ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

sectio a

Inatytut Matematyly
Unimeraytat Maril Curie-Stlodowskiej

W. CIESLAK, J. ZAJAC

On the Ahlfors Class \mathbf{N} in an Annulus

O klasie N Ahlforsa dla piertécienia

О6 Алярорсовом хлассе N дия єольца

Introduction. To show that the tneory of quasiconfornal mappings is not an ad hoc generalization of the theory of couformal mappings, but is, on the contrary intimately tied to the clgssical theory Ahlfors [1] nas investigated tne class N of complex-valued L^{∞} functions ν in the unit disk for waich the antilinear part of the Frfchet differential of normalized quasiconformal mappings vanishes, where tue mappinfs are geueruted oy complex dilatation of the form $t \nu$, t oing a real paraineter. He save there a taeory of tais class and showed that the complex structure of Teicmalliler space of closed Rieinann surfaces of genus $g>1$ carries a aatural complex analytic structure wilich can be derived.from the corresponiinf structure of L^{∞} by means of generalized Riewann mapping theorem.

The theory of tais class in has been used by Reica and strebel [4] in connection with one of the inost important extremal problems in the unit disk concerning tae functionswith given ooundary values.

```
- Very deep investigation of the class N bus veen given by
```

Reich in [3], where be considered also the class N in an annulus with "inward extension".

This class N has also been investigated by Lawrynowicz [2] and Zajac [5] and used as a tool to obtain a parametric representation of Teichmiller quasiconforial mappings of an annulus [6]. The results presented bere have an expository character. We present also some new results due to the first author concerning equivalence condition for functions of this claps.

1. Tre class N_{r}. Let μ be a complex-valued weasurable function in an annulus $\Delta_{r}=\{2: r \leqslant|z| \leqslant 1\}, 0 \leqslant r<1$, which satislies the condition

$$
\|\mu\|_{\infty}=\operatorname{inp}_{B} \sup _{z \in \Delta_{r} \backslash S}|\mu(z)|<1
$$

where the infimum is taken over all sets of the plane measure zero. It is well-kuown taat there exists exactly one number $R, 0 \leqslant R<1$, and one Q-quasiconforial mapping f of the annulus Δ_{r} onto Δ_{R} walch satisfies tae Beltrami equation

$$
\begin{equation*}
f_{\bar{z}}=\mu f_{z} \quad \text { with } \quad f(1)=1 \text {. } \tag{1}
\end{equation*}
$$

waere $Q=\left(1+\|\mu\|_{\infty}\right) /\left(1-\|\mu\|_{\infty}\right)$.
Suppose now that $\mu=t \nu$, waere $\|v\|_{\infty}<\infty$, and
$0 \leqslant t<1 / \| \boldsymbol{\nu} \infty$. Denote explicitly the dependence of f on ν : $f(z, t)=f[v](z, t), r \leqslant|z| \leqslant 1$. Let

$$
\begin{equation*}
\dot{f}[\nu](z)=\operatorname{li:n}_{t \rightarrow 0} \frac{1}{t}\{f[\nu](z, t)-z\}, \tag{2}
\end{equation*}
$$

Wrich is a frécuet differertial of $f[\nu]$. Tois expression is well definea and depends linearly on ν (cf. [1]). From $f[\nu] \overline{\bar{z}}=$ $=t v r[\nu]_{z}$ it turns out that $i[v]$, regarded as a function of z, bas partial aerivatives alcost evarywhere, and in particuiar
it satisfies the differential equation
(3)

$$
\dot{f}[\nu]_{\bar{z}}=\nu
$$

It is well-known that (3) is satisfied only if

$$
\begin{equation*}
\left.\dot{f}[v](\})=-\frac{1}{\pi} \iint_{\Delta_{r}} \frac{(2)}{2-\}} d x d y+w(\}\right) \tag{4}
\end{equation*}
$$

with nolomorpaic F.
Thus we nave (cp. [2])
(5)

$$
\begin{aligned}
& \dot{i}[\nu](\})=\frac{J}{2 \pi} \iint_{\Delta I} \sum_{k=-\infty}^{+\infty}\left[\frac{\gamma(z)}{z^{2}}\left(\frac{J+r^{2 k_{z}}}{3-r^{2 k} k_{z}}-\frac{1+r^{2 k_{z}}}{1-r^{c k_{z}}}\right)-\right. \\
& \left.-\frac{\sqrt{2}(2)}{2^{2}}\left(\frac{1+r^{2 k} r^{\frac{k}{z}}}{1-r^{2 k} 3^{\overline{2}}}-\frac{1+r^{2 k \frac{z}{2}}}{1-r^{2 k-}}\right)\right] d x d y .
\end{aligned}
$$

de see that f is a linear continuous operator which naps every $J \in L^{\infty}\left(\Delta_{r}\right)$ on a function $\dot{f}[\nu]$. As it is sown in [2] the relations $|f[v](z, t)|=1$ for $|z|=1$, and $|f[v](z, t)|=$ $=R[v](t) \quad|z|=r \quad j i e l d$

where $\rho=\lim _{t \rightarrow 0} \frac{1}{t}\{R[\nu](t)-r\}$. In analogy to the above we can verify that

$$
\operatorname{Ee}\{\bar{z} \dot{\sim}[i v](z)\}=\left\{\begin{array}{lll}
0 & \text { for } & |z|=1 \tag{7}\\
\text { rp } & \text { for } & |z|=r
\end{array}\right.
$$

where $\rho^{\lim } \frac{1}{t}\{\mathbb{R}[1 \nu](t)-r\}$. Nor more details see $[2]$. We recall $[2]$ that
(8)

$$
\rho=\frac{r}{2 \pi} \iint_{\Lambda_{r}}\left[\frac{\nu(z)}{z^{2}}+\frac{\frac{\nu(2)}{z^{2}}}{}\right] \text { dxdy }
$$

by which
(9)

$$
\rho=\frac{i r}{2 \lambda} \iint_{\Delta_{r}}\left[\frac{\partial(z)}{z^{2}}-\frac{\overline{\nu(z)}}{\bar{z}^{2}}\right] d x d y
$$

Following Ahlfors [1] let us decompose tie Frechet differential $\dot{\rho}[\nu]$ defined by (2) as follows

$$
\begin{equation*}
\left.\dot{f}[\nu]=\frac{1}{2}\{\dot{f}[\nu]+i \dot{f}[i v]\}+\frac{1}{2}\{\dot{f}[\nu]-i \dot{f}[1 \nu]\}\right\} \tag{10}
\end{equation*}
$$

where the first part is antilinear and toe second one is linear with respect to the complex multipliers. By the definition of $\dot{f}[v]$ we can see that $\{\dot{i}[v]+i \dot{f}[i v]\} \bar{z}=0$ i.e.

$$
\begin{equation*}
\Phi[\nu]=\dot{i}[\nu]+i \dot{i}[i v] \tag{11}
\end{equation*}
$$

is always a holomorphic function. The antilinearity is expressed by $\Phi[\underline{i} \nu]=-i \Phi[\nu]$.

Ne denote by N_{r} the subspace of $L^{\prime \prime}\left(\Delta_{\Gamma}\right)$ which is formed by all ν with $\Phi[\nu]=0$. It is a complex linear subspace of $L^{\infty}\left(\Delta_{T}\right)$. Now we can state

$$
\text { Theorem 1. An element } \nu \text { of } L^{\infty}\left(\Delta_{r}\right) \text { belongs to } N_{r} \text { if }
$$ and only if one of the following assumptions hold:

(12) $\dot{\rho}[\nu](\xi)= \begin{cases}0 & \underline{f o r} \mid\} \mid=1, \\ \frac{3}{\pi} \iint_{\Delta_{r}} \frac{\nu(z)}{z^{2}} d x d y & \underline{\text { for }}|\zeta|=r .\end{cases}$
(13)

$$
\dot{f}[\nu](\})=\frac{j}{\pi} \iint_{\Delta_{r}} \sum_{k=-\infty}^{+\infty} \frac{\nu(z)}{z^{2}}\left[\frac{3+r^{2 k_{z}}}{3-r^{2 k_{2}}}-\frac{1+r^{2 k_{z}}}{1-r^{2 k_{z}}}\right] d x d y
$$

(14) $\iint_{\Delta_{I}} \nu(z) B(z) d x d y=\frac{1}{2 \pi} \iint_{\Delta_{r}} \frac{\nu(z)}{z^{2}} d x d y \int_{|z|=r} z g(z) d z$
for all 8 noloworpaic in int Δ_{r} sigh $\iint_{\Delta_{r}}|ت(z)|$ indy $<\infty$.
Proof. The proof of (12) is presaatitd is cattails in [5] and [2]. The condition (13) is an immediate conseciuasce of (5) and the definition of the class N_{r}. To get tine cosiaition (14) suppose tact g is holomorphic in int Δ_{r} with finite L^{γ} norm in Δ_{r}. Then by (12) and Green's formulae we have tass equality (14). Conversely, if (14) is fulfilled, then we apply it to $\mathcal{B}(2)=$ $=\frac{1}{\pi}(\zeta-2)^{-1},|\zeta|=r$, ana next when $|\zeta|=1$. Because

$$
\int_{|z|=r} 2 g(z) d z=\int_{|z|=r+\varepsilon} 2 \dot{\sigma}(z) d z \text {, where } 0<\varepsilon<1-r
$$

which follows by an approximation argument applied to classical Green's formulae. By this (14) is valid as soon as
$\iint_{\Delta_{I}}|g(z)| d x d y<\infty \quad$. Then

$$
\int_{|z|=r+\varepsilon} \frac{z}{z-\xi} d z= \begin{cases}0 & \text { for }|\zeta|=1, \\ 2 \pi i\} & \text { for }|\zeta|=r .\end{cases}
$$

It shows that the right side of (14) has the sain e boundary values as it is given by (12). baking use of tine integral representation given by the formulae (4) we see that the ooundary values of $\dot{f}[v]$ are those of an holomorphic function, watch by the norimalication condition vanisaes at $z=1$, so it must do iatutically zero find we conclude (12).
2. Other properties of tace clays Nr_{r}. suppose that
(10)

$$
\partial\left(\rho \theta^{i \theta}\right)=\sum_{n=-\infty}^{+\infty} \alpha_{n}(\rho) e^{1 n \theta}, \quad r<\rho<1
$$

watch is the Fourier series of ν. Let now g oe as is fiteorein 1
and $l \in t$
(17)

$$
\dot{b}(z)=\sum_{k=-\infty}^{+\infty} a_{k} z^{k}=\sum_{k=-\infty}^{+\infty} a_{k} \rho^{k} e^{i k \theta}, \quad z=\rho e^{i \theta}, r<\rho<1
$$

Wu its Laurent series. Now, by the argument given in tat proof of l'beorem 1 , we may express (14) in terms of the coefficients $\alpha_{a}(\rho)$ and $a_{k}, 4, k=0, \pm 1, \pm 2, \ldots$. By finis we have
(18)

$$
\begin{aligned}
\left.\iint_{\Delta_{F}} \nu(2)\right)_{B}(2) d x d y & =2 \pi \int_{3:}^{1}\left\{\sum_{n=-\infty}^{+\infty} \alpha_{n}(\rho) a_{-n} \rho^{1-n}\right\} d \rho= \\
& =2 \pi \sum_{n=-\infty}^{+\infty} a_{-n} \int_{r}^{1} \alpha_{n}(\rho) \rho^{1-n} d \rho .
\end{aligned}
$$

For the right side of (14) we have
(19) $\frac{1}{2 x} \iint_{\Delta_{r}} \frac{\nu(z)}{z^{2}} d x d y \int_{|z|=r} 2 g(z) d z=$

$$
\begin{aligned}
& =-\frac{1}{2 \pi} \iint_{\Delta_{r}} \frac{\nu(z)}{z^{2}} d x d y \int_{|z|=r} z^{2} g(z) \frac{d z}{12}= \\
& =-2 \pi a_{-2} \int_{r}^{1} \frac{\alpha_{2}(\rho)}{\rho} d \rho
\end{aligned}
$$

Let

$$
i_{u, k}=\int_{r}^{1} \alpha_{n}(\rho) \rho^{k+1} d \rho
$$

then by (23) and (24) the equality (14) can be expressed in the form
(20) $\quad \sum_{n=-\infty}^{+\infty} a_{-n} A_{n,-n}=-a_{-2} A_{2,-2}$.

Let $H(\nu)$ denote tar Banach space of all holomorphic functrons witifinite 1 -norm in a domain D. If $D_{1} C D_{2}$.
then clearly $H\left(\nu_{1}\right) \supset H\left(D_{2}\right)$.
In the case of the unit diak it is easy to aer tiat tac unit disk can be replaced uy as arcitrary simply concected region D. If $D_{1} \subset D_{2}$ and $\nu \in N\left(D_{1}\right)$, taen $\tilde{\nu} \in N\left(D_{2}\right)$, where

$$
\tilde{\nu}(z)=\left\{\begin{array}{lll}
\nu(z) & , & z \in D_{1} \\
0 & , & z \in D_{2} \backslash D_{1}
\end{array} .\right.
$$

Making use of (14) we see that previous implication is also true in the case of a doubly connected domain.

These resulta have a natural analos in the case $r=0$, i.e. for mappings in the unit disk with an additional invariant point 2日ro.

REPERENCES

[1] Ablfors, L.V., Some remarks on Teicanliller space of Riemann surface, Ann. of Math. 74(1961), 171-191.
[2] Erzyi, J., Eawrynowicz, J., The Parametrical Hethod for Quasiconformal Mappings in the Plane, Springer-Verlag, 1982.
[3] Reich, E., An extremum prodem for analytic functions with area norins, Ann. Acad. Sci. Fenn. Ser. A I, vol. 2(1976), 429-445.
[4] Retch, E., Strebel, K., On quasiconformal mapplage with keep the boundary points fixed, Trans. Aner. Liatb. Soc. 138(1yo9), 211-222:
[5] Zając, J., The Ablfors class \mathbb{N} and its connection witn Teichmaller quasiconformal mappines of an annulus, Anr. U'Biv. Wariae Curie-Skiodowska, Sect. A, 12(1y7も), 155-102.

```
[0]Zajदc, J., Ou the parametrization of reicouldler mapping<s in
    an anrulus, Bull. de la Soc. des Jcien et des Lettves de цódź
    Vol. KXVII (1.)77), 1-8.
```

STRESZCZENIE

W pracy 1 Ahlfors wprowadeli podklase N klasy L^{∞} funkcjl zespolonych V w kole jednostkowym, takich, ze dia odwzorowania quaslkorforemnego generowanego przez dylalacja $t V, t \in \mathbb{R}$, znika Identycznie czest antyllniowa jego rbzniczk Frocheta.

Autorzy badaja wiasnośl funkcjl naletacych do analogicznej klasy funkcll w plerścienju.

PE3RME

 функдий V в едииичном круге, таких что для квазиконформвого отобраяения породденного коиплепсной дилватацией $t v, t \in$ IR анти-

Авторд аанимадтся свойстваии функций принадледащих в аналогиqecrouy ksaccy в кодbду.

