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Funkcje o module monotonicznym

Abstract. Briefly, a starlike function is one for which arg f(z) is increasing on |2| = r. Here
we examine a similar concept for | f(z)|. Since | f(z)| is periodic when f(z) is single-valued, the idea
must be modified. Thus, f(z) is modulus monotonic on z = re'? if some interval a <8< a+2nr
can be decomposed into two subintervals I} and I such that |f(z)| is decreasing in I and increasing

in IQ.

1. Definitions. Let 4 be the set of all normalized functions
(1) fz) =2+ anz"
n=2

that are regular in E : |z| < 1. Let A be the subset of those that are also regular on
OE : |z| = 1. Since Theorems about A can usually be extended to theorems about A,
using a limit argument, in this work we will consider subsets of A.

Deflnition 1. We say that f(z) is modulus monotonic on the circle [z| = r.
with angle a, if there is an a in (—7/2,7/2) such that |f(re'®)| is decrcasing for
0ecl,:a<8<rm—a,andincreasingfor € I : 1 —a <6 < 2r + a.

Here we use the words increasing or decreasing to include the case that [f(z)|
is constant on a subset of I or I,. For fixed r < 1, we let MM(r,a) denote subset
of A of functions that are modulus monotonic on |z| = r with angle a. Briefly such
functions are said to be modulus monotonic. If f(z) € MM(r,a) with 0 <r < 1, then
9(z) = f(rz)/r isin MM(1,a). Hence W.L.0.G. we may concentrate our attention
on the class MM(1,a).Notice that we have selected the arc I; so that I, is bisected
by the imaginary axis. If this is not the case, we can always find a 6 such that
9(z) = e " f(e'*z) is decreasing on an arc that is bisected by the imaginary axis.

2. Elementary properties of modulus monotonic functions. Suppose
that f(z) #0onacircle[:z=re®,0<6 <2r. ThenonT
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- lu|f[ = ('J Re In f(z) = Re 0lnf(z)

= eif,(z)
wheds,) *

=Re [E lnf(z)(%
Equation (2) gives

Lemma 1. If f(z) € MM(r,a) and f(z) # 0 on the circle |z| = r, then on that

circle

(3) Im =

>0, fora<f<r-a

and

f(z) -

(4) Imzf(:] <0,

forr—a<<2r+a.

Conversely, if (3) and (4) hold on |z| = r, and f(z) € A, then f(2) € MM(r,a).

As a trivial example, consider f(z) = z. Since zf'(z)/f(z) = 1, then (3) and (4)
hold for every r # 0 and every a in (—7/2,7/2). This example shows why we include
the equal sign in (3) and (4).

Next, consider f(z) = z + ap2%. This f(z) is in MM(r,0) for all a; > 0. If
az > 1/2, then f(z) is not univalent in E. If az > 1, then f(z) has a second zero
inside E. Thus, one cannot prove that f(z) is univalent, or is not zero in 0 < |z| < 1,
from the assumption that f(z) € MM(1,0).

3. A representation theorem. Suppose that f(z) € MM(1,a). If z = €',
then h(z) = z — 2isina — 1/z gives h(e'®) = 2i(sin8 — sina). If we set
f(z) f(x)
f(2) f(z) '

then on OE we have Re G(z) > 0. But G(z) has a pole with residue 1 at 2 = 0 and
also poles at any other zeros of f(z) in E. If f(z) has no zeros in 0 < |z| < 1, then

(5) G(z) = —h(2)2== = (1 + (2isina)z — 2*)

(6) P(z)=G(z)+ 2z — %

is regular in E and Re P(z) > 0 on OE and hence throughout E. A brief computation
using (1) gives

f()

=a; + 2isina + (2a;3 — a-J + 2ia; sina)z

P(z2) = [l + (21sina): — 4,2]
(7

+ (3a4 + a3 — 3aza3 + 2i(2a3 — a})sina —a)2? +....
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We have proved

Theorem 1. If f(z) is in MM(1,a) and has no zeros in 0 < [z| < 1, then
P(z) defined by (7) is regular and Re P(z) > 0 in E.

To obtain a converse to the Theorem 1, we must add some conditions on P(z).

From (7) we have

(8) 2f'(z) Lik z2(P(z) — 2isina)

f(2) 1+ (21sina)z — 22
Theorem 2. Suppose that P(0) = a; + 2isina and Re P(z) > 0 in E. If the
quotient on the right side of (8) is regular in E, and f(z) is obtained by integrating
(7) or (8) with the side conditions f(0) = 0, f'(0) = 1, and f"(0) = 2a,, then
f(z) € MM(1, a).

The regularity condition on (8) implies that P(z) —2isina has zeros at z; = e'®
and z; = e'(*=2),

Corollary 1. If f(z) given by (1) is in MM(1,a) end has no zeros in 0 < z| < 1,
then Rea; > 0. If Reaz =0, then f(z) = 2.

Theorems 1 and 2 suggest several open questions. If f(z) € MM(1,a) and
0 <r<1,is f(z) € MM(r,B) for some suitable 3 ? It is clear that in general 3 # a,
and indeed § depends on r.

What functions B(r) are admissable when f(z) € MM(1,a)? What conditions
on P(z) are necessary and sufficient for f(z) to be univalent in E ?

We next consider the special case a = 0. Then equation (7) becomes

Ne-nfe) _1-2
(©) P =0 -9%5-—=

= ay + (203 — a3)z + (3a4 + a3 — 3aza3 — az)z? + ...

and equation (8) becomes

zf'(z) 1
= P
(10) ) R (2)
Suppose that in (10) we put P(z) = 2 + iz — iz? and replace f(z) by fi(z). Then for
7 = eil
(11) I fi(z) 2—sinf +sin26

mzfl(z) B 2sinf

Therefore, zf](2)/ fi(z) satisfies the conditions (3) and (4) of Lemma 1 on OF when
a = 0. With this P(z) equation (11) gives

‘: exp(iz —iln(1 + 2)) .

(12) file) =2
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Hence |fi(e'?)| is decreasing for 0 < 6§ < 7 and increasing for # < 6 < 2x. It is
important to observe that in this example the coefficients are not all real and that
fi(z) ¢ MM(r,0) for any r in (0,1). Although f,(z) is not regular at z = %1, this
example indicates that f(z) € MM(1,0) does not imply that the a, are all real or
that f(z) € MM(r,0) for any r € (0,1). To obtain such conclusions we must consider
an appropriate subset.

Definition 2. A function f(z) in A with all coefficients real is said to be modulus
monotonic on |z| = r with real coefficients if f(z) € MM(r,0). We let MMR(r)
denote the set of all such functions for fixed r in (0, 1).

Briefly, f(z) € MMR(r) if all the coefficients are real and the inequalities (3)
and (4) are satisfied on |z| = r with o = 0.

Theorem 3. Suppose that f(z) € MMR(1) and f(z) # 0 for 0 < |z] < 1.
Then f(2) € MMR(r) for each r in (0,1).

Proof. Since f(z) has real coefficients, Im zf'(z)/f(z) = 0if —1 < z < 1. But
Im zf'(z)/f(z) is a harmonic function that is nonnegative on 2=¢'®, 0 < 6 < 7. Hence,

it is nonnegative throughout the upper half of the unit disk. A similar argument shows
that Im z f'(z)/f(z) < 0 throughout the lower half of the unit disk.

We return to equations (9) and (10). If f(z) has all coefficients real, the same is
true of P(z). If a; =0, then P(z) =0 and f(z) = z. If a; # 0, then p(z) = P(z)/a,
is normalized by p(0) = 1, has all coefficients real and has positive real part in E.
Consequently, from well-known properties of typically-real functions (2, 1 vol. 1
p-185], the function

(13) ) El,' [z{f'((:}) - 1] L 1—222 Pcf:) a 1-2::? plz)

is typically-real, with T(z) = 2 + ... . This gives

Theorem 4. If f(z) € MMR(1) and f(z) # 0 for 0 < z < 1, then T(z) defined
by (13) is typically-real in E. Conversely, if T(z) is typically-real, and f(z) is the
solution of (13) with f(0) =0, f'(0) =1, and f"(0) = 2az, then f(z) € MMR(r) for
each r in (0,1), and f(z) #0 for 0 < |2| > 1.

4. Coeflicient bounds. Whenever a new class of analytic functions is intro-
duced, it is customary to look for sharp bounds for the coefficients |a,|. Perhaps the
most famous result of this type is DeBranges’ Theorem which gives |a,| < n for all n
if f(z) € S.

Consequently, it is something of a surprise that in the class MM(1,0) the coef-
ficient |a,| has no upper bound for any n > 1. However, if we fix a; > 0, then |a,|
can be bounded. This is the content of

Theorem 5. If f(z) € MM(1,0) and f(z) # 0 for 0 < |zj < 1, and a; > 0,
then for each n > 2 we have |a,| < A, where A, is defined by
[ o]
=z + ');: An2?

=2

a3z

(14) F'(Z)Ezexpl
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Further, this upper bound is best possible for each n > 2.

Proof. We use the technique of dominant power series [1, vol. I, pp. 82-83]
and the associated symbol <. From Corollary 1 we may assume that a; > 0. Then
from Carathéodory's Theorem for functions with positive real part in E [1, vol. I, p.
77-81] equations (9) and (10) give

fllz) 1 _ 1 a2 1+:
i f(z)_z_l—-zzp(z)<l—z2 1-z°
If we integrate (15) from 0 to z we obtain
1)
(16) In > <ﬂzl_z

and hence f(z) €< zexpayz/(1 — z). For example, expanding the right side of (14)

gives

1 1

2 2
Now F(z) is not in M M(1,0) because it is unbounded at z = 1. But for r < 1,

the function zexp ayz/(1 —rz) is in MM(1,0) and the nth coefficient for this function

can be made arbitrarily close to A, by selecting r close to 1.

las| Sar+-ad, |ulSar+ay+sal.

If a # 0, we can also obtain coefficient bounds, but in this case the bounds are
far from best possible. For brevity set n = e~*. Then equation (7) can be put in the
form

P(z) —2isina = (1+nz)(1 - ﬁz){;((z)) s nz)(1 — 12) =g(z)=a3 + E gnz" ,
z z n=1

where Re g(z) > 0 in E. Consequently,

an f'(2) % - q(z) __1 [_n + l—ﬁﬁz]q(z)

f(z) z (+nz)(1-nz) 2cosa ll+nz

and (losing all hope of a sharp result)
fl'(iz) 1 1 2 142
(18) f(2) _z{2cosa e e

Integrating from 0 to z we obtain

f(2) ap_ f14t @ [ 2 .0 ,_9].
9 l“_z-‘g:cosm_/o l—tzdt_cosa l1-2 n( ) ]

We have proved

Theorem 8. If f(z) € MM(1,a) and f(z) # 0 for 0 < |2| <1, and a3 > 0,
then |an| < An, for each n > 2, where A, is defined by

oo

(20) F(z):zexp[c—oasi(;[ 2zz+ln(1—z)]]=z+ . 22+ZA,.2".

1- cosa o
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We observe that in the definition of the class M M(1,a), we could change the
arcs I and I; by asking that |f(e'?)| is decreasing for 0 < < § and increasing for
B < 0 < 2r. However, the equations we obtain with this selection of arcs are much
less pleasant.
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STRESZCZENIE

Jesh f jest funkcjy gwiazdzisty w kole jednostkowym E, to arg f(z) jest funkcjg rosngcy
dla |z] = r < 1. W pracy tej badamy analogiczne zagadnienie dla |£(2)|. Poniewaz |f(z)| jest
funkcjg okresowa dla funkcji f jednoznacznej, wigc zagadnienie nalezy zmodyfikowaé. Zatem f(z)
ma monotoniczny modul dla 2 = re'f jesli pewien przedzial a < 6 < a + 27 da sigq rozlozy¢ na
dwa podprzedzialy I}, I3 tak, ze |f(2)| maleje w I oraz roénie w Is.
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