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In this paper we introduce the notion of the almost r-paracontact structure on
a manifold M, which is the generalization of the almost paracontact structures. We
define the notion of normality of this structure and give its geometric interpreta-
tion. Every almost r-paracontact structure induces, in a natural way, some almost
paracontact structures whose normality is closely related to the one of the initial
structure. We also give some examples of almost r-paracontact structures. Such
structures, in a natural way, appear while lifting of an almost paracontact struc-
ture to the tangent bundie.Manifolds and tensor fields, being under consideration
throughout the paper are of the class C*.

Definitlon 1. If, on a manifold M, there exist a tensor field ¢ of type (1.1)
and r vector fields £;,8a,..., ¢, and r 1-forms n!,n?,...,n" such, that:

q.(ej)=6}s ;vi=l!2!"'vr! (1)
HE)=0, i=12,....r, (2)
nod=0, ¢=12,...,r, (3)
°=Id —EI?'-@& (4)

=1

then, the structure T = (4, &1, &,...,&,,0,n%,...,n") is said to be an almost
r-paracontact structure on M.
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If, moreover, on M , there exists a positive definite Riemannian metric g such

that :
/\ n'(z) = g(X, &) '.:_l.'-”'rv (5)
XeV (M)
N 9(8X,6Y) = g(X,¥) =Y n' (X)ni(Y) (6)
X.Y €V (M) i=1

(V (M) denotes the set of all vector fields on M), then £ = (é.f(;),n('],y);=|,,_,,,
is called an almost r-paracontact metric structure on M. The metric g is called
compatible Riemannian metric.

Lemma 1. |5]. Let é),83,...,& and n',n?,...,n" be r vector fields and
r L-forms on a manifold M respectively, such that the condition (1) ts satisfied.
Then there erists a postive definite Riemannian metric g on M satisfying the
condition (5).

Theorem 1. Let T = (¢,f(,~),n(")).-=1"__', be an almost r-paracontact structure
on M. Then M admits a positive definite Riemannsan metric G satssfying the
conditions (5) and (6).

Proof. According to Lemma 1 we can find a metric g satisfying the econdition
(5)-

Let

|

G(X,Y)= {y(X,Y)+y(¢X,¢Y)+Zn‘(X)vI‘(Y) fx

| -

Obviously we have G(X, &) = n*(X) and G(&;, ;) = 6;;. Then:

]
G(oX,4Y) = {9(¢X,¢Y_) HIEXAV)+ LA X 8Y)

=3 {,(.ﬁx,or) +9(X,Y) + D0 (X)n (V)g(&:, &) -
iy

-n"(X)g(&Y) - n'(Y)g(X, &)} =
=G(X,Y) - Y _n'(X)ni(Y)

or G satisfies the condition (6).
Remark 1. Observe, that the restriction of ¢ to the subspace

{X:n'(X):O.:': 1.2,...,r}

of TM satisfies the condition: G(X,9Y) = G(dX,Y). Hence the eigenvalues of ¢
are real and equaled 0, 1, -1.
Analogously to the case of paracontactness ([3],{4]), we have the following:
Theorem 2. On a manifold M there is one-to-one correspondence between
almost r-paracontact metric structures on M and the reduetions of the structurai
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group of the tangent bundle of M to the subgroup 1 x -+« x 1 x0(n —p —r) x 0(p),

where p 13 the multipliesty of the esgenvalue 1 of the characteristic equation of 3.
Now, we deal with the normality of the almost r-paracontact structure on a

manifold M. Let T = (¢, E;,),n( ’),-,, be an almost r-paracontact structure

on M. Denoting by (t!,...,t") the canomcal coordinates on R’ we can define on
N =M xR' the followmg tensor field:

F(Y)=F(x+zf‘§.)=(¢x--zr +V‘qc.t)-4-t7) (1)

for every vector field ’

Y=X *S_"'”Zc‘- € V() where X € V(M) .

Remark 2. From now on, we’ll be omitting the sign E and the summation

L]
convention will be used.

F is the tensor field of an almost product structure on N because:

FX(Y) = (x+f"i.)=F(&x+f‘t.-+n"(X)-“—.)=

$ (X + 16:) + (XN + ' (4X + 6:) “)—

= (924 £ol6) + 0006 + (0 0 AX) + P (8) 1) =
= (x-rs+rmea+rg) = (x+r5) =¥

]
AN

For any A,B € V (N), the value of the Nijenhuis tensor field of F is:

Nr(A,B) = (A,B| +|FA,FB| - FIA,FB| - F|FA,B| . (8)

Definitlon 3. An almost r-paracontact structure T = (¢,f(;),n(");=1,,_,,, on
a manifold M is said to be normal if and only if the almost product structure F -
defined by (7) on M x R’ is integrable i.e. Ng = 0.

Now, since Np is the tensor field, then the vanishing of NFp on M x R’ is
equivalent to the vanishing of Np on:

() A,BEV(M), (i) A€V (M),BeV(R'), (i) A,BEV(R") .
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(i) Let X,Y € V (M), then:

Np(X,Y) =|X,Y]|+|FX, FY]- F[X FY]- F[FX Y|=
=X, Y]+(¢X+q{X) .¢Y+r:(l’)”}"
-F|X,4Y + ' (Y) l Fl¢X +n' (X)-— Y]=

=[x, Y]+[¢X,¢Y]+[¢X,n () ]+ ' (X) 47 ]+

+ oo 4] - pax, bk F([x,n(v)—])-
~F(l4X, :tl')— ([:um — % ])-

= XY+ X Y1400 (o) & -GN (X)) -
~41X,9¥] - 7' [X,4¥ ] F + X )F () -
XY Y] - verone (&) =

=X, Y]+ (¢X,8Y]| - [X,8Y]| - ¢[0X,Y |-

X, Y16 = (X (V) ~ ¥ (7 (X)) = X, ¥} it
@0 V) - 76X, ¥] = $Y)E(X0) + 087, X1}

We have:

No(X,Y) = [X,Y] +[¢X,4Y] - $|X.6Y] - $[#X. Y] - n'[X,Y]&i.  (0)

This is the Nijenhuis tensor of the almost r-paracontact structure

L= (¢’ f(‘b"“')"‘-’m"

Making use of the following:

2dn'(X,Y) = X(n'(X,Y)) - Y (' (X)) - [ X, ¥], i=1,2,...,r  (10)

(axn’)(¥) = X(n*(¥)} - n'[X, Y] (1)

(ax¢)(Y) = [X,¢Y] - ¢[X,Y] (12)

where ax denotes the Lie derivative with respect to a vector field X, we have: .

Ne(X,Y) = Ng(X,Y) = 240" (X, Y )& + {(agx')(¥) - (agyn)(X)} EdF‘
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In the secoud case i.e. if X € V(M) and B = d—‘:.— we have :

. d ¢ d d 3 d d
NF (z\, zt—') = F.X,F (;l?)] - [X,F] -F [J‘.,F (F)l -F [FX,E;] =
= [ax i 6] - ax8 - n1x6) 2 =
e o I aps ) i N L® d
= [¢X,&] + 0’ (X) [W'&] - & (P (X)) 75~ X - X&) =
= ~ (& 6X] - 918, X]) - (66 (X)) - w185, X]) o5
= ~(@e#X) - () (X) 15 -

IfA= -i-andB= i— we have:
dt dv

d d QY s d'. 2
”’(W'w) -["gf'""g +[3?’W]'

43
2t i -pirs. Sl
Flafaw F[th"dv'] &, 41

Al N(X,Y) = N,(X,Y) - 27/ (X,Y)& , X,Y €V (M), (13)
N(X,Y) = (@gxn')(¥) - (agyn)(X), X, Y VM),  (14)

NiX) = ~(ag,d)(X), X eV(M), (13)

N = —(agn)(X), XeV(M). (16)

Now, we can write the values of N in all three cases as follows :

0 Np(X,Y):I\II(X,Y)+1§I"(X,Y)%, X,YevM), (1)

@ Ne(Xgg) =M@+ M@ G, Xevon, 09
(iit) Np (%,d—‘:’.—) =l&,~‘;l Y W o st 2 (19)

Hence we have:
Theorem 8. An almost r-paracontact structire & on M 1s normal if and only
if:

R Wb S e
N=N'=N;=N{=[§,§]=0, i,j=12,...,r

Now we prove:
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1
Theorem 4. I/ N =0, then

-

e N ' S

N'=N;=N]=[§,&]=0, ij=12,...,r.
1

Proof. Suppose that N = 0. For §; and £; we have:

ﬁl(fﬁfj) = (&, &) - n*l&, &16 + 0" (&, &6 = (60 &)

thus, because of the assumption we get:

A lfinej] = 0.

=13 qeret
It is easy to verify, that:
FNfr(A,B)= —Np(A.FB), ABeEY(N).
This relation gives the following identities:

FNp(X,Y)= -Ne(X,FY), X.Y €V(M),

FNp (X, j‘:.—) = -Nz(X, &), X eV(M),

™ N F d d
FNp (Fx) 5 <Ny (F-”‘) . XevM),

d d d
Sl (47-7::) N {Iﬁ’ff) :
From (22) we have:

d

1 25 . 1
#N(X,Y) + N'Y(X,Y)é& +0' (N(X,Y)) T

(20)

(21)

(22)

(23)

(24)

(25)

1 ; d . 3 4. d
= =N(X,$Y) - N (X,6Y) 3z — n' (V) (Ni(X) = ' (V)N (X) 1

Hence we get:

SN(X,Y) + N(X,8Y) + N (X,Y)& + nf (V)N:(X) =0 .

From (23) we have:

Nx) + o (M) g+ Moo =
d

= —ItI(X, &) - Ni (X&) 55+

(26)
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Hence:

3 i 4
N(X) + N(X, &) + N{(X)§; = 0.
From (24) we have:
M)+ (R 5+ ME0g =
d

= —1'3\’.-(¢X) = :‘v{('ﬁx)dti + 7 (X)[&, &)

Hence we get:

BNX) + N(6X) + NI (X8 - (X6 8] = 0.

From the identity (25) we have:

d
Sl&, &)+ 0" &, &) Tl Rﬂ'(fj) it 1‘:’: (&) 2% .

Hence ;
$[&is &5] = Ni(§5) -
Acting with n* on (27) we obtain:
4 2
Ni(X) = - N(X, &)
and because of the assumption we get:
‘.
N5 =0
From (27) because of the assumption and (30) we have:
3
dN(X)=0.
From (28) we have:

3
Ni(¢X)=0.
From (29) because of (20) we have: "

3
Ni(fj) =0.

(27)

(28)

(29)

(30)

(31)

(32)

Since every vector field X € V (M) is a combination of X and §; so from (31) and

(32) we obtain:
b

N;=0.

(33)
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Having acted with n* on (2€) we have:
g, 3 r .3
NYX,Y) = 9" N(X,9Y) — o/ (Y)r' (Ni(X)) .
Now, because of the assumption and (33) we obtain:

Ni=o0 (34)

and this completes the proof.
\WVe'll need one more identity being useful in the next part of the paper. From
(27) and (28) we have:

N(X, &) = Ni(#X) = P/ (X)[6, &1,

Now, if we insert X' instead of X into the above, we get:

N(6X, &) = Ni(X) = P (X)Nu(&;)

and on account of (29) we have:

N($X, &) = NiX) - (X816 &51. (35)

Combining Theorems 3 and 4 we obtain:
Theorem 5. An almosl r-paracontact structure £ on M is normal sf and only

I
o N =0.
For every manifold M with an almost r-paracontact structure, on account of
Remark I, we can define the following distributions:
D’ = {X:éX =0}, dim D=r
BT —{X5eX =Xk, dim DT =p (36)
D~ ={X:i¢X=-X}, dmD- =g, p+qg+r=n.

Analogously as in [2] we have:
Lemma 2.

a) XeED*eD® & 4X=X-n'(X)&,
b) XED-@D° o ¢X=-X+n'(X)S.

)
Nuw we deal with the relation beiween the teusor N and the integrability of the
above distributions. For X,¥ € DT we have:

N(X,Y) = [X,¥] - $|X,¥] + [X,¥] - |X, Y]
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or
HX,Y) = [X,¥] - N (X, ¥). (37)

For X,Y € D~ we have:

itf(x,}’) =[X,Y]+[X,Y]+¢[X,Y]+ ¢/ X,Y]

or
8X,Y}= ~[X,¥] + ZN(X,Y). (35)

We’ll use the obvious:

Lemma 8. Let Dt (resp. D~ ) be integrable and each (£;,&;] = 0. The
distribution Dt @ DO (reap. D~ @ D°) is integrable if and only if for X € D*
(resp. X € D™) |X, &) € DT @ DO (resp. |X,&;] € D~ @ DO).

For X € D™ we have: :

Ilv(xl 'fo) = [Xt 'n] = ¢[X’~.o]

Hence we get:

X, 8] =X, &] = PIX, &l - zir(x,e.) il e
= [x) ‘fl] = 'T’[X! fl‘l:J 3 IIV(‘Y ) '?’[\nkl\cj .

After having used (35), (11), (16) and the assumptlon of Lemma 3, we obtain:
For X € D*

81X, &) = [X, &) - n?[X, &€, - Ni(X) - N (X)e; . (39)

Similarly‘, for X € D~ we have:

JIX, &) = —1X, &+ PIX, &16 + NaX) + NI(X)E; . - (40)

Now we’ll prove the following:

1
Theorem 6. In an almost r-paracontact manifold the tensor N = 0 sf and only

£
if each [£;,&;] = 0 and N! = 0 and the distributions D*, D=, D* & D°, D~ 9 D°
are integrable.

1
Proof. Let N = 0, then from Theorem 4 [§,&] = 0 4,5 = 1,2.

N' N N = 0, and because of (37), (38), (39), (40), Lemma 2 and Frobemus s
theorem, we obtam that the distributions D+ D—, D* @& D° D~ & D° are inte-

grable. Now, conversely we can prove that if N{ =0, [&é&]=0,0i5=1.2...,r

1
and the above distributions are all integrable, then the tensor /V is identically zero.



77 A.Bucki, A.Miernowski

1 i
To this eud, since iV is a tensor field, it suffices to prove the vanishing of IV in the
following four cases:

) X,Y eD*VX,Y €D,

(#7) XeD*AYeD’VXeD-AY €D,
(s59) XeD*AY €D,

(1v) X,YeD°.

The first case is obvious, because of (37) and (38). In the second case. for every &;
4.
and X € D* from (35), (39), and N} =0, [§,£]=0,4,5/ =1,2...,r, we have:

3 1 1
0= "-(X) = N(¢X|£t) = N(X’&)_
and this means that for any X € D* and Y € D°

1
N(X,Y)=0.
Similarly, we have for X € D~ and Y € D°

1
N(X,Y)=0.
In the case (iii), for X € D* and Y € D~

N(X,Y) = [X,Y] - [X, Y] + ¢[X,Y] - 4[X,¥] = 0.

In the last case, for X = & and Y = £, we have:

N(X,Y) = N(& &) = [6,&] = 0.

Combining Theorems 5 and 6 we obtain the geometric interpretation of normality
in the following:

Theorem ;I.An almost r-paracontact strecture ¥ on a manifold M is normal
if and only n’/N‘j =0,[&,&]=0,4,j =1,2,...,r and the distributions D*, D,
D* @& D° D~ & D° are integrable. 3

Remark. Proceeding in the similar way we can give the geometric interpreta-
tion of integrability of an almost product structure, namely: Let F be a tensor field
of an almost product structure on a manifold. Then there exists a positive definite
Riemannian metric g such that g(FX,FY) = g(X.Y) or g(X,FY) = g(FX.Y)
and this means that all eigenvalues of F' are real and equal ta 1 or —1. Defining
the distributions D*F = {X;FX = X} and D~ F = {X:FX = -X} we obtain
that F is integrable if and only if D*F and D~F are integrable.

Now, we show that on a manifold M with an almost r-paracontact structure
L there exist almost paracontact and product structures whose normality depends
on the normality of the structure I.



Let © = (4,&3).n""))i=1,...., be an almost r-paracontact structure on M. Here

we use the following notations: & = €, 7' =npandso & = (4, &, &,0% ;1) a=1r—1-

We have:

Theorem 8. I, = (®,£,n) where ® = ¢ — n® ® &, 18 an almost r-paracontact

structure on M.

Now we’ll prove the following:
Theorem 9. If an almost r-paracontact structure ¥ on M s normal then the

almost paracontact structure L1 = (¢ — n® @ &,&,n) on M s normal.
Proof. For the structure £; we have:

1
1\72‘(‘\"}/) =

[X,Y] +[®X, Y] - ®[®X,Y] - 3[X,dY]-

-niX, Y& - 2dn(X,Y)¢ =

(X, Y]+ [0X - n°(X)&a,8Y — 77(Y)E—

—®(X,0Y — n°(Y)éa| - ®l0oX - n*(X)&,, Y-
-niX, Y| - 2dn(X,Y)¢ = :
(X,Y]|+ [6X,8Y] - 61X, 8Y] - 6[¢X,Y|-
-n°(X)[€a, oY |+ (8Y)(n°(X))éa — n° (Y )[$X, a |-

= (@X)(n°(Y))a + 0 (X)Ea(n? (Y ))Es = n” (¥ )Ealn® (X)) Ea+

+1°1X,8Y 1€, + n°(Y)9[X, &a] - n° (Y In?(X, &q éa—
—X(n°(Y))a + n°[6X, ¥ |€a + n°(X)pléa, Y]

—n® (X )P 6a Y 6s + ¥ (0°(X))éa = nlX, Y)é-
~249(X. V)E+ 1 X WP (Y )ia, o] =

N(X,Y) = N (X, ¥ )0 + n*(X)No (Y)-

“nP (V)N (X) - n* (X)NE(Y)Es+
+n2(VINE(X)Es +n° (X)nP (¥ )[bas £4]

Since ¥ is normal, then in virtue of Theoreme 3 we have:

A, .8 4 A
N =N, = Ny= N =l e &) =20 500y = 1520 = A 58

1
and Leuce NT' = 0 or I, is normal. In the similar way we can prove that the

structure Yo = (¢ + n® ® £4,1,€) I1s also an almost paracontact. structure. Let
9 € (0.r) be a positive integer and put

then

°‘=¢—\f|®ﬂl - & ®q’ —..._n’—tf'_' v

Ef = (¢'lff—'+11"'!f'lﬂr—"rll--b!"']
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is an almost g-paracontact structure.
Let

Dt = (X;®'(X)= X}, D' ={X;®(X)=-X}, D% ={(X;®'(X)=0}.
Then we have:
D** =D+,
D™ =D~ o lin {&,...,&-,},
D° = lin {&—g415-.06)
DY oD% =D*@® lin {(&—qi1y---r&},
D '¢ D =D"@D°

where Dt, D~, D° are defined by (36) and lin {X,...,X,} denotes a linear space
being spanned by vector fields X;,...,X,. Now we have the following:

Proposition 1. If an almost r-paracontact structure £ = (¢, fti,,n(')).-gl_,_,,,
on M s normal then an almost g-paracontact structure

=($° Ercgets e 0 TV DY)

38 also normal.
Proof. If £ is normal, then D*, D—, D* @ D° D~ & D° are integrable

and N' =0 and [§;,&] = 04,5 =1,2,...,r. From N‘ = 0 we have ag,;n' = 0 or
&n' (X) n‘l¢;,X) = 0. For X € D* and X € D~ we have n'(£;,X]| = 0. Now
from integrability of Dt @ D° (resp. D~ @ D°) in virtue of Lemma 3, for X € D+
(resp. X € D7), [X,&) € D @ D° (resp. (X,&] € D~ @ D°). On account of
Lemma 2 and the condition n'[&;,X] = 0, we have for X € D, ¢[X, &| = [X, &]
what means that [X, &) € DY and similarly, for X € D™, [X,&] € D™. Hence
the distributions D+¢, D=1 D*¢ @ D%, D~* @ D! are integrable and obviously
1:1‘; =0, [£a,ép]=0,a,8=1,...,r — 1. Thus £f is normal.

More general, put * = g+ e1n! @ &1+ e2n? @ &2+ -+ 6,40 1@ £,y where
6o = xl,a=1,...,7 — ¢g. We have:

Theorem 10. I = (¢, & —qt1,--+,&nn 141 ,..0,0") s an almost g-
paracontact structure on M and if an almost r-paracontact structure

= (¢| t(l‘)l "(‘) )I'-l.....'

on M’is normal then LY 15 normal as well.

Proof is similar to the one of Proposition 1.

Remark 4. Note that in the case ¢ = 1 we get a geometric proof of Theorem
8. The proof of the above theorem one can do with an algebraic method (comp.
Theorem 8), but it is more complicated than the one presented in Proposition 1.

Nowifweputd=¢ +en' @& +em* @& +---+6,0" @&, 6;= x1, then
we obtain the tensor field of an almost product structure on M and we have:
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Theorem 11. If an almost r-paracontact structure

2 = (é) E(i)\ 'T“) )‘ = Lyeaes?

on M 1 normal then an almost product structure ® ts integrable.
Proof. Without loss of generality, we may assume that ¢; = --- = ¢, = 1 aud
€¢+1y--.56, = —1. Then the distributions D*® and D—® are as follows:

D*® = {X;®X = X} = D* ® lin{&,..., )

D~%={X;9X = -X} =D~ ®lin{ég41,..., &}

Both distributions are integrable and in virtue of Remark 3 @ is integrable.
Remark 8. Note that if a positive definite Riemannian metric g is compatible
with an almost r-paracontact structure I, then g is also compatible with any almost
g-paracontact structure X and an almost product structure ®.
Examples. 1. Let (¢, £),7""));=y,...., be an almost r-contact structure {5 on
M. Then (¢?, {{,-],:;(‘])i=1,,,,_, is an almost r-paracontact structure on M.
2. Suppose that (M,g) is a Riemannian manifold and §;,...,& are orthonor-
mal vector fields . Put n'(X) = ¢(X,&) and 6 = Id — ' ® &§. Then
E = (4, £),7'")i=1,...,s is an almost r-paracontact structure on M and is called
an almost r-paracontact §;-structure. In this case:

D*E = {X;n'(X)=0,s=1,...,r},
DT=o,
DOE == lin {Elsfiw--‘ifv} O

Now we prove the following:

Theorem 132. An almost r-paracontact EMstructure & on M 1s normal if and
only ifdn' =0 and [£,&;]=0,4,5=1,...,r.

Proof. Suppose that £ is normal. If X,Y € D*T then [X,Y] € D*T and
47 (X,¥) = 0. IfX € D*T then dn' (X, &) = ~ &1 (X)= (X, &) = ~N3(X) = 0
and so dn' = 0, i = 1,2,...,r. Now, conversely, suppose that dp' = 0, and
[&,&;]=0,¢ = 1,2,...,r. Let X,Y € D*E. Then we have 0 = dp'(X,Y) =
-n'[X,Y). Thus [X,Y]€ D+, If X € D*% then 0 = dn'(X, &) = —n*(X, ;| and
% [X,§;] € D*Z. Hence we have that the distributions D*E, D—%, D+% g DOZ|

D=L @ DT are integrable and I:/; =0 and [§,&;] =0,4,5 =1.2,...,r.

3. If we lift an almost paracontact structure £ = (4, &,n) on a manifold M to
the tangent bundle TM we obtain, in the natural way, an almost 2-paracontact
structure & on TM. Let & = (¢, ,7n) be an aimost paracontact structure on M.
Then £ = (¢°,£%,£°.7°,1n°) is an almost 2-paracontact structure on TM, where
$°, £, n® are complete lifts and £%, n®° are vertical lifts of ¢, &, n, to the tangent
bundle TM. Making use of the properties of complete and vertical lifts [6], we
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have:

NTUXY) = (4K, 6T )+ X0, Y] - ¢ X, 1] - (X0, 4]
~2dn"(X*, Y )€ - 2dn®(X*, Y *)€° ~ n*(X*, Y )"~
-0t (XY V(X 8Y ]+ X, Y] - 418X, ¥] - 41X, Y |-
~2dn(X,Y)¢ - n|X, Y€)= (N (X,Y))" .

In virtue of Proposition 1 p.33 [6] we have:

Theorem 18. An almost paracontact structure & = (4,&,n) on M s normal
if and only if an almost 2-paracontact structure & = (¢°, &%, &,n*,n°) on TM i
normal.

From Theorem 10 and 13 we have:

Theorem 14. If £ = (¢,€,n) 1 an almost paracontact structure on M , then
1 =(¢°+ e£° @1, £5,n°), and Ts = (4° + €£° @ °,£°,n°), where ¢ = %1, are
almost paracontact structures on TM. Moreover if £ is normal, then £ and T,
are normal.
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STRESZCZENIE

W pracy rozpatrujemy struktury r-parakontaktowe, bedace naturalnym uogélnieniem struk-
tur parakontaktowych, wprowadzonych preer LSato. Definiyjemy pojecle normalnoéel takich

struktur | podajenty jej interpretacje geometrycena. Podajemy takie priykiady struktur r-
parakontaktowych.

PE3IOME

B naHHOA paboTe pACCMATPHBAIOTCR F-NAPAKOHTAKHLE CTPYKTYpPhi, KOTOphe oBoCumsioT
NapaKOHTAKTHAIC CTPYKTYpH BBaaeH b e H.CatoM. Onpenan Kcrca NOAAT HE HOPMANBLHON F-CTPYK-
TYPhl BMecTe ¢ €2 reoMeTpHYeCKON HHTepnperauieR . Pelory KOHUBENM NPHMEPBMM.



