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1. Introduction. Extremal problems for qu^siconformal map

pings in the mean are closely related to the extremal problems for 

quasiconformal mappings with a prescribed dilatation bound which 

is a oounded function of a complex variable, whereas now tne 

dilatation is only bounded in tne mean (.6) . It was P.À. Bilufca 

w. H who first investigated such problems. He derived a neces

sary condition for extremal functions if they do exist. R. HUhnau

proved, tnat under some further conditions tnis necessary 

condition is also sufficient. Tnis condition means, that tne ex

tremal function is connected with a qua3ilinear elliptic system 

of differential equations and inequalities which appears in gas 
dynamics, see [7], [B]. In his paper hllonau used this

necessary and sufficient condition to construct analytically the 

extremal function and to determine the extreme value of tne consi

dered functional in a special case.
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But it is also possible to go just tne other way. Our main 

effort centers on sherp upper and lower estimates of the extreme 

value of tne considered functional and on the geometrical

characterization of those ranges of integration G' in (6) for
j

whicn tne extremal problem admits solution and construction of 

tne extremal function and the extreme value of the functional is 

-sal to the upper, or lower Dound.

In general the proof for the existence of solution of these 

problems is rather complicated. Tne class oX quasiconformal map- 

pir._s satisfying (b) is usually not compact. The existence of 

extremal functions depends on the mean function in (.6) and on the 

boundary of G' . To illustrate this we consider the case where 

g' is a square and 5 is a linear function. In order to make 

clear tne main ideas we choose as an example a functional of 

GrStzsch - TeichmUller type whose associated quadratic.differen

tial is a complete square.

’¿, dotations and the Problem. ’Let G »to be a n-tuply 

connected Jordan domain in the complex plane $ with, the boundary 

P = F, + ... + Tn , G* : = «\S , I s= HG') is the area of 

G* and S' the two-dimensional Lebesgue measure, further, let 

p := p(.z) 1 be a real valued bounded and measurable function

wnich is defined on t and identical 1 in G .

..o denote by gg the uniquely determined quasiconiormal

mapping of t onto < with nydrodynsmicai normalization
_<t —ifi

z + stj 8 z + ... near z= oo , wnere II - U + iV := ie gQ

satisfies

U) almost everywhere

.oreover, we denote by Gg the univalent conformal mapping of
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G onto a 0 - parallel slit domain, 0 .vitn nydrodyna-
«.4

mical normalization z + z + ... near z = oo .
Wo put

12) ue * ive ,a ie-1^ i gy(.Z) - Z ) , Z t. l ,

rRe Qie-ieQG0 - z)) , z (G
O) Se:=,

1 R# - Re (.ie-1 z) , z within —1,w,...
• • • j n

where R^ := Re (,ie”i(c) Ge(,Pj)) = const. , -3 =1,2,...,n ,

rim <.ie-1(\G6+ - a)) , z«G
C.4) vQ :=.

13 - 1m Qie-lri z) , z within , 3 =1,2,...,n ,

where := Im tie'19 Ge+jr/2tC»)) = const. , -J =1,2,... ,n

and

15) (f + y := ie-i® z .

Let £ ' be tne class of all real valued piecewise smooth 

functions u=u(z) defined on t witn finite Ciricniet integral

and lim u(z) =0 . Denote by aj the class of all univalent
z-+»o ”

conformal mappings of G with quasiconformal continuation into 

G' and hydrodynamical normalization z + a^z 1 + ... near z= oo 
The dilatation p(,z) satisfies

(.6) _f $1p<z)) aij 4 c »
' G'

where the constant C <|(.'1)‘I(.G/) and $ s 0,«o)—*R is a

prescribed continuous, monotone and convex function for which 

exists. Denote by i~''' tne inverse function of $ .

./e study the following extremal problem:
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(.7) fee (.e“^10 su,) —» sup =: s^ ,

here the supreuum is taken over Aj . Because of the extreaal 

property of gg , see £i?,p.9Sj , it is clear, that for maximiza

tion it io sufficient to consider only such geAj for wnich 

ie“*0g satisfies the system (.1).

j>. A variational characterization for uQ and vQ .

-0 j-o in .-.-itn let p and G be sufficiently smooth, so that 

l-.as'- Tneorcm is applicable. Because of (.1) uQ satisfies the 

v ..nation aiv( p ^(.Ug + ) = 0 in ® .

i'.isreforo we have

to) J Ip Auy + Vp Vug + VpV<p ) u df = 0 , ufeXp • 
t

By a..plying Gaus's Theorem (.6) yields

t><) tu , Ug)p - l(u) = 0 , uejtj

with (.u , v) := J" p ?u Vv d<F , ' l(.u) := j VpVif u d^~ »
I t

u, v € , •

Hence we obtain

t10) o ^|u - ue(p = itu) - ytUg) , Ufe£l ,

p
where f(,u) Bull - 21Qu) .

How we compute i'(.Ug) . Because of.(9) we have for u = Ug 

(.11) • i’thg) = -ltUg) = - J 7p?«f • Uq d<T - - JVpVcftu- <f)oi
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■-i

G

i

(p-1) àf - lia y (,ie~i'ibd) d(ie~iw z) 

G' |z»=R

(p-1) di + 2% Re ( ’"2iW

where (lz| ¿R) contains P and et is tne outward pointing

unit normal vector on Iz, =R . 

PutJ u = ûy we ootain

8u«2 = f (p-1)|?u|2di + flVu|2dff= f (p-1)di + KG') + J|Vu,^. 

r » r. ' G« «
Further calculation snows

QRe(.ie-lWG9)
jlV-PaS , a. , J,|i a. - i
- Re(ie“i0GQ) ) ds = - I(G') + Im J (ie~ldG0) d(,ie~iw z)

|zl =R

= - KG') + 2«Re(.o"2iö A^ Q)

hence llû^H' = (p-1) di"«• 2XRe(e“2iÖ
G

and l(û0) = JÇpVtf Sg di = -
r « Gt <

«2 .

we have

Putting A := l(ûg) /lûjl2 =

= J (p-1) di /( f (P-Ddf + ^Reie-"1^^)) 

g' ! g'

(12) ■ J?( Àûü) = - A 1) di

Tnus (.10), (11) and (.12) yield
(13) O^BAGq - uj2 = 24r[ARe(e"‘i;LaA1,e) - ae(e“2löa1f9J

iahing into account that Vq satisfies tne equation
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diV (

(14)

•mere

- V(v0 + *{')) = 0 , we outain analogously 

0 4 II- Wg - Ve^/p =

» -2x|Le(e-2itd+*/2) A1t0+T/2) - Reie"210^)}

( (1- ¿)d< /l23iRele-2i<0**/2) A1>e+</2) " I <1~

/ g*

-Iso under more general assumptions on p and £* we have 

tut following variauional characterization of Ug and Vg in

Lemma 1. If p and G satisfy the assumptions stated in

.see. 2, then ;>i have for all , ^■¿ft , the inequalities

U5) Ase(e-2it0+X/2) A1>e+x/i;) 4 Re(e’2i0 a%6) £

/ XRe(e“210 A1>e) »

uore X, A ore the same constants as in (12), (1j) and (.14).

ihe equality on me riant and left n'olds iff

(16) Aug = uq on t
and

(1?) - A Vg = Vg on C respectively.

Proof. decause of (13) and (14) the inequalities (15) are 

valid for sufficiently smooth pQ and Gfl , and also for p 

and G . i'ho latter case is obtained by applying well-known 
Theorems |l1,I.5j about the convergence for conformal mappings of

sequences of domains Gq and quasiconformal mappings gg for
—’

which ie gg n satisfies (1) for p := pQ , whereas

(18) 0n—iQ the sense kernel convergence and pn— 
S’- almost everywhere with supp(p&_1) C G* .
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we now prove 116). Lot o oe an arbitrary compact set in (. 

Tnere exists a natural number nQlo) sucn that e CCGfl ior ail 

n^nQle) . Considering 115) we have the inequality

U9) j |V<. An2d>u - ue,n)l2d^
e

4 2*[\Ke ?"2i® A1,^Gn^ " Se ta“aie a1,&tGn»]

for n^nQle) . Because of 118) and by applying the tneorem on 
the convergence for sequences of quasiconformal mappings [12] ,

and the tneorem on kernel convergence tor conformal map

pings we obtain from 119)

120) j |71 - ue)(2 dS-

e

2X ^ABele"210 A1(Q1G)) - Eele_2iW a1>wlG))J

for all compact eCt\P . i'nerefore, if tue equality on tne 

right-hand side in 11?) holds, tnere must be necessarily 

Aug - Uy 3 0 on every compact eC®\P oeaTin^ in mind tne 

nydrodynamical normalization of gy and Gy near z= 00 and tne 

continuity of Gy in 3 . If on the other nand 116) is valid we 

conclude that gy = 11- A)z + AGy in G . Therefore we nave 

Rele-210 a1 Q) = AHele-210 A1(Q) .

Analogously one can prove tne assertion in connection 'with

117).

4. Sharp estimates for the extreme value s^ . In tne follo
wing we use the inequality of Jensen [3,p.1?G] in tne form

121) C p d<r / T I
G' g'

Here tne equality nolds iff p2 const, in G , or .
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acaordingiy we nave

(.22) J p a<T / Xi"\c /I)
G

for all p satisfying (.6) ano by applying the inequality of

¿SC£iV/ &j?Z

I2 = (. f p-p-^dS" )2 ( pd6"• ( p-1d<F Z f p^ai • I • £“ '(.C /I)

G * G * G9 G *

inua we obtain

id- ¿Jiff £ i-d - yz^h

tor all p satisfying (.6) . Equality in (.22) and 123) holds iff 
p 2 $~\c/I) = const, in G' and . Prom this in con

nection with Lemma 1 , (.15), we have except for the assertion on 

the equality the following sharpend form of (.51) in. or
theorem 1. If G_ and $ satisfy tne assumptions under 2 

n.n for axi w , O Ś If ,
:-1„,„n - t,JL-1,;ii. hi - Vt-V/I» { 3 z -MtflafliM.

5U - K.1-1/J"'(.C/I)) * 2j|a +1 ~ (.C/I)-1)

¿mere a := Ee(,e •2iei
L1,ri ) , a := Re(,e-21(,d+X/2)

Ai,a+»/2-) •

if in addition ' ^0 and the extremal problem is solvable, 

eon the equalities on tne right anu left in <24) always noxa

simultaneously. Jnis is tne case ill

(.25) OCG0U) ♦ £Ge+3C/2 2 z in G ,

-no re °c = A/<A + A) , n (. A + X) . ‘Jne extremal function g 

with tne reores^nCation

(.1- A)z + Agq(,z) , z « G

12*) fc& =
(.1- A-r_A)z + A±-A 02iW - _ £ei0 _ 1S<XeW ,
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z within f'.g , S)=1,2,...,n ,
-

where := He(ie~l9 G^if^)) , 1^ : = lode'1” Gb+T/2(-Pj >

9 = 1,2,..., n , is uniquely determined,

Proof. If the equality on tne rignt (left) in (24) colds, 

then by Lemma we have necessarily (1o) ((17)) and because of
(22) ((23)) p3 $-\c/I) = const, in G' . Prom (16) ((1?)) 

in connection with (1) W6 conclude, that gyfe A§ is _ai affine 

mapping within Pj of the form

(1- X)(1+p)(z+qe‘iiS z) + Cj ,

with q := (p-1)/(p+1) , Cj constant , 9=1,2,...,n . Therefore
(25) follows from |6, Theorem 1, p.2u7j. because of J4,

Theorem 2 and 5] (25) is valid iff the equality on tne rieut and 

loft in (24) holds simultaneously. Prom (16) and (17) ..e ootain

(26) . Oonversly, one can prove that gyfe Ag is represented oy 

(26) as in by considering (25).

In the case J is linear, tne class of domains G for 

whicn the equality in (24) nolds is wider then in tne strict con

vex case of i • A complete geometrical characterization of those 

domains is given in

Theorem 2, Let G be a domain oounded by analytic closed 

Jordan curves, $(p) - P •

I. Tne extremal proolem (7) is solvable and the extreme value

30 = 2X~a^+’"5"-^i =s (tne upper bound in (24)), where

a := Ke(e A^ d) iff tne following three conditions are 

fulfilled ;

(1) tnere is no tangent on J""1 subtending tne angle 0+ K/2 

witn the positive real axis except for tnose points on P
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which correspond co the end points of boundary segments

of the ¿1 - parallel slit domain G0(G) 5 

(ii) for every pair of points z' , z satisfying

ko(e“iy(z'- ¿" )) = 0 ana every =1,2,... ,n 

Gg(z') = G0(z") ;

(iii) in all exceptional points under Ci) I"1 has a non-vanis

hing curvature .

The extremal function is uniquely determined and has the

rc-presentation

(2?) ge = «

\l- X)z + XG0(z) , zfeG

(.1- X)z + AGQ(z') , z<G' .

..ere z is one of tne two points of intersection of the line 

through z«G* subtending the angle 6+^/2 with the positive

,dl axis ano t.e closed curve r« containing z Inside.

II.file extroaal problem (7) is solvable and tae extreme value

s0 = : X a (the .lower bound in (.24)) ,

wnere a := He( e“2iW+ */2j A1je+r/2) , iff G fulfils

(25). The uniquely determined extremal function is given byA
(25), Tne constants X, X are given under I. and II.

Remark 1. Domains G satisfying (i), (ii) and (iii) are for 

instance those with the property (25) or analytic bounded domains 

G fulfilling (i) and (iii), which are symmetric with respect to 

an arbitrary fixed line subtending tne angle © with the positive 

real axis and intersecting every closed curve 3 =1,2,...,n .

kemark 2. Now by considering domains bounded by piecewise 

analytic closed Jordan curves with tne property of symmetry as 

noted in kemark 1 , Theorem 2,1 is also valid in tne case of
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analytic corners (.exterior angle J , ft corresponding

to the end points of the straight lines of the 0 - parallel slit 

domain Gg(G) .

Proof of Tneorem 2. I. Let gg 4 be an extremal function 

for which Sy is equal to the upper bound in (24). Because of 

p 51 in G and Lenina 1, (17), we have for gg the following 

representation

(.28) gg = (1- A)z + XGg(.z) in G

and

U s= Re(ie_i® gg) = (1- A) Re(ie_ie z) + AR^ , R4 = const. ,

for z within P^ , *3 = 1,2......... n . Because Ü + iV := ie_i® gg

satisfies the system (.1) for which the corresponding dilatation 

p realizes the equality in (6) the level lines (U = const.) 

which are straight lines are necessarily orthogonal to (V = const 

in G* . Therefore by considering (28) and tne continuity of gg 

we conclude

V : = Im(ie~iegg) = (1- X)im(.ie“itíz) + Alm(ie~ieGg(z')) for zgG'.

Here z" is one of the two points of intersection of the line 

through z G*subtending thotngle 6+JI/2 with the positive reel 

axis and tne closed curve r* containing z inside. Particular

ly to every z within Tí there may be at most two sucn points 

of intersection z' andt z" satisfying (ii) from Theorem 2. 

Those points ztT for which z*= z"' obviously correspond 

to the end points of the straight lines of the 0 - parallel slit 

domain Gg(G) . Tnis yields tne representation (27). Evidently

gg maps rectangles with sides parallel to the axis of the co- 
—id-ordinate system after a rotation T:= f + i h = e z into
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rectangles with sides parallel to tae axes la tae image plane. 

By considering infinitesimal rectangles we obtain for tae ratio 

of tae side-lengths

X d Ke(e"iaG (»'))
(¿9) p(z) = 1 + T-'X 3 ---------- J------ - = +

x kfog'H 
i- A C06(X -0) 

¿«G* ,

..uereas the larger siae is parallel to the real axis of the rota

ted co-ordinate system, be denote by eC the angle between the 

tangent on P at z' and. the positive real axis. Obviously 

p(z) is the dilatation of the ¡napping gg in G# . from (29) 

we conclude necessarily (i), otherwise p(z) would not be oounded, 

•faking into account that every exceptional point zQ is a simple

zero of G^(z) » we

jia p(z*) = J-irn 1 +
z->z z-*z0 o

Geu)where C = 0 lirn

deduce from (29) and p to 

|Gg(z')|
cos(et -0)

/ 0,00 and k denotes the curvature

of r
Converslj', if G fulfils the conditions (i), (ii), (iii) of 

Theorem 2, one proves as in [9] that for every A > 0 <A<<, 

gg given by (27) is a hydrodynamically normalized quasiconforaal

mapping of C onto 1 . Using (29) and writting J = C + it^ =
¿0 "*- e z we obtain after a short calculation

A o- J 
j(P)

_V Pa I 4 f -10THfKs tpi J *=
J(P)

at zQ . Prom this (iii) follows.

(¿ü) ( pd^ =
■>. *

I + iie •"iwvn =

% d(j-j)) =

= 1 + 2lo .

= I + Ke(e”2iS A1>e) = I +
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wnere a: = Re(.e" A^ g) . II we cnoose \ so that cue equality 

in (6) holds, then gg snows to be an adaissible mapping for 

ivnich the equality on the right-hand side in 1,24) holds.

II. The assertion under II. can be proved in the saue manner 

as in Theorem 1,

Re’mark 3. R. dUhnau [approved tuat in the case G = t,

and lim =0 an extremal function can not exist uecause
*eo **

-2i6Sq = Re(.e A^ g) . Because of (.24) this situation is obviously 

not possible in the case of an arbitrary domain G and convex $

In the following we illustrate the dependence of the solva

bility of the extremal problem (.7) on tne boundary of G in the 

case $(.p) s P .

’Tneoreai >. Let G ue ¿he exterior of a square ..^..e 

center' at tne origin and tne sines of length £ parallel to one 

axes of the coordinate system, f (.p) = p , 9 = 0 .

Then extremal function for the problem Q7) does not exist

and we have

f 2(31) sQ : = sup Re a. = -ft1»-0-— ,
u 1 2« a + C -

where the supramum is taken over

= > ru) s Gama 
i65r-> ---------

A and a := Re A^ g =

- function.

Proof. - At first we prove (.31) . Because of (.24) for 

^(.p) 5 p it is sufficient to construct a maximizing sequence 

(.S0,n) , £0,n<Ap ’ •'her9 tRe ^[^O.nP converges to the expros. 

sion on tne right-hann side of (.31) • I^t GQ be the exterior 

of the piecewise analytic closed Jordan curve given by the 

equation
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1 + It I = 1 ’ n * z -x+iy € 1 •
Tne two analytic arcs of PQ = ^Gn meet at zi 2 = - 

under the same exterior angle 2(3t - arctan n) . Obviously

(G^) converges to G in the sense of the kernel convergence. 

Hence (an Re Az, Q(Ga) ) converges to a := Re A^qQG) and 

(I(Ga)) to I(G') for n—*00 .

according to Reaark 2 and Theorem 2, (27), the mapping 

*O,neAp ’

f(1-\Pz + AnGOfn(.2) . zfeGn

g0,n = A %
[(1->a)z + \nGd>Ii(z ) , z6Gn

is admissible if Xa is chosen so that

C = I2 - I(G') ♦ J p di = I + ,pV 2^
Xû

which is obtained by using (29) and (30).

Consequently we have

»

lim
n-»w

lim
n-»<o

alO - X2)
2“)[a + 0 - £2 s0

Because of the syauaetrical configuration of G evidently 
2a s= A., 0 = d . He denote by d the exterior conformal radius 

of G whose numerical value is d = X*r2(1/4) /(4 5t>//2) =
= X • 0,59017.. • , see. fioj.

Suppose there exists an extremal function gQ€ A^ . Then 

according to Theorem 2.1 gQ would have necessarily the represen

tation (27). 3ut from (29) one concludes that the dilatation p(z) 

of Bo would be unbounded if z£G' converges to z^ = 1/2 . 

Moreover, gQ would bo discontinuous along the vertical sides of 

the square G . Accordingly E0^Ap •
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5. Geometrical bounds for Che domains of the values a^ 

and , w 6 A^ . Lot oe

Kj := ^a^ : w € J , , $> '' >0 . Because of the fact, that

a := Re(,e“2ie Aj a r t Re(.e_2i*im) r +|m| ,

where r := U1>0 - A-^K/p) /* ' . u != <-a1,o + A1,-JT/25 /2 » 

and that the upper and lower bound of sQ in (.24) increases and 

decreases by increasing a and a respectively we obtain the 

following

Corollary 1. The boundary of K j lies within the closed 

annulus with centre at the origin and the interior and exterior

radii

<32) a. := - VfikczW--
1 2X(r + lm|) - I(.1 - 1/f (C/I))

and
R != lr flm|)«I-Cj-\c/I) - 1)___

e 2?t(.r + lml) + I(.f "\C/I) - 1)

wnereas R^ = Rg iff■

Gq(z) + ® 2z for all zfeC .

In this case K£ = (,|z|^Ri=Re) is a closed disc.

Remark 4, It is well-known that for instance the domain of 

values a,, over the class of quasiconforwal mappings ?zith a pres 

cribed dilatation bound which is a bounded function of a complex 

variable is always a closed disc.

In the case of the class Kg this is in general not true 

except for the special case of Corollary 1 , for instance. The 

example in Theorem 5 shows that KJ =p ^-s i«S- closed.
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nemark 5» Because of Re(e~'iiy A,, £ r + ,ml £ »
where R is the radius of she smallest circle K which contains 

P and by an argument of monotonicity one can replace
. fe(.e~£:iw k^ e) or (.r + ,m|) by R2 in all estimates. After 

this replacement equality holds in every estimate iff G is the 

exterior of t< .

Applying tho square root transformation T = *^z - z^ * ,

fixed, in <i5) we obtain by Remark 5

Corollary 2. Put £(.p,z) s- lp-U /Iz-z^J , z^fe t fixed, 

rhea we have tne inequality

2D(»1>C
|w(z1) - z1l 4 4Jtm.z1J + (3 • w6xf .

where R(.z-,) := max |z-z^| . In the case G is the exterior ofz<r
circle centered at - z^ the exact domain of values w(,z^) ,

f Aj , is a closed disc given by 133). See also frt-J.

Remark 6. Analogously to Corollary 2 a reasoning as in w 
enables us to obtain sharp estimates for the functionals of 

Grunsky and Golusin type by using mean functions $ adapted to

the functional
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STRESZCZENIE

Praco jest poświęcona istnieniu funkcji ekstremalnej realizu

jącej kresy górny 1 dolny pewnego funkcjonału na klasie odwzoro
wać średnio ąuasikonforemnych, tzn. homeomorfizmów, których dyla- 
tacja ma ograniczoną średnią połową.

Szczegółowo rozpatrzono przypadek, kiedy dziedziną odwzo

rowania jest kwadrat, a różniczka kwadratowa związana z funkcjo
nałem jest zupełnym kwadratem.

PE3EME

PaóoTa nocnnmeHO cymecTBOBamtn SKOTpeMaJtbHoS $yHKiiint, 
KOTOpea aaeT Tovay» BepxHnn hjih Hn»Hron rpaHb HeicoToporo $yHK- 
UHOHaJia b KJiaoce OTOÖpaxeHMß KBa8MK0H$0pMHHx n cpeaiieM, T.e. 
roMeoMop$K3MOB, ÄHJiaTauitii KOTOpLix MMeoT orpanHvemioe cpejuiee 
no nJio¡na,zw. IToApoÓHee pacoworeH cáyvaK OTOÖpaxemift aaAannux 
Ha KaanpaTe k ¡JjyHicmtoHajia conpaseHHoro c KBaflpaTüveoKHu AH$<J>e- 
peiIIiHajIOM, KOTOpuñ BBJIHeTCH nOJIHKM KBBApaTOM.


