Instytut Matematyki Uniwersytet Warszawski

Instytut Matematyczny PAN

Z. SZMYDT, B. ZIEMIAN

Local Order Function for Homogeneous Rotation Invariant Distribution and Their Multiplication

Lokalna funkcja rzędu dystrybucji dla dystrybucji jednorodnych niezmienniczych ze względu na obrót i dla ich iloczynów

Локальная функция ранга для однородных обобщенных функций, инвариантных относительно вращений, и для произведний таких функций

Consider a set R^* consisting of two points t^* and t^- for every $t \in R$ and of point ∞ with the ordering:

if
$$s < t$$
 then $s^- < s^+ < t^- < t^+ < \infty$.

 R^* is equipped with the topology induced by this ordering. Addition in R^* is defined so that

$$s^{-} + t^{-} = s^{-} \pm t^{+} = (s + t)^{-}$$

 $s^{+} + t^{+} = (s + t)^{+}, t^{-} + \infty = t^{+} + \infty = \infty$.

A particular example of R^* which we shall use below is given by

$$t^- = \{s \in R : s < t\}, t^+ = \{s \in R : s \le t\}, \infty = R.$$

According to Ambrose [1] we introduce the local order function $O_U(x, l)$ of a distribution $U \in D'(R^n)$ as follows:

let
$$x \in \mathbb{R}^n$$
 and $l \in \mathbb{S}^{n-1}$ then

 $O_U(x, l) = \{ s \in \mathbb{R} : \text{there exist neighbourhoods } Q \text{ of the point } x \text{ and } E \text{ of } l \text{ in } S^{n-1} \text{ such that for all } \omega \in D(Q) \text{ we have}$

$$\int_{\Gamma_E} |(\omega U)^{\wedge}(\xi)|^2 (1 + |\xi|^2)^s d\xi < \infty$$

where \wedge denotes the Fourier transform in R^n and Γ_E is the cone $\{y \in R^n : y/|y| \in E\}$. In this paper we shall compute the order function for homogeneous rotation invariant distribution in R^n . Such distributions will be denoted by $|x|^{\lambda}$ and are defined as follows [1]:

For
$$\lambda \in C$$
, Re $\lambda > -n$ we set

$$|x|^{\lambda} [\varphi] = \int_{R^n} |x|^{\lambda} \varphi(x) dx \text{ for } \varphi \in D(R^n).$$

The function $\lambda \to |x|^{\lambda} \in D'(\mathbb{R}^n)$ for $\operatorname{Re} \lambda > -n$ admits meromorphic extension to the whole complex plans with simple poles at the points -n, -n-2, -n-4, According to Gelfand, Shilov [2] we denote for k, $m=0,1,2,\ldots$ [2].

(2)
$$|x|^{\lambda} \ln^{m} |x| = d^{m}/d\lambda^{m} |x|^{\lambda} \text{ for } \lambda \neq -n, -n-2, -n-4, ...,$$

$$\delta^{(2k)} (|x|) = (2k)! \operatorname{Res}_{\lambda = -n-2k} |x|^{\lambda},$$

$$|x|^{-n-2k} \ln^m |x| \stackrel{\text{df}}{=} \lim_{\lambda \to -2k-n} \frac{d^m}{d \lambda^m} (|x|^{\lambda} - \frac{\delta^{(2k)}(|x|)}{(2k)!(\lambda + 2k + n)}).$$

Proposition 1 ([2] p. 222). For k, m = 0, 1, 2, ...

$$(|x|^{\lambda} \ln^{m} |x|)^{\wedge} (\xi) = \sum_{i=0}^{m} c_{im} (\lambda) |\xi|^{-n-\lambda} \ln^{i} |\xi| \text{ for } \lambda \neq -n, -n-2, \dots$$

$$(\delta^{(2k)} (|x|))^{\wedge} (\xi) = c_{k} |\xi|^{2k},$$

$$(|x|^{-2k-n} \ln^{m} |x|)^{\wedge} (\xi) = \sum_{i=0}^{m+1} d_{imk} |\xi|^{2k} \ln^{i} |\xi|,$$

where cim, ck, dimk are some constants.

Lemma. Let Δ be the Laplace operator in \mathbb{R}^n . We have

$$\Delta(|x|^{-n+2}\ln^m|x|) = \begin{cases} (-n+2)\delta(|x|) & \text{for } n \ge 3, m = 0, \\ -\delta(|x|) & \text{for } n = 2, m = 1, \end{cases}$$

and

$$\Delta (|x|^{\lambda} \ln^{m} |x|) = \lambda (\lambda + n - 2) |x|^{\lambda - 2} \ln^{m} |x| +$$

$$+ m (2 \lambda + n - 2) |x|^{\lambda - 2} \ln^{m - 1} |x| + m (m - 1) |x|^{\lambda - 2} \ln^{m - 2} |x|$$

otherwise.

Proof. It follows by differentiating m times with respect to λ the identity

$$\Delta |x|^{\lambda} = \lambda (\lambda + n - 2) |x|^{\lambda - 2}$$

and computing residua at singular values of \(\lambda\).

Proposition 2. Let $U \in D'(R^n)$ and $l \in S^{n-1}$. Then $O_U(0, l) = s^-$ if and only if $O_{\Delta U}(0, l) = (s-2)^-$.

This proposition is only a reformulation of the microlocal version (for a conical neighbourhood) of the regularity theorem for elliptic operators in Sobolev spaces (see [4] Theorem 7.2 p. 61. Also cf. [3], Theorem 2).

Theorem. For every $l \in S^{n-1}$

(3)
$$O_{|x|} 2k (0, l) = + \infty \text{ for } k = 0, 1, 2, ...,$$

(4)
$$O_{\delta(2k)(|x|)}(0,l) = [-2k, -n/2]^{-1}$$
 for $k = 0, 1, 2, ...,$

(5)
$$O_{|x|\lambda|n}m_{|x|}(0,l) = [\text{Re }\lambda + n/2]^{-1}$$

for all $\lambda \in C$ if $m \ge 1$ and for $\lambda \ne 0, 2, 4, ...,$ if m = 0.

Proof. Directly from the definition of the local order function, it follows that every $l \in S^{n-1}$

$$O_f(0, l) = + \infty \text{ if } f \in C^{\infty}$$

in some neighbourhood of 0,

(6)
$$O_{\delta(|x|)}(0, l) = [-n/2]^{-1}$$

Hence follow formulas (3) and the first one of (4). To consider the remaining cases denote by V_{λ} the distribution $|x|^{\lambda} \ln^{m} |x|$ (for $\lambda \in C$, m = 0, 1, 2, ...) or the distribution $\delta^{(-\lambda - n)}$ (|x|) if $\lambda = -2k - n$ (k = 1, 2, ...). By Proposition 1 we have

$$(V_{\lambda})^{\wedge}(\xi) = \sum_{l=0}^{\widetilde{m}} e_l |\xi|^{-\lambda - n} \ln^{l} |\xi|$$

for some \widetilde{m} and some constants e_i . Suppose now that Re $\lambda < -n/2$. Then (7) is a locally square integrable function and we have

$$\int_{R^n} |(V_{\lambda})^{\wedge}(\xi)|^2 (1 + |\xi|^2)^s d\xi = \sum_{i=0}^{2m} e_i' \int_{R^n} |\xi|^{-2Re\lambda - 2n} \ln^i |\xi| (1 + |\xi|^2)^s d\xi =$$

$$= \sum_{i=0}^{2m} e_i' \int_0^\infty r^{-2Re\lambda - n - 1} \ln^i r (1 + r^2)^s dr,$$

with suitable constants e_i' , e_i'' . Hence $V_{\lambda} \in H^s$ if $s < \text{Re } \lambda + n/2$. Since Sobolev H^s spaces are closed under multiplication by functions in $D(R^n)$, it follows that $O_{V_{\lambda}}(0,l) \ge [\text{Re } \lambda + n/2]^-$ for every l. To prove the equality suppose that there exists $l \in S^{n-1}$ such that $O_{V_{\lambda}}(0,l) > [\text{Re } \lambda + n/2]^-$. Then for some cone $\Gamma_{E_{\lambda}}(|E_{\lambda}| > 0)$ and some function $\omega \in D(R^n)$, $\omega = 1$ in a neighbourhood of zero we would have

$$\int_{\Gamma_E} |\omega V_{\lambda}\rangle^{\wedge}(\xi)|^2 (1+|\xi|^2)^{\operatorname{Re}\lambda+n/2} d\xi < +\infty.$$

Since $(1 - \omega) V_{\lambda}$ is integrable for Re $\lambda < -n$, its Fourier transform is bounded. This together with (9) gives that the integral

$$\int_{\Gamma_E} |(V_{\lambda})^{\wedge}(\xi)|^2 (1+|\xi|^2)^{\operatorname{Re}\lambda+n/2} d\xi$$

is convergent. On the contrary a calculus analogous to (8) proves that this integral a divergent. Thus we have proved that for every $l \in S^{n-1}$

$$O_{V_{\lambda}}(0,l) = [\text{Re } \lambda + n/2]^{-1} \text{ if Re } \lambda < -n.$$

Therefore $O_{\delta(2k)}(0, l) = [-2k - n/2]^{-1}$ for k = 1, 2, ..., and

(10)
$$O_{|x|^{\lambda} \ln m_{|x|}}(0, l) = [\text{Re } \lambda + n/2]^{-1} \text{ for Re } \lambda < -n.$$

So we have proved all formulas (4) and some of (5). Denote by W_{λ} any distribution of the norm

(11)
$$\sum_{i=0}^{m} \alpha_{i} |x|^{\lambda} \ln^{i} |x|, \alpha_{i} \in C, \sum_{i=0}^{m} |\alpha_{i}|^{2} > 0.$$

By (10) $O_{W_{\lambda}}(0, l) \ge [\text{Re } \lambda + n/2]^{-1}$ and, as before for V_{λ} , we prove that

(12)
$$O_{W_{\lambda}}(0, l) = [\text{Re } \lambda + n/2]^{-1} \text{ for every } l \in S^{n-1} \text{ and } \text{Re } \lambda < -n.$$

To prove the remaining formulas (5) it suffices to prove that for all λ such that Re $\lambda \ge -n$

(13)
$$O_{W_{\lambda}}(0,l) = [\operatorname{Re} \lambda + n/2]^{-1} \text{ for every } l \in S^{n-1}.$$

We show first that (13) holds for $-n \le \text{Re } \lambda < -n + 2$. To this end observe that Lemma and formulas (12) we get for $-n \le \text{Re } \lambda < -n + 2$

(14)
$$O_{\Delta W_{\lambda}}(0, l) = [\text{Re } \lambda - 2 + n/2]^{-1}$$
 for every $l \in S^{n-1}$.

Hence by Proposition 2 we obtain formulas (13) for $-n \le \text{Re } \lambda < n+2$. In the next step we consider the belt $-n+2 \le \text{Re } \lambda < -n+4$. By Lemma, formulas (13) valid for $\text{Re } \lambda < -n+2$ and by (6) we get (14) for $-n+2 \le \text{Re } \lambda < -n+4$. Therefore by Proposition 2 follow formulas (13) for $-n+2 \le \text{Re } \lambda < -n+4$. To finish the proof by induction take $k \ge 2$ and suppose that the relations (13) are true for $\text{Re } \lambda < -n+2$ k. Then by Lemma we get (14) for -n+2 $k \le \text{Re } \lambda < -n+2$ k+2 and hence by Proposition 2 follow formulas (13) for -n+2 $k \le \text{Re } \lambda < -n+2$ k+2.

Remark 1 (see [2] and [5]). Both some fundamental solution E and its Fourier transform E^{\wedge} for an arbitrary operator $P(\Delta)$, P-a polynomial in one variable, are series of distributions of the form (2).

Remark 2 (see [1]). If we know the local orders of two distributions U and V we can multiply them under the condition that for every $x \in \mathbb{R}^n$ and $l \in \mathbb{S}^{n-1}$

$$O_U(x, l) + O_V(x, -l) \ge 0$$
.

REFERENCES

- [1] Ambrose, W., Product of distributions with values in distributions, Journal für die Reine und Angewadte Mathematik, 315 (1980), p. 73-92.
- [2] Gelfand, I. M., Shilov, G., Generalized Functions, Moscow 1958.
- [3] Lysik, G., On the order function for homogeneous distributions on the real line, Bull. Acad. Polon. Sci., to appear.
- [4] Shubin, M. A., Pseudodifferential Operators and Spectral Theory, Moscow 1978.
- [5] Szmydt, Z., Ziemian, B., A method for constructing invariant fundamental solutions for $P(\Delta)$. Zeszyty Naukowe Politechniki Sląskiej.

STRESZCZENIE

W pracy wyznaczono lokalną funkcję rzędu dystrybucji w sensie W. Ambrose'a dla jednorodnych dystrybucji w R^n niezmienniczych ze względu na obroty.

PE3IOME

В работе приводим локальную функцию ранга (в смысл В. Амброза) для однородных обобщенных функций в R^n инвариантных относительно вращений.