ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA
VOL XL, 7 SECTIO A 1986
Instytut MatematyEs
Unjweraytet Lodzki
Z. J. JAKUBOWSKI, W, MAJCHRZAK, A. SZWANKOWSKI

On Some Extremal Problem in the Class S of Functions Holomorphic and Univalent in the Unit Dise

O pewnym problemie etastremalnym widasje S funicji bolomorficznych jedrolistnych w moole jednosthowym

O6 одрой эхстремалвой проблеме для гласса S однолистных в едиинином круге фуксарий

1. Introduction. The investigations taken up in tie preseat paper aim at the obtaining of an estimate of the functional

$$
\begin{equation*}
H(f)=\left|a_{2}{ }^{2}\left(a_{3}-\alpha a_{2}{ }^{2}\right)\right|, \quad \alpha \in B \text {, } \tag{1}
\end{equation*}
$$

considered in the well-known class S of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{2}
\end{equation*}
$$

bolomorphic and univalent in the unit disk Δ.
As one knows, each of the factors $\left|a_{2}\right|$ and $\left|a_{3}-\alpha a_{2}{ }^{2}\right|$ occuring in (1) was an ealier the object of inveatigations in various classes of holomorphic functions. Tuis rich literature devoted to the eatimation of tiese functionals also contaics
results obtained in the class S. They are the classical theorems of Bleberbach, rekete and Szeg甘, Bazilevich, Goluzin, Jenkis;
to this series also belongs the estimate of the functional $\left|a_{3}-\alpha a_{2}^{2}\right|, \alpha \in C$, obtained by swwankowski [0], generalizias previous result.

The reasons for wich one seeks an estimate of the functional $H(f)$ in the class S, as well as in other classes of functions, we analogious to the case of the functional $\left|a_{3}-\alpha a_{2}^{2}\right|-n a-$ wely, expressious of type (1) occur in relations between suitable cocflicients of series (ट) of functions of tae same class (cf. [2] [t], [7] or in relations between such coefficients of functions 01. ailiferent classes, suitably connected with one another (cf.[4]). suca a situation sives the possioility of using the estimate of Iunctional (1) for estimations of other functionals depending on tRE COeİIcients of series (2).

Let us pay attention to one more aspect of the investigations of fuuctional (1). As known, tae factor $\left|a_{2}^{2}\right|$ 1a marimized by coe śoebe Iunctious, winile tio other factor $\left|a_{3}-\alpha a_{2}^{2}\right|$, when $\alpha \in(u ; 1)$, attains its maximum for functions whicb are not Koeve oxies. So, the question arises whether tinere exist $\propto \in$ $\epsilon(u ; 1)$ witn which tae extremal functions for (1) are the Koede functions.
2. Discussion of the form of the equation for extremal func-
tions.
Let us consider tine Iunctional
(3)

$$
H(f)=r \theta\left[a_{2}^{2}\left(a_{3}-\alpha a_{2}^{2}\right)\right]
$$

definedin tine class S, where $\leqslant E$. The family S is
compact, whereas functional (3) is continuous, thus, for each $\alpha \in \mathbb{R}$, there expats a function $I_{\alpha} \in S$ for which ${ }^{*}\left(I_{\alpha}\right)=$ $=\max _{\rho 6 \mathrm{~S}} \mathrm{H}^{*}(\mathrm{I})$. In the sequel, the functions $I=f_{\alpha}$ will be called extremal.

Note that from the well-known estimates of the functional $H(f)=\left|a_{2}\right|$ and $H(f)=\left|a_{3}-\alpha a_{2}^{2}\right|$ in the class S it follows that, for $\alpha \in \mathbb{R}(0 ; 1)$, the extremal functions for functional (3) are the Koebs functions. fence it is sufficient taut our invostigations be carried out for $\alpha \in(0 ; 1)$.

Let us next observe tint none of the functions of the class S, whose coefficient a_{2} equals zero, is extremal; therefore We shall further assume that $a_{2} \neq 0$. At the same time, this assumption guarantees that, for the extremal functions \mathcal{I}, wee have grad $H^{*}(f) \neq 0$ (cf. [3]).

Consequently, the functional under considerations satisilies the assumptions of the Schaeffer-Spencer theorem [5], pence each extremal function fulfils the following equation:
(4) $\left[\frac{2 f^{\prime}(z)}{f(z)}\right]^{2} \frac{1 f(z)+k}{(f(z))^{2}}=\frac{\bar{k} z^{4}+\overline{1} z^{3}+2 B_{0} z^{2}+1 z+k}{z^{2}}$,

$$
z \in \Delta
$$

where
(5)

$$
B_{0}=a_{2}^{2}\left(a_{3}-\alpha a_{2}^{2}\right)
$$

$$
\begin{equation*}
1=a_{2}\left[a_{3}+(1-2 \alpha) a_{2}^{2}\right] \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
k=\frac{1}{2} a_{2}^{2} \tag{7}
\end{equation*}
$$

jesidus, it is snown $[5]$ that $B_{0}>0$, ana that tine right-hand sida of (4) ia nonnetiative on the circle $|2|=1$ and poseseses at least ono douvie root z_{o} such that $\left|z_{o}\right|=1$.

It is evideut that (4) is a differential-functional equation. Las deturwimation of tia upper bound of functional (3) for an Frcitrarily fixed $\alpha \in(0 ; 1)$ is therefore reduced to that of Piraide suitade furactions which satisiy this equation. It is surin rucelling that tae fulfilment of equation (4) by a function is owlj a secossary condition for this fuaction to be extremal for 紙 ínctional Deing exanined.

$$
\text { sor } z \in \Delta, \quad 2 \neq 0, \text { lut us put }
$$

$$
\begin{equation*}
N(z)=\left(\bar{k} z^{4}+\bar{I}_{z}{ }^{3}+2 B_{0} z^{2}+d z+k\right) / z^{2}, \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
L(w)=(1 w+i s) / w^{2} \quad, \quad w=f(2) \quad . \tag{y}
\end{equation*}
$$

Nince $\operatorname{li}(2)$ possesses at least one double root and 18 nonneobive on tio circle $|z|=1$, thorefore function (8) is factorized in the following way:

$$
\begin{equation*}
N(z)=\bar{x}\left(z-\theta^{1 \psi}\right)^{2}\left(z^{2}-t z \theta^{-1 \varphi}+\theta^{-21 \varphi}\right) / z^{2} \tag{10}
\end{equation*}
$$

waero $\quad \varphi, \psi \in(-\pi ; \pi\rangle, t \geqslant 2^{\circ}$.
curther, sote taut if toe function $f(么)$ is extremal with respect to tae functional considered, then also tae functions $-f(-u)$ anc $\overline{f(\bar{z})}$ ars extremal. Hence it appdars that, in our further considerations, it is enougn to assume that $\psi \in\langle 0 ; \pi / 2\rangle$ (cf. [0]).

I'ce discussion about the shape of equation (4) according to tiag type of tas factorization of function (10) and tne casee
$1 \neq 0$ or $1=0$ in (y) leads to oaly four possible iorus of this equation, namely:
(a) $\left[\frac{z I^{\prime}(z)}{I^{\prime}(z)}\right]^{2} \frac{1 f(z)+k}{(f(z))^{2}}=\bar{k} \frac{\left(z-z_{0}\right)^{2}\left(z-i_{1}\right)\left(z-z_{z}\right)}{z^{2}}, 1 \neq 0$,
or
(b) $\left[\frac{2 I^{\prime}(z)}{f(z)}\right]^{2} \frac{1 f(z)+k}{(f(z))^{2}}=-\frac{\left(2-z_{0}\right)^{2}\left(z-z_{3}\right)^{2}}{z^{2}}, \quad 1 \neq 0$,
or
(c)

$$
\left[\frac{2 f^{0}(z)}{f(z)}\right]^{-2} \frac{1 f(z)+k}{(f(z))^{2}}=\bar{k} \frac{\left(z-z_{0}\right)^{4}}{z^{2}}, \quad 1 \neq 0,
$$

or
(d) $\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{.2} \frac{k}{(f(z))^{2}}=\bar{k} \frac{\left(z-z_{0}\right)^{2}\left(z-z_{j}\right)^{2}}{z^{2}}, \quad l=0 \quad$,
where $z_{0}=e^{i \psi}, \quad z_{1}=p e^{i \varphi}, \quad z_{2}=1 / \bar{z}_{1}, \quad p \in(0 ; 1)$, $\psi \in\langle 0 ; \pi / \ddot{ } \psi, \varphi \in\langle-\pi ; \pi\rangle, \quad| z_{3}\left|=\left|z_{0}\right|=1,2_{2} \neq 2_{0}\right.$. Sections $3,4,5,6$ of the paper will be davoted to the investigation of solutions of equations (a), (b), (c), (a), respectively. The main result will bo inserted in section 7 .

3. Bquation of form (a). Let us íirst considur tae caso

 When equation (4) 1в of forn (a). After a transformation wa avo$$
\begin{equation*}
\left[\frac{z 土^{\prime}(z)}{f(z)}\right]^{2} \frac{1-f(z) / w}{(f(z))^{2}}=\frac{\left(1-\vec{z}_{0} z\right)^{2}\left(1-2 / z_{1}\right)\left(1-z / z_{2}\right)}{z^{2}} \tag{11}
\end{equation*}
$$

wnere

(12)

$$
\tilde{w}=-k / 1
$$

LGHOtU
(1j) $\quad \Delta / \bar{k}=e^{-2 i \gamma} \quad, \quad \gamma \in a$.

Boxpariaf (4) ana (11) axid taking account of (13), we
ouとsim
(14) $\quad z_{1}=p e^{-i \gamma} \bar{z}_{0}, \quad z_{2}=\frac{1}{\rho} e^{-1 \gamma} \bar{z}_{0}, \quad p \in(0 ; 1)$,

$$
\begin{equation*}
2 z_{0}+z_{1}+z_{2}=-\overline{1} / \bar{k} \tag{12}
\end{equation*}
$$

(10)

$$
z_{0}^{2}+2 z_{0}\left(z_{1}+z_{2}\right)+z_{1} z_{2}=2 B_{0} / \bar{k} .
$$

Inteerating (11) (cf. [0]), apa next, expundine the fuaction (2) inua series in a neighoourhood of $z=0$ and compering tioe coufficierta at equal powers of z, in view of (6), (7), (12) aad (15), we have

$$
\begin{equation*}
4\left(a_{3}-\alpha a_{c}^{2}\right)=\theta^{2 i \gamma} z_{0}^{2}+2\left(\rho+\frac{1}{p}\right) \theta^{i \gamma}+\bar{z}_{0}^{2} \tag{17}
\end{equation*}
$$

ana
(10) $\quad 20 B \frac{2+\left(\rho+\frac{1}{\rho}\right) e^{i \gamma} z_{0}{ }^{2}}{\left(\frac{1}{p}-\rho\right) e^{i \gamma} z_{0}{ }^{2}}+\frac{\rho+\frac{1}{p}+2 \theta^{i \gamma} z_{0}{ }^{2}}{2+\left(p+\frac{1}{\rho}\right) e^{i \gamma} z_{0}{ }^{2}} \log \frac{1-\hat{p}}{1+\rho}=$

$$
=\frac{2\left(a_{2}+2 \bar{z}_{0}\right) z_{0}}{2+\left(\rho+\frac{1}{\rho}\right) 0^{2 \gamma} z_{0}^{2}} .
$$

Gelation (17) can also be obtained directly from (10) in view of (5), (7), (13) and (14). From (15) and (17) wo can ciotormino a_{2} depending on α, p, γ and z_{0}. 'Puking tais dupendance into account in (18), we find that, for α real, equation (10) is true if and only if

$$
\begin{equation*}
e^{1 \gamma} z_{0}^{2}= \pm 1 \tag{19}
\end{equation*}
$$

From (19) and (18) we have

$$
\begin{equation*}
a_{2}=-2 \bar{z}_{0} \tag{20}
\end{equation*}
$$

whence, in consequence,

$$
\begin{equation*}
a_{3}=3 \bar{z}_{0}^{2} \tag{21}
\end{equation*}
$$

From (17), in view of (19), (20) and (11), we next fut
$2(3-4 \alpha)=1+p+\frac{1}{p}$ or $2(3-4 \alpha)=1-\left(p+\frac{1}{p}\right)$. Since $p^{\in(0 ; 1) \text {, we get the following conditions: }}$

$$
\alpha<3 / 8 \text { or } \propto>7 / 8 .
$$

summing up, we nave obtained
(22)

$$
a_{2}^{2}\left(a_{3}-a_{2}^{2}\right)= \begin{cases}4(3-4 \alpha) & \text { for } 0<\alpha<3 / 8 \\ 4(4 \alpha-3) & \text { for } 7 / 8<\alpha<1\end{cases}
$$

Le二山a 1. If, for $\alpha \in(0 ; 3 / 8) \cup(7 / 8 ; 1)$, the extremal iunction $f(2)$ satisfies equation (a), tion it is of the form

$$
f(z)=z /\left(1+\bar{z}_{0} z\right)^{2} \quad, \quad\left|z_{0}\right|=1
$$

End tac iwaximun of functional (3) is expressed by formula (22). watat $1 s$ more, fior $\propto \in\langle 3 / 8 ; 7 / 8\rangle$, the extrenal function does Hot satisiy equation (a).
4. Rquation of forn (b). Let us next consider the case .Wer equation (4) is of form (b). After some transformatious ive Eet
(23)

$$
\begin{array}{r}
{\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{2} \frac{1-\frac{1}{\tilde{w}} f(z)}{(f(z))^{2}}=\frac{\left(1-\bar{z}_{0} z\right)^{2}\left(1-\bar{z}_{z^{z}}\right)^{2}}{z^{2}},} \\
\left|z_{0}\right|=\left|z_{3}\right|=1, z_{0} \neq z_{3} .
\end{array}
$$

Comparink (4) and (23), we ootain, quong otner thints, the relaTiod
(24)

$$
\overline{1}^{2} / \bar{k}=2^{2} / k
$$

Frow (24), taking account of formulae (6) and (7), we nave
(25)

$$
\operatorname{im}\left[a_{3}+(1-2 \alpha) a_{2}^{2}\right]=0
$$

or
(20́)

$$
r \in\left[a_{3}+(1-2 \alpha) a_{2}^{2}\right]=0
$$

Let us also notico taat tine condition $\bar{b}_{0}>0$ implies
(27)

$$
\text { in }\left[a_{2}^{2}\left(a_{3}-\alpha a_{2}^{2}\right)\right]=0 \text {. }
$$

Making use of (27), one can prove that relation (cb) is not poistole.

From (25) and (27) it follows that, for the extrowal inction satisfying equation (b), only two conditions
(28)

$$
\operatorname{im} a_{2}^{2}=0
$$

or
(29)

$$
\operatorname{re}\left(a_{3}-a_{2}^{2}\right)=0
$$

are possible.
Denote by $\psi_{1}, \psi_{1} \in(0 ; \pi / 2)$, the only solution of the equation

$$
8 \cos ^{2} \psi(1-\log \cos \psi)-2 \cos ^{2} \psi-1=0 .
$$

After integrating equation (23) (cf. [6]) and musing use or the fact that there exists an $x \in \mathbb{E}$ for which $f\left(e^{i x}\right)=\tilde{H}$ we obtain, respectively, in cases (28) and (29):
(30)

$$
a_{2}^{2}\left(a_{3}-\alpha a_{2}^{2}\right)=2 \cos ^{2} \psi\left(1+2 \cos ^{2} \psi\right)(1-108 \cos \psi)^{2}
$$

where

$$
\psi=\psi(\alpha) \text { is the inverse function of }
$$

$$
\alpha=1+\frac{1+\cos ^{2} \psi-8 \cos ^{2} \psi\left(1-10 \cos ^{2} \cos \psi\right)}{8 \cos ^{2} \psi(1-10 g \cos \psi)^{2}}, \quad \psi \in\left(0 ; \psi_{1}\right)
$$

and
(52)

$$
a_{2}^{2}\left(a_{3}-\alpha a_{2}^{2}\right)=\frac{1}{1-\alpha}\left(\frac{1}{2}+e^{\frac{1-2 \alpha}{1-\alpha}}\right)^{2}
$$

ouमटこの α satisilos the inequality
(3i)

$$
e^{\frac{1-2 \alpha}{1-\alpha}} \leqslant \frac{1-\alpha}{2 \alpha}
$$

Sesides, wt ifac tat function (31) is increasing, wareas the Lé uf its values is tize interval $(3 / 8 ; 1)$.
de lacave tiaus proved

Leumai2. If, for $\alpha \in(3 / 8 ; 1)$, the extremal function satisfies uquation (0) and condition (28), tien the maximum of functional (3) is expressed by the formula (30); in case (28), for $\alpha \in(0 ; 3 / 0)$, there is no extremal function satisfying equation (b). wacreas if, for a given \propto, (33) holds and the extremal inuction satisfios oquation (b) and condition (29), then tie maxiinum of functional (3) is expressed by formula (32); in case (29), for α not satiafying (33), there is no extremal function being a solution of equation (b).
5. Equation of form (c). Squation (c) is represented, after some tranciormations, in the following equivalent form:
(34) $\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{2} \frac{1-\frac{1}{\tilde{w}} f(z)}{(f(z))^{2}}=\frac{\bar{k}}{k} \frac{\left(z-z_{0}\right)^{4}}{z^{2}}$.

Integratiug (34), we suall get
(35)

$$
\frac{\sqrt{1-4 \bar{z}_{0} w}}{w}+2 \bar{z}_{0} \log \frac{-4 \bar{z}_{0} w}{z\left(1+\sqrt{\left.1-4 \bar{z}_{0} w\right)^{2}}\right.}=\frac{1}{z}-\bar{z}_{0}^{2} z+c
$$

where C is a constant.
From the comparison $01(34$) and (4) and rom (35) wo nave
(36)

$$
(1-\alpha) z_{0}^{2} a_{2}^{2}+2 z_{0} a_{2}+\frac{3}{2}=0
$$

Next, using in (35) the fact that there exists an $x \in K$ alicia that $\rho\left(e^{i x}\right)=w$, we shall obtain
(37)

$$
a_{2}=-2 \bar{z}_{0}
$$

rirom (36) and (37) it follows Jat $\boldsymbol{\alpha}=3 / 8$. Consequently, we have proved

Lemma 3. If, for $\alpha=3 / 8$, tar 6xireinal function i autisiles tue equation of form (c), then

$$
\begin{equation*}
H(f)=\overline{6} \tag{38}
\end{equation*}
$$

For $\alpha \neq 3 / 8$, the extremal function does not satisiy equation (c).
6. Equation of form (d). Let us finally consider the ecua tron of form (d). After transforming it we signal get
(39) $\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{2} \frac{1}{(f(z))^{2}}=\bar{z}_{0} \cdot 4 \frac{\left(z^{2}-z_{0}^{2}\right)^{2}}{z^{2}}$.

After integrating (39) we have
(40)

$$
\frac{1}{i(z)}=\frac{1}{z}+\bar{z}_{0}^{2} z+C
$$

where C is a constant. From the condition $1=0$ and from (40) it follows that

$$
\begin{equation*}
a_{3}=(2 \alpha-1) a_{2}^{2} \tag{41}
\end{equation*}
$$

and
(42)

$$
\left|a_{2}\right|^{2}=\frac{1}{2(1-\alpha)}
$$

Brow (41) and (42) we next have
(43)

$$
H^{*}(\rho)=1 / 4(1-\alpha)
$$

Since $\left|a_{2}\right| \leqslant 2$ in the class S, therefore (42) implies the inequality $\quad \alpha \leqslant 7 / 8$. so, we have proved

Leman 4. If, for $\alpha \in(0 ; 7 / 8)$, tie extremal function satisfics the equation of fora (\dot{a}), then the maximum of functional (3) is expressed by formula (43). For $\alpha \in(7 / 8 ; 1)$, the extraneal function does not satisfy equation (d).
7. The main theorem. Basing ourselves on the previous considurations, we shall prove

Theorem. For any function $f \in S$,
(45) $\quad\left|a_{2}^{2}\left(a_{3}-\alpha a_{2}^{2}\right)\right| \leqslant\left\{\begin{array}{l}4(3-4 \alpha) \quad \text { for } \alpha \leqslant 3 / 8 \\ 2 \cos ^{2} \psi\left(1+2 \cos ^{2} \psi\right)(1-10 \cos \psi)^{2}\end{array}\right.$
(46) $\left|a_{2}{ }^{2}\left(a_{3}-\alpha a_{2}^{2}\right)\right| \leqslant \begin{cases}1 / 4(1-\alpha) & \text { for } \alpha \leqslant \alpha \leqslant 7 / 0, \\ 4(4 \alpha-3) & \text { for } \alpha \geqslant 7 / 8,\end{cases}$
where $\psi=\Psi(\alpha)$ is the inverse function of tia function $\alpha=$ $=\alpha(\psi)$ of tue form
$\alpha=1+\frac{1+2 \cos ^{2} \psi-8 \cos ^{2} \psi(1-10 g \cos \psi)}{8 \cos ^{2} \psi(1-10 E \cos \psi)^{2}}, \quad \psi \in\left\langle 0 ; \psi_{0}\right\rangle$,
Ψ. being the smallest positive root of the equation
$\left(16 \cos ^{4} \psi+8 \cos ^{2} \psi\right)(1-\log \cos \psi)-\left(1+2 \cos ^{2} \psi\right)^{2}-1=0$;
moreover, $\alpha_{0}=\alpha\left(\psi_{0}\right)$. Batinate (44)-(47) is sharp.
Proof. Note first that, together with the function $\mathcal{H}(z)$, also the function $e^{-i \theta^{\prime}} f\left(e^{i \theta_{2}}\right), \theta \in \mathbb{K}, \quad$ belongs to toe class S. In consequence, the maximum of the functional $\left|a_{2}{ }^{2}\left(a_{3}-\alpha a_{2}{ }^{2}\right)\right|$ is. identical in this class with tat of fundtional (3). we shall therefore confine ourselves to the latter. Besides, as we have already observed, it is enough to carry out the proof for $\alpha \in(0 ; 1)$.

In all the cases considered below we wake use of lemmas 1-4.
Let $0<\alpha<3 / 8$. Siren the maximum of functional (3) is expressed by (22) or (43) or (32). However, case (32) is inpossiole since, for $\quad \alpha \in(0 ; 3 / 8)$, we have $\left|a_{3}-\alpha a_{2}{ }^{2}\right|>2 e^{-2 \alpha /(1-\alpha)_{+}}$ +1 (cf. [1]). Next, note tilt, for $\alpha \in(u ; 3 / 8)$, the inequality

$$
1 / 4(1-\alpha)<4(3-4 \alpha)
$$

is true. dene, in tie interval $(0 ; 3 / 6)$, estimate (44) anoles true. In view of the continuity of tie functional is with respect
to the variable α, estimate (44) holds true aud is identical ivith (38) also for $\alpha=3 / 8$.

Let $3 / 0<\alpha \leqslant 7 / 8$. Then the maximum of the functional beitu tianitud is expressed by (30) or (32) or (43). Using bean the colitinuity of the functional as well as the inequalities

$$
1 / 4(1-\alpha) \leqslant \frac{1}{1-\alpha}\left(\frac{1}{2}+e^{\frac{1-2 \alpha}{1-\alpha}}\right)^{2}
$$

amd

$$
\begin{aligned}
& 2 \cos ^{2} \psi\left(1+2 \cos ^{2} \psi\right)(1-\log \cos \psi)^{2} \\
& \left\langle\frac{1}{1-\alpha}\left(\frac{1}{2}+e^{\frac{1-2 \alpha}{1-\alpha}}\right)^{2}\right.
\end{aligned}
$$

for $\quad \alpha \in(3 / 8 ; 7 / 8)$ and satisfying inequality (33), we obtain that, for loose values of α, formula (32) cannot be valid. If bine next compare (43) and (30), then we get estimates (45) and (46).

For $7 / 8<\alpha<1$, tine maximum of the functional under consideration is expressed by (22) or (30) or (32). From the inequalit j
$2 \cos ^{2} \psi\left(1+2 \cos ^{2} \psi\right)(1-10 g \cos \psi)^{2}<4(4 \alpha-3)$

$$
\left\langle\frac{1}{1-\alpha}\left(\frac{1}{2}+\theta^{\frac{1-2 \alpha}{1-\alpha}}\right)^{2}\right.
$$

and from the continuity of the functional with respect to α we obtain estimate (47), which completes the proof.

RerikeivCes

[1] Golusin, Gome, Some problems in tae taeory of urivaleut functions, Trudy ※at. Inst. steklov $<7(1949)$, (in Russizn).
[2] Gorsxi, J., Some local properties of re a_{3}, re a_{4} and re a_{5} in tine class S, Prace Nauk. Uniw. Śl\&skiego 12(1y72), 19-24.
[3] Kirwan, W.E., a note on extremal problems for certain classes of analytic functions, Proc. Amer. wath. Soc. 17(1906), 1020--1030.
[4] Ławrynowicz, J., Tamini, O., On estimatias a fiftis order functional for bounded univalent functions, Colloq. wath. 25, 2 (1972), 307-313.
[5] Scnaeffer, A.C., Spencer, D.C., Coefficient resions for schlicht functions, Amer. inath. Soc., Colloq. Fubl. 35(1950).
[6] Szwankowski, Ao, Eistiaation of the functional $\left|a_{j}-\alpha a_{2}^{2}\right|-i a$ tine class S of noloworpbic and univalent functions for α complex, Acta Univ. Lodz. 1(1984), 151-177; Abstracts Conference on Analytic Functions, Ěozuonik 1979, 54.
[7] Tammi, $0 .$, On the geometry of the coefficient body (a_{2}, a_{3}) for bounded univalent functions and some related coefiicieut problems, to apyear.

Sumunary. In the paper the naximum of the functional $\left|a_{2}^{2}\left(a_{3}-\alpha a_{2}^{2}\right)\right|, \quad \alpha \in R$, is determined in the well-known class S of holomorptic and univalent fucctions.

STRESZCZENIE

W pracy tej wyznaczono makalmum funkcjonalu $j a_{2}^{2}\left(a_{3}-d a_{2}^{2}\right) H_{\text {, }}$ d G IR, w dobrze znanej klasle S funkcy holomorficanych jednolintnych.

PE3D18

этой работе определен максимум фунхционала $\operatorname{la}_{2}^{2}\left(a_{3}-\alpha a_{2}^{2}\right) \mid$, $\mathcal{L} \in I R$ в хорошо анахомом классе S голоморфвнх однолистннх фунжций.

