ANNALES UNIVERSITATIS MARIAE CURIE-SKEODOWSKA LUBLINPOLONIA

VOL.XXXIX, 13
SECTIO A
1985

Instytut Matematyki
Uniweraytet Marii Curie-Sklodowakiej

W.MOZGAWA

Curvature and Torsion Tensors of Quasl-connection on Manlfold with Singular Tensor
Tensory krzywizny i skręcenia quasi-koneksji na pozmaitosci z tensorem osobliwym
 с сингулярным теньором

Let ($F M, M, G l(n), \omega$) be a bundle of linear frames on M with a connection ω. It is well known that for any connection following structure equations hold:

$$
\begin{align*}
& d \Theta^{\gamma}=\Theta^{\alpha} \wedge \omega_{\alpha}^{\gamma}+\frac{1}{2} T_{\alpha \beta}^{\gamma} \Theta^{\alpha} \wedge \Theta^{\beta} \tag{1}\\
& d \omega_{\mu}^{\lambda}=\omega_{\beta}^{\gamma} \wedge \omega_{\gamma}^{\lambda}+\frac{1}{2} R_{\mu \alpha \beta}^{\gamma} \Theta^{\alpha} \wedge \Theta^{\beta}
\end{align*}
$$

where $\omega_{0}^{\gamma}, \Theta^{\mathcal{A}}, \alpha, \beta, \gamma=1, \ldots, n$ are the connection form and canonical form on $F M$, resp.

Let's consider $n+n^{2}$ vector fields $E_{\lambda}^{\beta}, E_{\mathrm{a}}$ on $F M$, dual to ω_{α}^{γ} and θ^{s}. Usually we call these vector fields fundamental vector fields and standard vector fields, resp. We have the following identities for these vector fields :

$$
\begin{array}{lc}
\Theta^{\prime}\left(E_{a}\right)=\delta_{\alpha}^{\theta} & \Theta^{\mathcal{A}}\left(E_{\alpha}^{\beta}\right)=0 \tag{2}\\
\omega_{\alpha}^{\prime}\left(E_{a}\right)=0 & \omega_{g}^{g}\left(E_{\lambda}^{\beta}\right)=\delta_{\lambda}^{p} \delta_{\sigma}^{\mathcal{B}} .
\end{array}
$$

We can write the structure equations (1) in the dual form :

$$
\begin{align*}
& {\left[E_{\lambda}^{\beta}, E_{\rho}^{\sigma}\right]=\delta_{\rho}^{\beta} E_{\lambda}^{\sigma}-\delta_{\lambda}^{\sigma} E_{\beta}^{\beta}, \quad\left[E_{\alpha}, E_{\lambda}^{\beta}\right]=-\delta_{\alpha}^{\beta} E_{\lambda}} \tag{3}\\
& {\left[E_{\alpha}, E_{\theta}\right]=-T_{\alpha \beta}^{\lambda} E_{\gamma}-R_{\dot{\alpha} \beta \theta}^{\lambda} E_{\lambda}^{\beta}}
\end{align*}
$$

Yung - Chow Wong has considered the natural question pihat is the set of n vecto: fields E_{α} on $F M$ which satisties the equation:

$$
\left[E_{a}, E_{\lambda}^{\mu}\right]=-\delta_{a}^{\mu} E_{\lambda} .
$$

In this way he obtained a generalization of the linear connection viz. the so called quasi-connection. The standard vector fields E_{a} of a quasi-connection are given locally by

$$
E_{\alpha}=x_{a}^{j}\left(C_{i}^{i} \frac{\partial}{\partial x^{i}}-x_{\tau}^{k} \Phi_{j k}^{i} \frac{\partial}{\partial x_{\tau}^{i}}\right)
$$

where $C_{j}^{j}, \Phi_{j k}^{i}$ are functions of x^{i} only and such that on $U \cap C^{\prime \prime} \neq 0$ with coordinate systems $\left(U, x^{i}\right),\left(U^{\prime}, x^{i^{\prime}}\right)$ we have

$$
\begin{gathered}
A_{j}^{a^{\prime}} C_{e^{\prime}}^{i^{\prime}}=C_{j}^{b} A_{c}^{i^{\prime}} \\
\Phi_{j k}^{a} A_{a}^{i^{\prime}}=C_{j}^{a} A_{a k}^{i^{\prime}}+A_{j}^{e^{\prime}} A_{k}^{b^{\prime}} \Phi_{s, b}^{\prime}
\end{gathered}
$$

where

$$
A_{z}^{i^{\prime}}=\frac{\partial x^{i^{\prime}}}{\partial x^{k}}, \quad A_{j k}^{i^{\prime}}=\frac{\partial^{2} z^{i^{\prime}}}{\partial z^{j} z^{k}} .
$$

It is easy to see that, if the tensor C is non-singular on M, then

$$
\Gamma_{j k}^{i}:=C_{j}^{-1 a} \Phi_{s k}^{i}
$$

are components of a linear connection.
We assume that rank $C=m<n$ throughout this paper. We alon assume that the distribution in C is involutive (i.e. there exist functions $\lambda_{k 1}^{i}$ such that $C_{[k}^{j} C_{l| |}^{i}=\lambda_{k l}^{a} C_{e}^{i}$, cf. $\left.[6]\right)$.

In $\{6\} \mathrm{Y}$-Ch.W'onghas proved the foilowing theorem :
If (C, Φ) is a quasi-connection on M, then for any tensors X, Y, Z of type $(1,0),(0,1),(1,1)$, respectively, on M

$$
\begin{align*}
& \nabla_{1} X^{i}=C_{i}^{\epsilon} X_{l_{e}}^{i}+X^{\sigma} \Phi_{l a}^{i} \\
& \nabla_{1} Y_{j}=C_{l}^{\epsilon} Y_{j \mid \epsilon}-\Phi_{i j}^{e} Y_{c} \tag{t}\\
& \nabla_{1} Z_{j}^{i}=C_{i}^{\epsilon} Z_{j \mid a}^{i}+Z_{j}^{e} \Phi_{i c}^{i}-\Phi_{i j}^{\epsilon} Z_{a}^{i}
\end{align*}
$$

are componenta in $\left(U, x^{i}\right)$ of tensors of type $(1,1),(0,2),(1,2)$ respectively on M. Moreover, the following equations hold:

$$
\begin{align*}
\nabla_{l}\left(X^{i} Y_{j}\right) & =\left(\nabla_{t} X^{i}\right) Y_{j}+X^{i} \nabla_{I} Y_{j} \tag{5}\\
\nabla_{l}\left(X^{a} Y_{a}\right) & =C_{i}^{b}\left(X^{z} Y_{a}\right)_{\mid b}
\end{align*}
$$

We call the operator ∇ the covariant derivative with respect to quasi-connection on M.

Having considered the third structure equation (3) Y-Ch.Wong established the following

Theorem (cf. [6]) Let (C, Φ) be any quasi-connection on M. Assume that the tensor C is of constant rank m on M and its field of image m-planes is involutive, $s 0$ that $C_{i}^{e} C_{l \mid l}^{i}=\lambda_{k i}^{i} C_{e}^{i}$ in every coordinate system $\left(U, x^{i}\right)$. Then there exists on M a tensor S of type $(1,2)$ satisfying the equation:

$$
\begin{equation*}
S_{k l}^{h} C_{A}^{i}=\left(\Phi_{|h|}^{h}-\lambda_{k \mid}^{h}\right) C_{h}^{i} \tag{6}
\end{equation*}
$$

in every $\left(U, x^{i}\right)$. Moreover, for any such lensor S

$$
\begin{equation*}
R_{j k l}^{i}=C_{[k}^{a} \Phi_{l|j| a}^{j}-\Phi_{\mid k j}^{e} \Phi_{l \mid a}^{i}-\Phi_{i k l \mid}^{e} \Phi_{s j}^{i}+S_{k l}^{a} \Phi_{\Delta j}^{i} \tag{7}
\end{equation*}
$$

are components in $\left(U, x^{i}\right)$ of a tensor R of type $(1,3)$ on M.
However, this thenrem is rather difficult for applications because the terisor S given in invalved form is not unique. In this paper we give reasonable assumprinns under which we are able to determine curvature and torsion terisor of quasi--connection. We also give the formulae of Levi-Cicita quasi-connection and some properties of above mentioned tensors.

We assume that C is a singular tensor of a quasi-connection (C, Φ) on M such that its Nijenhuis tensor

$$
\begin{equation*}
N(X, Y)=\left[C X, C Y \mid-C[X, C Y]-C[C X, Y]+C^{2}[X, Y]\right. \tag{8}
\end{equation*}
$$

is equal to zero. We hope that this assumption is reasonable because in the last time many structures with singular $(1,1)$ tensors were considered and the condition $N(X, Y)=0$ often appears in these papers.

Theorem 1. If (C, Φ) is quasi-connection on M then

$$
\begin{equation*}
T_{j k}^{a}=\Phi_{[j k]}^{e}+C_{[j \mid k]}^{e}+P_{k j}^{e} \tag{9}
\end{equation*}
$$

are componente in $\left(U, x^{i}\right)$ of a tensor T of type $(1,2)$ on M where

$$
P \in\left\{P \in T M \otimes \Lambda^{2} T M^{\bullet} ; \operatorname{im} P=\operatorname{ker} C\right\}
$$

Proof. It is sufficient to consider the transformation law of $C_{\{j \mid k]}^{\in}$ and $\Phi_{\{j k]}^{e}$ where the transformation law of $C_{\langle j| k\}}^{\bullet}$ is

Theorem 2. If (C, Φ) is quasi-cornection on M and the Nijenhuis tensor N of C is zero then the tensor T satiafies the identity (6)

$$
T_{k 1}^{h} C_{\mathrm{h}}^{\dot{d}}=\left(\Phi_{|k!|}^{A}-\lambda_{k l}^{A}\right) C_{\mathrm{h}}^{\dot{d}}
$$

Proor. A local expressions of the Nijenhuis tensor \boldsymbol{N} is

$$
\begin{equation*}
N_{k \mid}^{A}=C_{\mid k}^{A} C_{\|| | \varepsilon}^{A}-C_{|||k|}^{A} C_{a}^{A}=0 . \tag{10}
\end{equation*}
$$

Let's rewrite the formula (6) in the form

$$
\begin{equation*}
S_{k \mid}^{A} C_{h}^{i}=\Phi_{|k|}^{A} C_{h}^{i}-\lambda_{k \mid}^{A} C_{h}^{i}=\Phi_{|k| \mid}^{A} C_{h}^{i}-C_{[k}^{i} C_{i| | \varepsilon}^{j} . \tag{11}
\end{equation*}
$$

If we substitute (10) in (11) then

$$
\begin{aligned}
& S_{k \mid l}^{\hat{A}} C_{A}^{i-}=\Phi_{|k t|}^{i} C_{A}^{i}-C_{\{||k|}^{i} C_{a}^{i}=\Phi_{[k \mid]}^{j} C_{a}^{i}+C_{[k| | \mid}^{i} C_{a}^{d}= \\
& =\left(\Phi_{[k \mid]}^{j}+C_{[k|k|}^{j}\right) C_{s}^{j}=\left(\Phi_{|k|}^{j}+C_{[k|k|}^{j}+P_{k \mid}^{s}\right) C_{a}^{j} \text {. }
\end{aligned}
$$

so $T_{k \mid}^{d}=\Phi_{[k \mid]}^{f}+C_{|k| f]}^{p}+P_{k \mid}^{d}$ satisfies (6).
We shall call the tensor T the torsion tensor of quasi-connection.
Lemma 8. The torsion tensor T can be globally defined by

$$
\begin{equation*}
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, C Y]-[C X, Y]+C[X, Y]+P(X, Y) . \tag{12}
\end{equation*}
$$

Proof. It is sufficient to consider (4).
Corollary 1. The torsion tensor is skew-symmetric:

$$
\begin{equation*}
T(X, Y)=-T(Y, X) \tag{18}
\end{equation*}
$$

Corollary 2. If T is the torsion tensor of quasi-connection (C, Φ) on M then (C, Ψ) where $\Psi=\Phi-\frac{1}{2} T$ is a new guasi-connection on M without torsion.

Lemma 4. The curvature tensor R can be globally defined by

$$
\begin{align*}
R_{X Y} Z & =\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{|X, C Y|^{Z}} \tag{15}\\
& -\nabla_{|c X, Y|^{Z}}+\nabla_{C|X, Y|} Z+\nabla_{P(X, Y)} Z
\end{align*}
$$

Proof. It is sufficient to express (15) in local coordinates. For an arbitrary smooth function \int on M we define:

$$
\begin{equation*}
\delta_{z} f=Z^{j} C_{j}^{k} f_{1}, \quad Z=z^{j} \frac{\partial}{\partial z^{j}} . \tag{16}
\end{equation*}
$$

Let's introduce an exterior derivative δ of 1 -forms with respect to the singular tensor C (with the condition $N=0$) by

$$
\begin{gather*}
(\delta \omega)(X, Y)=\delta_{X} \omega(Y)-\delta_{Y} \omega(X)+ \\
-\omega(|X, C Y|+|C X, Y|-C|X, Y|+P(X, Y)) \tag{17}
\end{gather*}
$$

Now we can state the following

Theorem 5. If (C, Φ) is gusisi-connection on M then the following structure equations hold

$$
\begin{align*}
& \delta\left(d x^{i}\right)+\omega_{j}^{i} \wedge d x^{k}=\frac{1}{2} T_{j k}^{i} d x^{j} \wedge d x^{k} \tag{18}\\
& \delta \omega_{j}^{i}+\omega_{j}^{i} \wedge \omega_{j}^{k}=\frac{1}{2} R_{j k m}^{i} d x^{h} \wedge d x^{m}
\end{align*}
$$

where $\omega_{j}^{i}=\Phi_{k j}^{i} d z^{k}$.
Proof is straightforward if one considers (18) and the definitions of $T_{j k}^{i}$ and $\boldsymbol{R}_{j \neq m}^{i}$.

Now we can say what does it mean that the quasi-connection is Riemanrian.
Detinition. The quasi-connection ∇ on M is said to be Riemannian with respect to scalar product g if

$$
\begin{equation*}
\delta_{Z} g(X, Y)=g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Z} Y^{\prime}\right), \quad T(X, Y)=0 \tag{19}
\end{equation*}
$$

Theorem 6. Let (M, g) be a Riemannian manifold. Then there exists a unique Riemannian quasi-connection for a given singular tensor C.

Proof. We do it in the same way as in the classical proof. By summing up the identities:

$$
\begin{aligned}
\delta_{U} g(V, W) & =g\left(\nabla_{U} V, W\right)+g\left(V, \nabla_{U} W\right) \\
\delta_{V} g(W, U) & =g\left(\nabla_{V}\left(V_{,} U\right)+g\left(W, \nabla_{U} U\right)\right. \\
-\delta_{W} g(U, V) & =-g\left(\nabla_{W} U, V\right)-g\left(U, \nabla_{W} V\right)
\end{aligned}
$$

we obtain with the help of (13)

$$
\begin{align*}
& 2 g\left(\nabla_{v} U, W\right)=\delta_{v} g\left(V, W^{\prime}\right)+\delta_{v} g(W, U)-\delta w g(U, V)- \\
& -g(T(U, V), W)-g(\{U, C V\}+\{C U, V)-C(U, V\}, W)+ \tag{20}\\
& +g(T(W, U), V)+y([W, C U\}+\{C W, U\}-C(W, U\}, V)+ \\
& +g(T(W, V), U)+g\{(W, C V \mid+\{C W, V \mid-C[W, V\}, U) \text {. }
\end{align*}
$$

It means that $\nabla_{V} U$ is completely determined by g, T, C and the derivarives of g and C. In the local eoordinates (U, x^{i}) this nussi-connection has the following form:

$$
\begin{align*}
& \Phi_{2 t}^{i}=\frac{1}{2} g^{i t}\left(C_{i}^{a} \|_{k t}+C_{k}^{a} J_{s \|!}-C_{i}^{a} g_{k l \mid}+\right. \\
& +y_{a t} T_{l k}^{s}+y_{3 t} C_{i k|1|}^{\theta}+y_{6 k} T_{s b}^{a}+\left.g_{a k} C_{i|t|}^{t}\right|^{+} \tag{21}\\
& \left.+\partial a i T_{k k}^{a}+J_{a i} C_{k ; t i j}^{z}\right) \text {. }
\end{align*}
$$

It is necessary to check the r-ansformation law of quasi-connection (C, Φ) given by (21) but the calculations are mather lengthy and are omitted here.

If we put $T=0$ we obtain the quasi-connection which is a generalization of Levi-Civita connection

$$
\begin{align*}
& \Phi_{k t}^{i}=\frac{1}{\frac{2}{2}} g^{i t}\left(C_{l}^{\varepsilon} g_{k \mid \sigma}+C_{k}^{b} g_{t \mid c}-C_{l}^{i} g_{k \mid a}+\right. \\
& \left.+g_{a i} C_{|k| 1 \mid}^{a}+g_{a k} C_{[\mid k]}^{a}+g_{a l} C_{[k|a|}^{a}\right) \text {. } \tag{22}
\end{align*}
$$

Carollary 8. One can check directly that we have $\nabla g=0$ for the above quasiconnection.

Theorem 7. For the curvature tensor of Riemannian manifold we have following identities:
a) $R_{X Y} Z^{Z}=-R_{Y X} Z^{Z}$
b) $R_{X Y Z}+R_{Y Z} X+R_{Z X} Y=0$
c) $g\left(R_{X Y} Z, W\right)=-g\left(R_{X Y} W, Z\right)$
d) $g\left(R_{X Y} Z, W\right)=g\left(R_{Z W} X, Y\right)$.

Proof.

a) is straightforward
b) is almost straightforward but one should use few times Jacobi identity and our condition $N(X, Y)=0$
c) under our assumption $N(X, Y)=0$ we have

$$
\begin{equation*}
\delta_{|X, C Y|+|C X, Y|-C|X, Y|+P(X, Y) g(W, Z)=\left(\delta_{X} \delta_{Y}-\delta_{Y} \delta_{X}\right) g(W, Z), ~(W)} \tag{24}
\end{equation*}
$$

and now the proof is similar to the classical case.
d) it follows from a), b), and c).

Taking into account the parallel displacement by D i Comite[1] we will give a geometric interpretation of the curvature tensor of quasi-connection. According to [1] the parallel displacement of a vector field X holds along an integral curve of a vector field $C(Y)$ and is given by

$$
\begin{equation*}
\nabla_{Y} X=\left(\frac{d X^{k}}{d t}+Y^{i} \Phi_{i j}^{t} X^{j}\right) \frac{\partial}{\partial x^{t}}=0 \tag{25}
\end{equation*}
$$

We shall move infinitesimally a frame $A_{j}^{i} \frac{\partial}{\partial x^{i}}$ (such that $\left.A_{j}^{i}\left(m_{0}\right)=\delta_{j}^{i}\right)$ starting in the direction of the vector Y and then in the direction of the vector X, afterwards we shall subtract from this a quantity obtained by theparallel displacement of the frame $A_{j}^{j} \frac{\partial}{\partial x^{i}}$ at first inthe direction X and then in the direction Y.

It is well known that in the case of linear connection we shall obtain an infinjtesimal of second order that is just a curvature tensor, here we will obtain also a eurvature tensor but with a "correction".

Let's now consider the equation

$$
\begin{equation*}
\nabla_{x} A_{j}^{i}=0 \tag{26}
\end{equation*}
$$

that is

$$
\begin{equation*}
\frac{d \Lambda_{j}^{i}}{d t}+\Phi_{h t}^{i} X^{\prime} \Lambda_{j}^{\prime}=0 \tag{27}
\end{equation*}
$$

hence

$$
\begin{equation*}
A_{j}^{i}\left(m_{0}+t X+h .0 . t .\right)=\delta_{j}^{i}-t \Phi_{k j}^{i}\left(m_{0}\right) X^{k}\left(m_{0}\right)+\text { h.o.t. } \tag{28}
\end{equation*}
$$

where h.o.t. denotes the higher order terms. Now we shall move the frame $A_{j}^{j}\left(m_{0}+t X+\right.$ h.o.t. $)$ in the direction of the vector Y starting at the point $m_{0}+t \mathbf{X}+$ h.o.t.

$$
\begin{gather*}
A_{j}^{i}\left(m_{0}+t X+t Y .+h . o . t .\right)=\left(\delta_{j}^{i}-t \Phi_{k j}^{i}\left(m_{0}\right) X^{k}\left(m_{0}\right)+h .0 . t .\right)- \\
-t \Phi_{k p}^{i}\left(m_{0}+t C(X)+h . o . t .\right) Y^{t}\left(m_{0}+t C(X)+h . o . t .\right) \\
\left(\delta_{j}^{p}-t \Phi_{x j}^{p}\left(m_{0}\right) X^{x}\left(m_{0}\right)+\text { h.o.t. }\right)+\text { h.o.t. }= \tag{29}\\
=\delta_{j}^{i}-t\left(\Phi_{k j}^{i} X^{k}+\Phi_{k j}^{i} Y^{k}\right)_{\mid m_{0}}-t^{2}\left(\Phi_{k j \mid a}^{i} C_{l}^{a} X^{l} Y^{k}+\right. \\
\left.+\Phi_{k j}^{i} \delta_{C(X)} Y^{k}-\Phi_{k j}^{i} \Phi_{k j}^{p} X^{z} Y^{h}\right)_{\mid m}+\text { h.o.t. }
\end{gather*}
$$

If we perform it in opposite order then we obtain

$$
\begin{gather*}
\tilde{A}_{j}^{i}\left(m_{0}+t X+t Y+h .0 . t .\right)=\delta_{j}^{i}-t\left(\Phi_{k j}^{i} Y^{k}+\Phi_{k j}^{i} X^{k}\right)_{\mid m_{0}}+ \tag{30}\\
-t^{2}\left(\Phi_{k j}^{i} \delta_{C(Y)} X^{k}+\Phi_{k j \mid \sigma}^{i} C_{i}^{q} Y^{l} X^{k}-\Phi_{k p}^{i} \Phi_{k j}^{p} X^{k} Y^{z}\right)_{\mid m_{0}}+\text { h.o.t. }
\end{gather*}
$$

After subtraction we obtain

$$
\begin{align*}
& A_{j}^{i}-A_{j}^{i}=t^{2} \mid R_{j k l}^{i} X^{l} Y^{k}+\Phi_{k j}^{i}(\mid C X, Y]^{k}+ \tag{31}\\
+ & \mid X, C Y]^{k}-C(X, Y)^{k}-P^{k}(X, Y) \mid+ \text { h.o.t. }
\end{align*}
$$

Thus the term at t^{2} is just the curvature tensor of quasi-connection and the "eorrection"

$$
\begin{equation*}
[C X, Y]+[X, C Y]-C[X, Y]+P(X, Y] \tag{32}
\end{equation*}
$$

which also appeared in (12), (15), and (17). The correction (32) has the following interpretation - it is a counterpart of the Poisson bracket for the vector fields X and Y with respect to the singular tensor C.

REFERENCES

 Purs A ppl,88 (1909), 188-182.
|z| GIubles l, D., Conncaioni sfini genenelizefe ar weriad differentiebite eloro propriad, Unlv. e Politec. Torino Rend. Sem.Mar., 89 (1939/70), 897-814.
\{8| M O g g w a W., Qresi-conrectione in the seminalonomic frome bradle of uecond onder and thair diferential invariande, An.Stilat.Unlv. AlaI.Ouza Iasi Sect. I a Mata 87 (1981), 297-816.
|a|Spesivy b, V. L. , A gencrelired connection in seedor beadle (Russian), Ukrain.Mas.Z., 30 (1978), 686-689.
|8| V a m a u, E., Qseai-comactions on the differeasishe monifolde (Rumanian), An.Stilng. Univ. - Al.I.Cuzs Lasi Seç. I a Mat., 16 (1970), 888-888.
 Math.J., 14 (1932), 48-68.

STRESZCZENIE

Dla quasi-konekill spelniajacel pewne naturalne sabokenia wyznacsono remsory skrgenia i Inzywieny oraz podano ich whasaosel. Podano cakie uogblnleale koneksjl Levi-Civica

PE3LOME

 связности Леви-Чивита

