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Odpowiednioéé brzegowa przy odwzorowaniach
quasikonforemnych automorfizméw obszaréw Jordana

Abstract. Let I" be a Jordan curve in the extended plane C and let D, D*® be its com-
plementary domains. With every ordered quadruple of distinct points 23,22,23,24 € T, two
real values [zl y22,23, 34]D and [Zl 1224 23, 24][)-, are associated and called conjugate harmonic
cross-ratios. Both of them are conformal invariants. Continuing his earlier work on the boundary
value problem for quasiconformal automorphisms and using the above invariants, the author defines
two classes AD(K') and Ap«(K) of automorphisms of I, and proves that they are representing
the boundary values of all K-quasiconformal automorphisms of D and D°, respectively. As an
application, new characterizations of quasicircles are obtained.

1. Introduction. It is well-known that a K-quasiconformal (K-qc) automor-
phism F of a Jordan domain D C C, can be extended to a homeomorphism of the
closure D. It then induces an automorphism f = F|. of the boundary curve I' = 8D.
In the case of D =U = {z : Im z > 0}, and a K-qc automorphisms F of U that fixes
the point at infinity, the induced automorphism f = F|g of R can be represented by
a p-quasisymmetric (p-qs) function in the sense of A. Beurlingand L. V. Ahlfors
(BA-condition) (see (3] and [10]). The family of all p-qs functions, p > 1, is invariant
under composition only with increasing linear functions.

A characterization of the boundary values of K-qc automorphisms F of the unit
disc A = {z : |z|] < 1} was given by J. G. Krzy# (K-condition) in [6]. Using the
conformal configuration connected with harmonic measure, he also obtained a class
of p-qs functions of T = A, representing boundary automorphisms f = F|;. This
class of all p-qs functions, p > 1, is invariant under composition only with the group
of rotations of T.

In both the cases, the p-qs functions have some deficiencies not shared by K-qc
mappings (see [13]). In spite of extremal simplicity of these characterizations, it is not
80 easy to get a result asymptotically sharp for p = 1 (cf. (5], [4] and [7]). It is worth-
while to note that the BA-condition is not conformally transferable, whereas the
K-condition is conformally invariant. The qs constant p(f), defined as the minimum
of all p such that the gqs condition BA (or K) is satisfied by f, can not be used
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immediately to describe the Teichmiiller distance without qc extensions.

Using the results of G. . D. Anderson, M. K. Vamanamurthy and
M. Vuorinen ([1]; [2], and other papers), as well as obtaining new ones (see [15]) on
the Hersch-Pfluger distortion function #, the author was able to present a new
characterization of the boundary values for the family of all K-qc automorphisms of
a generalized disc in the extended complex plane C (see [13] and [15]).

To describe this characterization let us recall that by a generalized circle (gc)
I' ¢ C, we mean the stereographical projection of a circle on the Riemann sphere
B? = {(z,y,u) : 22 + y? + u? — u = 0}. The following expression

i - 1/2
(1) (] = {222, 28T
introduced in [12], is well defined for each ordered quadruple of distinct points z;,
23, 23, z¢ of a gc I' C C. It is invariant under homographies and its values range
over (0;1).

By Ar(K) we denote the family of all sense-preserving automo:phisms f of a
ge T C C, such that

(1.2)  ?yk([21,23,23,24)) S [f(21), f(22), f(23), £(20)] £ Pic([21, 22,23, 24))

holds for each ordered quadruple of distinct points z,, 23, 25,24 € I, with a constant
K > 1.

A function f € Ar(K) is said to be the K-quasihomography (K-qh) of I'. This
class of functions represents the boundary values of all K-qc automorphisms of the
domains D and D*, complementary with respect to I', with the same constant K
at the necessity. It is invariant under self-homographies of I', and has a number of
properties close to those of K-qc mappings (see (15| and [16]). The relationships
between K-qh and p-qs functions, in both the cases of I' = R, or I’ = T', are obtained
in [13] and [15]. Some fundamental results on Ap(K) can be found in [16]. All of
them are asymptotically sharp for K = 1. Nevertheless, the condition (1.2) is not
conformally invariant.

Suppose that I is a Jordan curve (Jc) in C, while D and D* are its complementary
domains. Let /p(K) and Fp-(K), be the classes of all K-qc automorphisms of D
and D*, respectively. If I' is a gc of C, then /p(K) and Fp-(K) are identical for
each K > 1. In the case when I is a Q-quasicircle, Q > 1, both the classes are
related by a Q2-qc reflection in I, and can be identified on the level of the universal
Teschmiiller space, Theorem 11. In the most general case, when I' is an arbitrary
Jc of €, we do not have any quasiconformal relation between Fp(K) and F.(K),
preserving points of I'. This state of matter is an obstacle to our research on the
boundary value problem for K-qc automorphisms. It means, that we can not simply
start with a given Jc I’ C C, and a certain family of sense-preserving automorphisms
of T, representing boundary values of /p(K) or Jp-(K).

The idea, that the starting point should be a Je I' C C, not a Jordan domain,
when working with the boundary value problem for K-qc automorphisme, has its
strong encouragement from the universal Teichmiiller space theory (see (8, p. 97)).
Keeping in mind this idea, we associate with a given Jc I’ C C, two classes Ap(K)
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and Ap.(K) of sense-preserving automorphisms of I', representing the boundary val-
ues of Jp(K) and _Jj)-(K ), respectively, with the same K at the necessity. In the case
when I' is a gc of C, the mentioned characterizations reduce to (1.2).

2. Conjugate harmonic cross-ratios. Let I' C C be an arbitrary Jc and let
D, D* be its complementary domains. Suppose that a € D, is arbitrary and that
z', 2" €T, are arbitrary and distinct points of I'. Consider

(2.1) [2',2"]% = sinmw(a,<2',2">; D),

where <z',z"> is an oriented open arc of I', with end points 2’ and z", w being
harmonic measure. It is obvious that [z',2"]}, = (2", 2']},, where

<z",2'> =T\ <z',2">. Suppose that 2y,23,23,24 €T, is an ordered quadruple of
distinct points. Let

(22) [Z) 122,23, z‘].D = {([22’ 23]'0[21 ] 24].0)/([21 ’ _23]‘0[229 ‘?‘ltll))}l/'z 0
Then we prove

Theorem 1. Let ' be a Jordan curve in C, and let D, D* be its complementary
domains. For every a,b € D, the identity

(2.3) (21,22,23,24]p = [21‘22»2:!’24]7)
holds for each ordered quadruple of distinct points zy,22,23,24 €.

Proof. Suppose that a and b are arbitrary points of D. By the Riemann
mapping theorem, there are conformal mappings H, and H,, that map A onto D with
H,(0) = a and Hy(0) = b. Both these mappings can be regarded as homeomorphisms
of A onto D. By the conformal invariance of the harmonic measure, the equalities

(2.4) [H7'(2"), H7'(2"))a = sinww(0,<H;'(2'), H ' (2")>;4)
= sinmw(Ha4(0), <2, 2">; H(A))

= sinrw(a,<2',2">,D) = [2',2"]}
hold for an arbitrary 2', 2" € I. The equality
(24') (B ) By A =22
holds by the same argument as (2.4). Let z),23, 23,24 € T, be an ordered quadruple
of distinct points. Setting t; = H;'(z:) and re = H, '(zx), k = 1,2,3,4, then using
(2.4) and (2.4'), it follows that
(2'5) [Z] 123,23, zd]‘[l) = [tl 'tm t3| t‘]z - [tl ) t2| t:h t4]|

and

(2-5') [21. Zz.zzhzdn) = ["1."217‘3"'4]2 = ["1.7‘2, "3"‘4]-
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Since H;~ 1oH, is a conformal automorphism of A, then it is a homography mapping A
onto itself and thus it preserves (1.1). Therefore

(26) [rl,r:,r;,n] = [H'_l OH.(!]), H._l OHI(tg),H;l o H.(t.), H._l o H.(f.)]
= [t],fg,ta,t4].

This completes the proof.

Theorem 1 says that the expression, defined by (2.2), is a constant as a function
of a € D. By this we set

(2'7) ['I |z2|‘3t’C]D - i’lt’li'!!’i]b for any a € D.

Note, that the statement of Theorem 1 remains true when we insert D*® instead of D,
and A* = C \ A instead of A, respectively. Thus we define

(2.7) (21, 32,23, 34]De = [21, 22, 23, 24] D¢ for any a € D°.

Both these expressions, defined by (2.7) and (2.7'), are called the conjugate harmonic
cross-ratios (c.h. cross-ratios).

Thus, with an arbitrary Jc T' C C, and each ordered quadruple of distinct points
23,23, 23,24 €T, we associate two values defined by (2.7) and (2.7’). The relationship
between them will be of our special interest.

Theorem 2. These c.h. cross-ratios are snvariant under conformal map-
pings and thesir values range over (0; 1) for each ordered quadruple of distinct points
31, 23,33,34 of an arbitrary Je T in C. Moreover,

(2.8) (21,22, 33, 2]p = 1 = [22,23, 24, 11 ]},
where D is one of the domains complementary with respect to I.

These statements are obtained by the conformal invariance of c.h. cross-ratios
and (12, Theorem 1)]. Inserting D* instead of D, we get the parallel result.

3. One dimensional qc mappings. Suppose that T is an arbitrary Jc in C,
where D and D* are the domains complementary with respect to I

Let Ar denotes the family of all sense-preserving automorphisms of I'. This is
evident that (Ar,o) is a group with composition.

Definition 1. Let I be an arbitrary Jcin C, and let D, D* be its complementary
domains. An automorphism f € Ar is said to be of Ap(K) class if

(3.1)  @1/k([21,232,23,2]D) S [f(21), f(23), f(23), f(20)]D < Pk ([21, 22, 23, 2] D)

holds for each ordered quadruple of distinct points z;, 23, 23,24 € T, and a constant

K>1.
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The class Ap-(K) is defined by using D* in (3.1) instead of D.
First we prove

Theorem 3. Suppose that I is a Jc in C, and let D, D* be its complementary
domains. If F € Fp(K) is an arbitrary, then f = F|. € Ap(K) for each K > 1.

Proof. Let H be a conformal mapping that maps A onto D. It can be regarded
as a homeomorphism of A onto D. Let F € 7p(K) be an arbitrary, where K > 1.
The mapping

(3:2) F=Sy(F)=H 'oFoH

is a K-qc automorphism of A, and thus f = F|. € Ar(K) (cf. [15] and [16]).
Hence, by the conformal invariance of the ¢.h. cross-ratios, the proof of our theorem
is established.

We may now describe the parallel theorem, whose statement is as follows: if
F € Fp+(K) is an arbitrary then f = F|. € Ap-(K) for K 2> 1.
To show the sufficiency we prove

Theorem 4. Suppose that ' is a Je in C, and that D and D* are its com-
plementary domains. For each f € Ap(K), K 2 1, there ezists a K' = K'(K)-gc
automorphism Fy of D such that Fyr = f.

Proof. Let f € Ap(K), K 2 1, be an arbitrary and let H be a conformal
mapping of U onto D. Then f = Sy(f) is an element of Ag(K), and thus it has a
K' = K'(K)-qc extension Fj to U (cf. [15, Theorem 14]). By this

(3.3) Fy = Sz (Fp)

is the desired K'-qc automorphism of D, where K’ < min{\*/?(K), 2\(K) — 1} with
MK) = #3(1/v2)/9},,(1/V2) (cf. [9)).

The parallel theorem for f € Ap-(K), may be formulated automatically.

An automorphism f € Ap(K) (or f € Ap+(K)) is said to be a 1-dimensional K -
gc (1-dim. K-qgc) automorphism of T. Both the classes Ap(K) and Ap.(K), K 2 1,
are called conjugate classes of 1-dim. K-gc automorphisms of I'. Let f € Ap(K),
then the infimum Kp(f), of all K such that (3.1) is satisfied, is said to be the 1-dim.
gc constant of f. Same we define Kp-(f) for f € Ap+(K).

Some basic properties of 1-dim. I -gc automorphisms are presented as:

Theorem 8. For an arbitrary Je T € C, and K, ,K; 21, if f, € Ap(K;) and
fa € AD(Kz), then fy 0 f3 € AD(KI Kg),’

Theorem 8. For an arbitrary Je T C C, and K 2 1, if f € Ap(K), then
7! € Ap(K).
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The proof of Theorem 5 follows immediately from the composition property of @ j
and the definition of Ap(K). Theorem 6 is a consequence of similar arguments. The
parallel theorems may be formulated for Ap.(K).

Theorem 7. Let T be an arbitrary Jc in C, and let D, D* be its complementary
domains. A function f is of Ap(1) (or Ap-(1)) class if, and only if, f is the boundary
value of a conformal automorphism of D (or D°).

Proof. Let H maps conformally A onto D, and let f € Ap(1) be an arbitrary.
The mapping h = Sy(f) € Ap(1) if, and only if, it is a homography mapping T onto
itself (cf. [15, Theorem 11]. Denoting by H, a conformal mapping of A* onto D*®,
then by the identity A7(1) = Aa-(1), we obtain the alternative assertion.

4. Quasicircles. Now we shall obtain the following characterizations of qua-
sicircles as an application of the c.h. cross-ratios and the conjugate 1-dim. K-gc
automorphisms of an arbitrary Jc T' ¢ C.

Theorem 8. Let T' C C be a Je, and let D, D* be its complementary domaina.
Then T 15 a gquasicircle if, and only if, there ezists a constant K > 1, such that

(41) Q]/K([l],l'),l:,l‘]p) S [zl'zﬁt23124]D‘ S ¢K([1hlhla.24]D)
holds for each ordered quadruple of distinct points z;,29,23,24 € .

Proof. Suppose that T' is a Q-quasicircle, @ > 1. Then there is a Q*-qc
reflection Jr in I'. Let H and H, be conformal mappings of A and A®, onto D
and D*, respectively. The mapping

(4.2) F=JroH'oJroH

is a qc automorphism of A. Consider f = F| and an ordered quadruple of distinct
points w), wy, w3, wq € T. Then we have (cf. [15, Theorem 7))
(4.3)

21/@2([w1, w3, w3, wy]) < [f(w1), f(w2), f(w3), f(we)] S Pgr([wy, wa, w3, wy)).

Due to the conformal invariance of the c.h. cross-ratios, it follows that
[wlvw1| vawll & [ZI)ZZvZszllDO

where w; = H~!(z;), i = 1,2,3,4. The reflection Jir does not change the points of ',
whereas

[f(w1), f(wa), f(w3), f(wa)] = [21, 22, 23, 24] D+
holds by the conformal invariance of the c.h. cross-ratios. Thus we have the necessity
with K = Q2.
(<) Let T be a Jc in C, such that the inequalities (4.1) hold for each or-
dered quadruple of distinct points z),25,23,24 € I'. Consider A = H~!' 0o H, on T.
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By (4.1) and by the conformal invariance of the c.h. cross-ratios, then the identity
[*ysy*y+]Ja =[-1y+, ‘]as, the following inequalities

(4.4) @y x([wr, wa, w3, wq]) < [A(wy), h(wa), h(ws), h(we)] < P ([wy, wa, w3, w])

hold for w; = H~'(z;). Hence, by [15, Theorem 14], there exists K' = K'(K)-qc
automorphism F) of A, with the boundary values given by A. Consider

(4.5) G=HolJroFyoH .

We may see that G is a sense-reversing qc mapping ot D onto D*, whichis the identity
on I'. Defining G(z) = G~!(z) for z € D*, it follows that G is a K'-qc reflection
in T, where K' < min{\*/3(K), 2\(K) — 1} with A(K) = ¢}((l/\&)/¢¥/,((l/\/f)

(cf. Theorem 4), and consequently I is a quasicircle.
Let T be a Jc in C, and let D, D* be its complementary domains. Denote by
(4.6) Rr={f€Ar:f=HoH]')},

where H and H, are arbitrary conformal mappings of A and A®, onto D and D*,
respectively. The family Sg'(Rr) = CR(T') is said to be the conformal representation
of T with respect to T (cf. [11]).

Let '

(4.7) 5= Ap(K) and 43. = |J 4p-(K).
K21 K21

Hence, (A%, 0) and (A%., o) are subgroups of (Ar,0), where o denotes the composi-
tion. '
The transformation

(4.8) SuH. = S, o Su
maps Ap(K) onto Ap.(K) for every K 2> 1, and is an isomorphism between (A%, 0)
and (A%, 0).
Since
(4.9) S”H.(HOH:')=HOH:’,

then the fiz-points group of Sy y, contains the group (R, o), generated by Rr (see
7).

Hence, and by Theorem 6, the identities

(410) Kp(HoH))=KpH.oH')=Kp.(H,cH™')=Kp.(HoH})
hold for every H and H,, as above.

Definition 2. The common value, described by (4.10), we denote by Kr.
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First we prove

Theorem 9.  Ifa Je ' C 6, s @ Q-quasicircle, Q > 1, then Rr € AD(Q’) n
Ap+(Q?). Conversely, for each K > 1, there is Q = Q(K) such that, if Rr €
Ap(K)U Ap+(K), then T is a Q(K)-quasicircle, where
1 < Q(K) < min{A*(K),2(K) - 1}.

Proof. Suppose that T' C C, is a Q-quasicircle, Q > 1. Then there is a Q?-qc
reflection in I'. The mapping F, defined by (4.2), is a Q?-qc automorphism of A.
Thus F|; = H;' o H € A7(Q?). The automorphism
(4.11) Sg'(H'oH)=Sg (H'oH)=HoH"
is an element of Ap(Q?)N Ap-(Q?).

(<) Suppose now that Ho H;!' € Ap(K)UAp-(K), K 2 1. The automorphism
H:'o H € Aps(K)U Aa+(K) = Ar(K). Then, by [15, Theorem 14], there exists a
Q = Q(K)-qc automorphism F}, of A, with the boundary values givenby h = H; 'oH.

From this moment we follow the sufficiency proof of Theorem 9, starting from (4.4),
to obtain the sufficiency of this theorem.

Then we have
Theorem 10. A Jc ' C C, is a quasicircle if, and only if, K < oo.

Proof. It is an immediate consequence of the previous considerations and' The-
orem 9.

It is worth-while to note that a Jc T C C is a gc in C if, and only if, the identity
(4.12) Ap(K) = Ap-(K),
holds for each K 2 1. Further, we have the following

Theorem 11. If a Je T' C C is a quasicircle, then
(4.13) D = Ap..

Proof. Suppose that I' C C, is a Jc while H and H. are conformal mappings
of A and A®, onto D and D*, respectively. Assume that I is a Q-quasicircle, Q > 1,

and that f € A% is an arbitrary. Then there is K > 1, such that f € Ap(K).
Let

(4.14) fo = Suu.(f)

By the previous considerations, then Theorem 5 and Theorem 9, it follows that

(4.15) Kp-(f) < Q'Ko(f).
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Hence, there is 1 < L < Q*K, such that f € Ap.(L). Starting with any f € A%.,
and using the fact that S,',:.,. = Sy.H, we may obtain similar inclusion, by which the
identity (4.13) follows.

Suppose now that T is an arbitrary Jc in C, for which the identity (4.13) holds,
where D and D*, denote the complementary domains.The author conjectures it suf-
ficies to make I" a quasicircle.

Let us note that Theorem 9 is a generalization of a result of J. G. Krzyz (6,
Theorem 3], whereas Theorem 9 is close to a characterization obtained by D. Par-
tyka [11, p. 13]. A continuation of this research, in the direction of the universal
Teichmiiller space theory, can be found in [17].
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STRESZCZENIE

Niech I" bedsie krzywg Jordana w plaszczyénie domknigtej C i niech D, D* bedg skiadowymi
jej dopelnienia. Uporsgdkowanej czwérce punktéw 2y, 23, 23, 24 krsywej I’ mozna przyporsadkowad

dwie liceby rzeczywiste [z, 123,23, z.]p, [z, » 22, 23, z.]po , ktére autor nazywa sprzezonymi dwu-
£

t kami har icsnymi. Sg one k emnie ni iennicze. Kontynuujac swe weseéniejsze prace

na temat odpowiednioéci brsegowej prey odwzorowaniach quasikonforemnych autor okreéla utywajgc
wprowadsonych przez siebie niezmiennikéw dwie klasy AD(K). Ap+(K) sutomorfisméw I i
wykasuje, se okredlajy one wartoéci brzegowe wssystkich aut fizméw quasikonf ych ob-

ssaréw D i D°®. Jako sastosowsnie podaje on nowy charakteryzacje quasiokregéw.
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