_{1}=R_{e}\right)$ is a closed disco
Remark 4. It is well-known that for instance the domain of values $a_{1}$ over the class of quasiconforlial mappings with a prescribed dilatation bound which is a bounded function of a complex variable is always a closed disc.

In the case of the class $K I$ this is in general not true except for the special case of Corollary 1 , for instance. Ins example in Theorem 3 shows that $K_{\Sigma}=p$ is iss. closed.
neiauris 5. becauso of $\operatorname{Re}\left(0^{-21 \theta} h_{1, \theta}\right) \leq r+|m| \leqslant R^{2}$, :ance $R 13$ tio rudius of the suallest circle $K$ walch contains $\Gamma$ und cy as urifuinost of monotonicity one cun roplace Ste ( $e^{-c i \theta} h_{y, \theta}$ ) or $(r+\mid m \|)$ by $I r^{2}$ in ull estimatos. fifter Eis replaceingat equality boldo in ovory estimate iff $G$ is tho criurior of $t i$.

Applyint tho squaro root transformation $\quad J=\sqrt{2-z_{1}}$, $z_{1} \in I$ Iixed., in (15) เง outain oy Remork 5

Coroliary 2. put $\Phi(p, z):=(p-1) /\|z-2\|,, z_{1} \in$ fixed. -isers WG have tiae inequality
(53) $\left|w\left(z_{1}\right)-z_{1}\right| \leq \frac{2 D\left(z_{1}\right) \cdot C}{4 \sum D\left(z_{1}\right)+C} \quad, \quad w \in \dot{\Phi} \quad$,
'viacre $D\left(z_{1}\right):=\max _{z \in \Gamma}\left|z-z_{1}\right|$. In the case $G$ is the exterior of a circlu coutored at $z_{1}$ tae exact domain of valuos $w\left(z_{q}\right)$, WEA , is a closed disc Eiver by (33). See also [4].

Remark 6. Analoirously to Corollary 2 a rousoning as in [4] erables us to obtadn saurg estimates for the functionals of Giunsky and Golusin type by using moan functions $\bar{I}$ adapted to the functional.

## Rejciances

[1] Билута, П.А., Некоторые экстремальные задачи в классе отображении, квазнкодфориннх в среднеи, Докл. Акад. Наук СССР 155(1964), 503-505.
[2]Билута, П.А., Некоторые экстремальные задачи для отображении, квазиконформных в среднем, Сиб. мат. щурн. 6 (1965), 717-726.
[3] Hardy, G.H., Ifttlewood, J.E., Pólya, G., Inequalities, Canbridge 1934.
[4] Kirsch, S., Funktionalaoschltzungen bei quasikonformen Abbildungen, to appear in wath. Nacir.
[5] Kruschkal, S.L., Elanau, R., Quasikonforme Aodilduneen - neue diethoden und Anwendungen, I'eubrer-I'exte zur wiatb. Bd. 54.
[6] KUhnau, R., Bewerkungen zu den Grurikyschen Gebieten, wath. Nachr. 44(197U), 285-293.
[7] Kuhnau, R., Eine Extremalcharakterisierung von Untersciallgasstrlmungen durch quasikonforme Aubildungen, Banach Center Publ: 11(1983), 199-210.
[8] Kuhnau, R., Über Extremalprobleme bei im wittel quasikonfor-
 iialle-Wittenberg 1981; Lect. Notes inath. 1013(1983), 113-124.
[9] KUhnau, R., Bemerkungen zu Extremalproblemen bei in einem speziellen Mittel quasikonformen bbbildungen, Lect. Notes Latk Vath. 1013 (1983), 125-131.
[10] Ландкоф, Н.С., Основы современно甘 теории потенциалов, Москва 1966.
[1] Kenelt, H., \&uasikonforne sboilaungon unci elliptiscie Systeme Teubner-Texte zur watn. Bd. 46, Leipz1ru 1982.

## [2]

Strebol, K., Din Konvergenzsatz fur Folgen quasikonformer Abbildungon, Comnent. ǐath. Helv. 44(1969), 469-475.

## STRESZCZENIE

Praca jest pośwlecona Istnieniu funkcti eketremainej reallzuJacel kresy górny \& dolny pewnego funkcjonatu na klasle odwsorowań §rednio quaskonforemnych, tzn, homeomorlizmow, których dylatacja ma ograniczon érednia polowq

Szczegolowo rozpatrzono przypadek, leledy dzledzina odwzorowania jeat kwadrat, a rotniczka kwadratowa zwlazana z funkcjo natem jest zupetnym kwadratem.

PESLME

Рябота посвяцена существованид экстремальной фунхции, которая дает точнур верхндд или нижнды гранв некоторого функционала в классе отобрагений кваяиконформных в среднем, т.е. гомеоморфизмов, дилатация которых ииеет огряниченное среднеө по плодади. Подробнее рассмотен случай отобрадений яаданных на квадрате и функционала сопряденного с квадратическии дифферекциалом, который является полнкм квадратом.

