LUBLIN-POLONIA

SECTIO A

Department of Mathematics
University of South Florida, Tampa, Florida

A. W. GOODMAN

Modulus Monotonic Functions
Funkcje o module monotonicznym

Abstract

Briefly, a starlike function is one for which arg $f(z)$ is increasing on $|z|=r$. Here we examine a similar concept for $|f(z)|$. Since $|f(z)|$ is periodic when $f(z)$ is single valued, the idea must be modified. Thus, $f(z)$ is modulus monotonic on $z=r e^{i \theta}$ if some interval $\alpha \leq \theta \leq \alpha+2 \pi$ can be decomposed into two subintervals I_{1} and I_{2} such that $|f(z)|$ is decreasing in I_{1} and increasing in I_{2}.

1. Definitions. Let A be the set of all normalized functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

that are regular in $E:|z|<1$. Let \bar{A} be the subset of those that are also regular on $\partial E:|z|=1$. Since Theorems about \bar{A} can usually be extended to theorems about A. using a limit argument, in this work we will consider subsets of \bar{A}.

Definition 1. We say that $f(z)$ is modulus monotonic on the circle $|z|=r$. with angle α, if there is an α in $(-\pi / 2, \pi / 2)$ such that $\left|f\left(r e^{i \theta}\right)\right|$ is decreasing for $\theta \in I_{1}: \alpha \leq \theta \leq \pi-\alpha$, and increasing for $\theta \in I_{2}: \pi-\alpha \leq \theta \leq 2 \pi+\alpha$.

Here we use the words increasing or decreasing to include the case that $|f(z)|$ is constant on a subset of I_{1} or I_{2}. For fixed $r \leq 1$, we let $M M(r, \alpha)$ denote subset of \bar{A} of functions that are modulus monotonic on $|z|=r$ with angle α. Briefly such functions are said to be modulus monotonic. If $f(z) \in M M(r, \alpha)$ with $0<r \leq 1$, then $g(z) \equiv f(r z) / r$ is in $M M(1, \alpha)$. Hence W.L.O.G. we may concentrate our attention on the class $M M(1, \alpha)$. Notice that we have selected the arc I_{1} so that I_{1} is bisected by the imaginary axis. If this is not the case, we can always find a δ such that $g(z) \equiv e^{-i 6} f\left(e^{i 6} z\right)$ is decreasing on an arc that is bisected by the imaginary axis.
2. Elementary properties of modulus monotonic functions. Suppose that $f(z) \neq 0$ on a circle $\Gamma: z=r e^{i \theta}, 0 \leq \theta \leq 2 \pi$. Then on Γ

$$
\begin{align*}
\frac{\partial}{\partial \theta} \ln |f(z)| & =\frac{\partial}{\partial \theta} \operatorname{Re} \ln f(z)=\operatorname{Re} \frac{\partial}{\partial \theta} \ln f(z) \\
& =\operatorname{Re}\left[\frac{d}{d z} \ln f(z) \frac{\partial z}{\partial \theta}\right]=\operatorname{Re} i \frac{f^{\prime}(z)}{f(z)} z . \tag{2}
\end{align*}
$$

Equation (2) gives
Lemma 1. If $f(z) \in M M(r, \alpha)$ and $f(z) \neq 0$ on the circle $|z|=r$, then on that circle

$$
\begin{equation*}
\operatorname{Im} z \frac{f^{\prime}(z)}{f(z)} \geq 0, \quad \text { for } \alpha \leq \theta \leq \pi-\alpha \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im} z \frac{f^{\prime}(z)}{f(z)} \leq 0, \quad \text { for } \pi-\alpha \leq \theta \leq 2 \pi+\alpha . \tag{4}
\end{equation*}
$$

Conversely, if (3) and (4) hold on $|z|=r$, and $f(z) \in \bar{A}$, then $f(z) \in M M(r, \alpha)$.
As a trivial example, consider $f(z) \equiv z$. Since $z f^{\prime}(z) / f(z)=1$, then (3) and (4) hold for every $r \neq 0$ and every α in ($-\pi / 2, \pi / 2$). This example shows why we include the equal sign in (3) and (4).

Next, consider $f(z)=z+a_{2} z^{2}$. This $f(z)$ is in $M M(r, 0)$ for all $a_{2}>0$. If $a_{2}>1 / 2$, then $f(z)$ is not univalent in E. If $a_{2}>1$, then $f(z)$ has a second zero inside E. Thus, one cannot prove that $f(z)$ is univalent, or is not zero in $0<|z| \leq 1$, from the assumption that $f(z) \in M M(1,0)$.
3. A representation theorem. Suppose that $f(z) \in M M(1, \alpha)$. If $z=e^{i \theta}$, then $h(z) \equiv z-2 i \sin \alpha-1 / z$ gives $h\left(e^{i \theta}\right)=2 i(\sin \theta-\sin \alpha)$. If we set

$$
\begin{equation*}
G(z)=-h(z) z \frac{f^{\prime}(z)}{f(z)}=\left(1+(2 i \sin \alpha) z-z^{2}\right) \frac{f^{\prime}(z)}{f(x)}, \tag{5}
\end{equation*}
$$

then on ∂E we have $\operatorname{Re} G(z) \geq 0$. But $G(z)$ has a pole with residue 1 at $z=0$ and also poles at any other zeros of $f(z)$ in \bar{E}. If $f(z)$ has no zeros in $0<|z| \leq 1$, then

$$
\begin{equation*}
P(z) \equiv G(z)+z-\frac{1}{z} \tag{6}
\end{equation*}
$$

is regular in \bar{E} and $\operatorname{Re} P(z) \geq 0$ on ∂E and hence throughout \bar{E}. A brief computation using (1) gives

$$
\begin{align*}
P(z) & =\left[1+(2 i \sin \alpha) z-z^{2}\right] \frac{f^{\prime}(z)}{f(z)}+z-\frac{1}{z} \\
& =a_{2}+2 i \sin \alpha+\left(2 a_{3}-a_{2}^{2}+2 i a_{2} \sin \alpha\right) z \tag{7}\\
& +\left(3 a_{4}+a_{2}^{3}-3 a_{2} a_{3}+2 i\left(2 a_{3}-a_{2}^{2}\right) \sin \alpha-a_{2}\right) z^{2}+\ldots
\end{align*}
$$

We have proved
Theorem 1. If $f(z)$ is in $M M(1, \alpha)$ and has no zeros in $0<|z| \leq 1$, then $P(z)$ defined by (7) is regular and $\operatorname{Re} P(z) \geq 0$ in \bar{E}.

To obtain a converse to the Theorem 1, we must add some conditions on $P(z)$. From (7) we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=1+\frac{z(P(z)-2 i \sin \alpha)}{1+(2 i \sin \alpha) z-z^{2}} \tag{8}
\end{equation*}
$$

Theorem 2. Suppose that $P(0)=a_{2}+2 i \sin \alpha$ and $\operatorname{Re} P(z) \geq 0$ in \bar{E}. If the quotient on the right side of (8) is regular in \bar{E}, and $f(z)$ is obtained by integrating (7) or (8) with the side conditions $f(0)=0, f^{\prime}(0)=1$, and $f^{\prime \prime}(0)=2 a_{2}$, then $f(z) \in M M(1, \alpha)$.

The regularity condition on (8) implies that $P(z)-2 i \sin \alpha$ has zeros at $z_{1}=e^{i \alpha}$ and $z_{2}=e^{i(\pi-\alpha)}$.

Corollary 1. If $f(z)$ given by (1) is in $M M(1, \alpha)$ and has no zeros in $0<|z| \leq 1$, then $\operatorname{Re} a_{2} \geq 0$. If Re $a_{2}=0$, then $f(z) \equiv z$.

Theorems 1 and 2 suggest several open questions. If $f(z) \in M M(1, \alpha)$ and $0<r<1$, is $f(z) \in M M(r, \beta)$ for some suitable β ? It is clear that in general $\beta \neq \alpha$, and indeed β depends on r.

What functions $\beta(r)$ are admissable when $f(z) \in M M(1, \alpha)$? What conditions on $P(z)$ are necessary and sufficient for $f(z)$ to be univalent in E ?

We next consider the special case $\alpha=0$. Then equation (7) becomes

$$
\begin{align*}
P(z) & =\left(1-z^{2}\right) \frac{f^{\prime}(z)}{f(z)}-\frac{1-z^{2}}{z} \tag{9}\\
& =a_{2}+\left(2 a_{3}-a_{2}^{2}\right) z+\left(3 a_{4}+a_{2}^{3}-3 a_{2} a_{3}-a_{2}\right) z^{2}+\ldots
\end{align*}
$$

and equation (8) becomes

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=1+\frac{1}{1-z^{2}} P(z) \tag{10}
\end{equation*}
$$

Suppose that in (10) we put $P(z)=2+i z-i z^{2}$ and replace $f(z)$ by $f_{1}(z)$. Then for $z=e^{i \theta}$

$$
\begin{equation*}
\operatorname{Im} z \frac{f_{1}^{\prime}(z)}{f_{1}(z)}=\frac{2-\sin \theta+\sin 2 \theta}{2 \sin \theta} \tag{11}
\end{equation*}
$$

Therefore, $z f_{1}^{\prime}(z) / f_{1}(z)$ satisfies the conditions (3) and (4) of Lemma 1 on ∂E when $\alpha=0$. With this $P(z)$ equation (11) gives

$$
\begin{equation*}
f_{1}(z)=z \frac{1+z}{1-z} \exp (i z-i \ln (1+z)) \tag{12}
\end{equation*}
$$

Hence $\left|f_{1}\left(e^{i \theta}\right)\right|$ is decreasing for $0<\theta<\pi$ and increasing for $\pi<\theta<2 \pi$. It is important to observe that in this example the coefficients are not all real and that $f_{1}(z) \notin M M(r, 0)$ for any r in $(0,1)$. Although $f_{1}(z)$ is not regular at $z= \pm 1$, this example indicates that $f(z) \in M M(1,0)$ does not imply that the a_{n} are all real or that $f(z) \in M M(r, 0)$ for any $r \in(0,1)$. To obtain such conclusions we must consider an appropriate subset.

Deflnition 2. A function $f(z)$ in A with all coefficients real is said to be modulus monotonic on $|z|=r$ with real coefficients if $f(z) \in M M(r, 0)$. We let $M M R(r)$ denote the set of all such functions for fixed r in $(0,1)$.

Briefly, $f(z) \in M M R(r)$ if all the coefficients are real and the inequalities (3) and (4) are satisfied on $|z|=r$ with $\alpha=0$.

Theorem 3. Suppose that $f(z) \in M M R(1)$ and $f(z) \neq 0$ for $0<|z| \leq 1$. Then $f(z) \in M M R(r)$ for each r in $(0,1)$.

Proof. Since $f(z)$ has real coefficients, $\operatorname{Im} z f^{\prime}(z) / f(z)=0$ if $-1 \leq z \leq 1$. But $\operatorname{Im} z f^{\prime}(z) / f(z)$ is a harmonic function that is nonnegative on $z=e^{i \theta}, 0 \leq \theta \leq \pi$. Hence, it is nonnegative throughout the upper half of the unit disk. A similar argument shows that $\operatorname{Im} z f^{\prime}(z) / f(z) \leq 0$ throughout the lower half of the unit disk.

We return to equations (9) and (10). If $f(z)$ has all coefficients real, the same is true of $P(z)$. If $a_{2}=0$, then $P(z) \equiv 0$ and $f(z) \equiv z$. If $a_{2} \neq 0$, then $p(z) \equiv P(z) / a_{2}$ is normalized by $p(0)=1$, has all coefficients real and has positive real part in E. Consequently, from well-known properties of typically-real functions $[2,1 \mathrm{vol}$. I p.185], the function

$$
\begin{equation*}
T(z)=\frac{1}{a_{2}}\left[z \frac{f^{\prime}(z)}{f(z)}-1\right]=\frac{z}{1-z^{2}} \frac{P(z)}{a_{2}}=\frac{z}{1-z^{2}} p(z) \tag{13}
\end{equation*}
$$

is typically-real, with $T(z)=z+\ldots$ This gives
Theorem 4. If $f(z) \in M M R(1)$ and $f(z) \neq 0$ for $0<z \leq 1$, then $T(z)$ defined by (13) is typically-real in E. Conversely, if $T(z)$ is typically-real, and $f(z)$ is the solution of (13) with $f(0)=0, f^{\prime}(0)=1$, and $f^{\prime \prime}(0)=2 a_{2}$, then $f(z) \in M M R(r)$ for each r in $(0,1)$, and $f(z) \neq 0$ for $0<|z|>1$.
4. Coefficient bounds. Whenever a new class of analytic functions is introduced, it is customary to look for sharp bounds for the coefficients $\left|a_{n}\right|$. Perhaps the most famous result of this type is DeBranges' Theorem which gives $\left|a_{n}\right| \leq n$ for all n if $f(z) \in S$.

Consequently, it is something of a surprise that in the class $M M(1,0)$ the coefficient $\left|a_{n}\right|$ has no upper bound for any $n>1$. However, if we fix $a_{2}>0$, then $\left|a_{n}\right|$ can be bounded. This is the content of

Theorem 5. If $f(z) \in M M(1,0)$ and $f(z) \neq 0$ for $0<|z| \leq 1$, and $a_{2}>0$, then for each $n>2$ we have $\left|a_{n}\right| \leq A_{n}$ where A_{n} is defined by

$$
\begin{equation*}
F(z) \equiv z \exp \frac{a_{2} z}{1-z}=z+\sum_{n=2}^{\infty} A_{n} z^{n} \tag{14}
\end{equation*}
$$

Further, this upper bound is best possible for each $n>2$.
Proof. We use the technique of dominant power series [1, vol. I, pp. 82-83] and the associated symbol \ll. From Corollary 1 we may assume that $a_{2}>0$. Then from Carathéodory's Theorem for functions with positive real part in $E[1$, vol. I, p. $77-81]$ equations (9) and (10) give

$$
\begin{equation*}
\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z}=\frac{1}{1-z^{2}} P(z) \ll \frac{a_{2}}{1-z^{2}} \cdot \frac{1+z}{1-z} . \tag{15}
\end{equation*}
$$

If we integrate (15) from 0 to z we obtain

$$
\begin{equation*}
\ln \frac{f(z)}{z} \ll a_{2} \frac{z}{1-z} \tag{16}
\end{equation*}
$$

and hence $f(z) \ll z \exp a_{2} z /(1-z)$. For example, expanding the right side of (14) gives

$$
\left|a_{3}\right| \leq a_{2}+\frac{1}{2} a_{2}^{2}, \quad\left|a_{4}\right| \leq a_{2}+a_{2}^{2}+\frac{1}{2} a_{2}^{3}
$$

Now $F(z)$ is not in $M M(1,0)$ because it is unbounded at $z=1$. But for $r<1$, the function $z \exp a_{2} z /(1-r z)$ is in $M M(1,0)$ and the nth coefficient for this function can be made arbitrarily close to A_{n} by selecting r close to 1 .

If $\alpha \neq 0$, we can also obtain coefflicient bounds, but in this case the bounds are far from best possible. For brevity set $\eta=e^{-i \alpha}$. Then equation (7) can be put in the form
$P(z)-2 i \sin \alpha=(1+\eta z)(1-\bar{\eta} z) \frac{f^{\prime}(z)}{f(z)}-\frac{(1+\eta z)(1-\bar{\eta} z)}{z}=q(z)=a_{2}+\sum_{n=1}^{\infty} q_{n} z^{n}$,
where $\operatorname{Re} q(z) \geq 0$ in \bar{E}. Consequently,

$$
\begin{equation*}
\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z}=\frac{q(z)}{(1+\eta z)(1-\bar{\eta} z)}=\frac{1}{2 \cos \alpha}\left[\frac{\eta}{1+\eta z}+\frac{\bar{\eta}}{1-\bar{\eta} z}\right] q(z) \tag{17}
\end{equation*}
$$

and (losing all hope of a sharp result)

$$
\begin{equation*}
\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z} \ll \frac{1}{2 \cos \alpha} \frac{2}{1-z} a_{2} \frac{1+z}{1-z} \tag{18}
\end{equation*}
$$

Integrating from 0 to z we obtain

$$
\begin{equation*}
\ln \frac{f(z)}{z} \ll \frac{a_{2}}{\cos \alpha} \int_{0}^{z} \frac{1+t}{1-t^{2}} d t=\frac{a_{2}}{\cos \alpha}\left[\frac{2}{1-z}+\ln (1-z)-2\right] . \tag{19}
\end{equation*}
$$

We have proved
Theorem 6. If $f(z) \in M M(1, \alpha)$ and $f(z) \neq 0$ for $0<|z| \leq 1$, and $a_{2}>0$, then $\left|a_{n}\right| \leq A_{n}$, for each $n>2$, where A_{n} is defined by

$$
\begin{equation*}
F(z)=z \exp \left[\frac{a_{2}}{\cos \alpha}\left[\frac{2 z}{1-z}+\ln (1-z)\right]\right]=z+\frac{a_{2}}{\cos \alpha} z^{2}+\sum_{n=3}^{\infty} A_{n} z^{n} \tag{20}
\end{equation*}
$$

We observe that in the definition of the class $M M(1, \alpha)$, we could change the arcs I_{1} and I_{2} by asking that $\left|f\left(e^{i \theta}\right)\right|$ is decreasing for $0 \leq \theta \leq \beta$ and increasing for $\beta \leq \theta \leq 2 \pi$. However, the equations we obtain with this selection of arcs are much less pleasant.

REFERENCES

[1] Goodman, A. W., Univalent Functions, Polygonal Publishing House, Washington, New Jersey.
[2] Rogosinski, W., Über positive harmonische Entwieklungen und typischreele Potenzreihen, Math. Z. 35 (1932), 93-121.

After my paper was submitted, I learned that Prof. Yusuf Avci had been working on the same topic, but only Theorem 1 is in the intersection of our results. The appropriate references to his work are:

1. Univalent functions with the monotonic modulus property, Complex Variables, Theory and Applications, 10 (1988), 161-169.
2. Further results on the univalent functions with the monotonic modulus property, Ann. Polon. Math., 53 (1991), 57-60.
3. Univalent meromorphic functions with the monotonic modulus property, Proc. 2nd Nat. Math. Sym. Turkish Math. Soc. (1989), 351-356.
4. On monotone menomorphic functions, Proc. 3rd Nat. Math. Sym. Turkish Math. Soc. (1990), to appear.

STRESZCZENIE

Jeśli f jest funkcja gwiazdzistą w kole jednostkowym E, to arg $f(z)$ jest funkcja rosnạc dla $|z|=r<1$. W pracy tej badamy analogiczne zagadnienie dla $|f(z)|$. Ponieważ $|f(z)|$ jest funkcja okresową dla funkcji f jednoznacznej, wị̧ zagadnienie należy zmodyfikować. Zatem $f(z)$ ma monotoniczny modul dla $z=r e^{i \theta}$ jeśli pewien przedzial $\alpha \leq \theta \leq \alpha+2 \pi$ da sị rozlożyć na dwa podprzedzialy I_{1}, I_{2} tak, zee $|f(z)|$ maleje $w I_{1}$ oraz rośnie w I_{2}.

