ANNABES UNIVERSTTATIS MARLAE CURIE-SKLODOWSKA. LUBLIN-POLONIA

VOL. EXXIX. 8
SECTIO A
1985

Department of Mashematical Sciences University of Delaware Newark. Delaware

D.J.HALLENBECK

A Note on the Rlesg - Herglots Representation
0 reprezentacji Riesza - Herglotas
0 предсталленим Рисе - Герглотиа

Introduction. Let $\Delta=\{z:|z|<1\}$ and let \mathbf{A} denote the set of functions analytic in Δ. Then \boldsymbol{A} is a locally ennvex linear topological space with respect to the topology given by uniform convergence on compact subsets of Δ. A function f is called a support point of a compact subset \mathbf{F} of \boldsymbol{A} if $f \in \mathbf{F}$ and if there is a continuous, linear functional J on \mathbf{A} so that $\operatorname{Re} J(f)=\max \{\operatorname{Re} J(\rho): \rho \in \mathbf{F}\}$ and Re J is nonconstant on \mathbf{F}. We denote the set of support points of such a family by supp \mathbf{F} and the closed convex bull of such a family we denote by $H \mathrm{~F}$. Since HF is itself compact, the set of extreme points of HF which we denote by EHF is non-void.

A function $f \in \mathbf{A}$ is said to be subordinate to a function $\mathbf{F} \in \mathbf{A}$ if there exist $\phi \in \mathbf{A}$ such that $\phi(0)=0,|\phi(z)|<1$ and $\delta=\mathbf{P} \circ \phi$. We let B_{0} denote the set of functions $\phi \in \mathbf{A}$ and satisfying $|\phi(z)| \leq|z|(|z|<1)$. The set of functions subordinate to \mathbf{F} we denote by $\boldsymbol{\theta}(\mathbb{F})$ and note that $\boldsymbol{\bullet}(\mathbf{F})=\{\mathbf{F} \circ \phi: \phi \in \mathrm{B}\}$. It is known that supp B_{0} consists of all finite Blaschke products which ranihh at the
 This inclusion was proved in $6 j$ under the additional assumption that $\mathbb{F}^{\prime}(z) \neq 0$ for $z \in \Delta$.

In recent years a number of proofs of the Riesz-Herglotz representation for - $\left(\frac{1+z}{1-z}\right)$ have been given $\{5 ; ;[8]$. The basis of these arguments has been a proof that $E_{0}\left(\frac{1+z}{1-z}\right)=\left\{\frac{1+x z}{1-x y}:|z|=1\right\}$. The desired representation formula then
follows by appeal to Choquet's theorem [9] or to the Krein-Milman theorem and the weak star compactness of the set of probability measures on $\delta \Delta$.

In this short note we give a new proof of the Riesz-Herglotz representation. The proof uses the knowledge of supp B_{0} mentioned above $[1],[4]$. It also depends on the observation made in $[7, p .02]$ that $H \mathbf{F}=H(\operatorname{supp} \mathbf{F} \cap E H F)$ for any compact family F contained in A. We note that $\cdot\left(\frac{1+z}{1-z}\right)=H \cdot\left(\frac{1+z}{1-z}\right)$ since $\frac{1+z}{1-z}$ is convex and univalent. Also, in [6] the set supp $\cdot\left(\frac{1+z}{1-z}\right)$ was exactly determined. We do not use this result since its proof depended in part on knowning the Riesz - Herglotz representation.

We also give a new proof a generalization of the Riesz - Herglotz formula that was proved in [3] by D.A.Brannan,J.G.Clunieand W.E.Kirwan.

The Rlesz-Bergloty representation. Theorem. A function $p \in s\left(\frac{1+z}{1-z}\right)$ if and only if there is a probability measure μ on $\delta \Delta$ such that

$$
\begin{equation*}
p(z)=\int_{|s=1|} \frac{1+x z}{1-x z} \mathrm{~d} \mu(x) \quad(|z|<1) \tag{1}
\end{equation*}
$$

Proof. It is clear that each function p of the form (1) is in $\cdot\left(\frac{1+z}{1-z}\right)$ since $\frac{1+z}{1-z}$ is univalent and convex in Δ and $\operatorname{Re} p(z) \geq 0, p(0)=1$.

We now prove that each $p \in s\left(\frac{1+z}{1-z}\right)$ has the form (1). It is known that supp $\cdot\left(\frac{1+z}{1-z}\right) \subseteq\left\{\frac{1+\phi}{1-\phi}: \phi \in \operatorname{supp} B_{0}\right\}[2],[6]$. It follows from the fact that $\phi \in \operatorname{supp} B_{0}$ and from lemma 4 in $[4, p .82]$ that

$$
\begin{equation*}
\frac{1+\phi(z)}{1-\phi(z)}=\sum_{k=1}^{n} \lambda_{k} \frac{1+x_{k} z}{1-x_{k} z} \quad(|z|<1) \tag{2}
\end{equation*}
$$

where $0 \leq \lambda_{k} \leq 1, \quad \sum_{k=1}^{n} \lambda_{k}=1$ and $\left|x_{k}\right|=1 \quad(k=1,2, \ldots, n)$. Also, $\lambda_{k}=1$ for some k if and ouly if $\phi(z)=x z$ for some $|x|=0$. It follows from (2) that if $\phi \in \operatorname{supp} B_{0}$ and $\phi(z) \neq z z$ for some $|z|=1$ then $\frac{1+\phi}{1-\phi} \notin E_{0}\left(\frac{1+z}{1-z}\right)$. Hence we deduced that

$$
\operatorname{supp} \cdot\left(\frac{1+z}{1-z}\right) \cap E s\left(\frac{1+z}{1-z}\right) \subseteq\left\{\frac{1+x z}{1-x z}:|x|=1\right\}
$$

However, it is known in general that $\{P(x z): \mid x=1\}$ is contained in $E H_{s}(\mathbb{F})$ and supp $s(F)$ for any nonconstant F in $\mathbf{A}[7, p .50 \mathrm{p} .103]$. So it follows that

$$
\begin{equation*}
\operatorname{supp} \cdot\left(\frac{1+z}{1-z}\right) \cap E \cdot\left(\frac{1+z}{1-z}\right)=\left\{\frac{1+x z}{1-x z}:|x|=1\right\} \tag{3}
\end{equation*}
$$

The proof that (1) holds can now be completed from (3) by sppealing to the Krein - Milman theorem and the weak star compactness of the set of probability measures on $\partial \Delta$ or by apealing to Choquet's theorem [9].

Remark. The two proofs given in [1] and [4] that supp B_{0} consists of all finite Blaschke products which vanish at $z=0$ are independent of the Riesz - Herglotz representation. We note that in $[6]$ the set supp B_{0} was exactly determined by an argument that depended on the Riesz-Herghta representation. In the previnus theorem, we reversed the procedure and obtained the Riesz-Herglotz representation from the exact knowledge of supp B_{0}.

Finally, we give a new proof of the well known generalization of the RieszHelglotz reprezentation that was proved in [3].

Theorem. If a function $f \in \mathrm{~s}\left(\left(\frac{1+c z}{1-z}\right)^{\alpha}\right)$ where $\alpha \geq 1$ and $|c| \leq 1$ then is a probability measure μ on $\delta \Delta$ such that

$$
f(\mathrm{x})=\int_{|z|=1}\left(\frac{1+e \mathrm{ex} z}{1-\mathrm{x} z}\right)^{a} \mathrm{~d} \mu(\mathrm{x}) \quad(|z|<1) .
$$

Proof. We assume $\alpha>1$ since $\alpha=1$ was essentially treated in the previous theorem. By arguing as in the proof of the previous theorem, it is clear that we need only prove that

$$
\operatorname{supp} \cdot\left(\left(\frac{1+c z}{1-z}\right)^{\alpha}\right) \cap E H \cdot\left(\left(\frac{1+c z}{1-z}\right)^{\alpha}\right) \subseteq\left\{\left(\frac{1+c \mathrm{x} z}{1-\mathrm{x} z}\right)^{\alpha}:|x|=1\right\}
$$

To prove this inclusion suppose $\int \in \operatorname{supp} s\left(\left(\frac{1+c z}{1-z}\right)^{a}\right)$. We have $f(\mathrm{x})=\left(\frac{1+c \phi(z)}{1-\phi(z)}\right)^{\alpha}$ for $\phi \in \operatorname{supp} B_{0}[2.6]$. Note that for any $|x|=1$, $\left(\frac{1+c x z}{1-x z}\right)\left(\frac{1+c \phi(z)}{1-\phi(z)}\right)^{a-1}$ is in $\cdot\left(\left(\frac{1+c z}{1-z}\right)^{a}\right)$ since $\alpha>1$. Now assume that $\phi(z) \neq \cdot x z$ and write $\frac{1+c \phi(z)}{1-\phi(z)}=\sum_{k=1}^{n} \lambda_{k} \frac{1+c x_{k} z}{1-x_{k} z}$ where $0<\lambda_{k} \leq 1$, $\sum_{k=1}^{n} \lambda_{k}=1$ and $\left|x_{k}\right|=1 \quad(k=1,2, \ldots, n)[4]$. If we write $\left(\frac{1+c \phi(z)}{1-\phi(z)}\right)^{0}=$ $\frac{1+c \phi(z)}{1-\phi(z)}\left(\frac{1+c \phi(z)}{1-\phi(z)}\right)^{a-1}$ and use the facts mentioned above we see that $f \notin$ EHs $\left(\left(\frac{1+c z}{1-z}\right)^{q}\right)$. We conclude that $\phi(z)=x z$ and the inclusion is proved. The theorem now follows from the Krein - Milman theorem and the weak star compactness of the set of probability measures on $\partial \Delta$.

REFERENCES

[1] Abu-Muhanna, Y., Support pointe of the said bell of $H^{P}(1 \leq p \leq \infty)$, Proc. Amep. Math. Soc. 89 (1968), 229-285.
[8] Brannan, D.A., Clunie,J. G., Kirwan, W.E. On the coefficient problem for fonctione of bounded boendery rodetion, Ann Acad. Scl. Fenn. Ser A.I. Math., 528 (1978).
|8| Abu-Mubanna, Y., Varicbrity ragions ond ospport pointe of orbordinate femiliea, J. Lond. Math. Soc. (2), 29 (1981), 477 - 184
|4| Cochrane, P.C., MacGregor, T. H., Freched differatiable functionala end asppon poinfo for familieo of endyric fenctione, Trans. A uner.Math.Soe.288 (1978), 78-93.
|b| Edgap, G.A., Two infegral reprecentationa, Springer-Verlag Lecture Notes in Math. 1088 (1988), 148-198.
[6| Hallenbeek, D.J., MacGregor, T. K., Support poinfo of famdies of analylic fundione deccribed by asbordination, Trans.Amer.Math.Soc. 278 (1988), 528-515.
|7| Hallenbeck,D.J., MaeGregor, T.H., Lineer prodeme end conierary fechaiques in geomefric fundion theory, Pitman Publishing Lid.,(1984).
[8| Hollond,F., Extreme poinfe of a dese of/enctione widh positive real part, Mash.Ana. 268 (1978), 85-87.
|9| Phelps, R. R., Lefures on Chogres's Theorem, Van Nostrand, New York, (1938).

STRESZC7ENIE

W pracy podano nowy dowod reprezenraejl Riesza-Herglotsa. Dowod jess opanty na zym, ie zbíb punktów podparcia funkejl analityernej agraniczonej w $\Delta=\{z:|z|<1\}$ zawiera wszystkie skonesone produkty Blasehke'go.

PESTOME

В двнноด работе подамо новое докалвтельство предстввлении Рисв-Герглотця До-

