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Local Order Function for Homogeneous Rotation Invariani Distribution
and Their Multiplication

Lokalna funkcja rzedu dystrybucji dla dystrybucji jednorodnych niezmienniczych
ze wzgledu na obrét i dla ich iloczynow

Jlokanbiag QPYHKUMA paHTa OjIf OTHOPOAHAIX 0606LIEHHBIX QyHKUHA,
HHBAPHAHTHLIX OTHOCKTENBHO BpAICHHA, H [UIA MPOM3BeRHHA TakHX GyHKuuA

Consider a set R* consisting of two points ¢* and ¢ ~ for every ¢ € R and of point >
with the ordering:

ifs<tthens <s*<t <t*<w=,

R* is equipped with the topology induced by this ordering. Addition in R* is defined so
that

gt e Lipng df -
sT+tT=s"Ft"=(st+0)
df df
sttt = s+t too=tt oo =00,
A particular example of R* which we shall use below is given by

t'={s€R:s<t}, t’=(s€R:s<t},°°=R.

According to Ambrose [1] we introduce the local order function Oy (x, !) of a distribu-
tion UE€ D' (R™) as follows:

letx ER™ and 1€S™! then
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Oy (x, ) = {s €R : there exist neighbourhoods Q of the point x and £ of / in 5™ such
that for all w € D (Q) we have

rfE!(wU)A(E)Iz (1 #1E1*) de<e})

where /\ denotes the Fourier transform in R" and I'g is the cone {y €ER" :y/ly|EE}.
In this paper we shall compute the order function for homogeneous rotation invariant
distribution in R™. Such distributions will be denoted by | x | A and are defined as follows

[1]:
For A€EC, Re .> — n we set
11X [¢] =fgn1x|* ¢ (x)dx for p€D R™).
The function A = | x | » €D’ (R™) for Re A > — n admits meromorphic extension to the
whole complex plans with simple poles at the points —n, —n — 2, —n —4, ... . According
to Gelfand, Shilov [2] we denote fork, m=0,1,2,... [2].
df
IxI*in™ x| = d™/d\™ |x|* for \# -n, -n =2, -n —4, ...,
df
@ 8 OB (1x 1) = (2K)! Resyap—2k 1x|%,

. (x|*— 8™ ax
Qk)!(A+2k+n) ~

df
ook 522 Zanlbxl 2~ Mlims * e
A=-2k-n d X\

Proposition 1 ([2] p.222). Fork, m=0,1, 2, ...

(Ix|* ™ IxI)A(E)=’_:2'Ioc1,,, Q) IE1~""Nn! | Elfor \# -, —n 2, ...

GO Ax MA@ =cr 1812,

m+1
(x|~ 22" p™ | x )N )= Z dimk | £ 2k 1nf ],
’=

where Cjm, €k, dimk are some constants.
Lemma. Let A be the Laplace operator in R™. We have

[(—n +2)§ (Ix|)forn>3,m=0,
A(lxl-n+2 lnm ‘x|)=l
S (x)) forn=2m=1,
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and
AdxI*In™ Ix)=AQ+n—2)x[* 2™ |x|+
+m@A+n=2)|x 12 2™ x|+ m(m 1) 12122 "2 x|

otherwise.

Proof. It follows by differentiating m times with respect to A the identity
Alx|1*=AQ+n-2)|x|*"2
and computing residua at singular values of A.

Proposition 2. Let UE D' (R®)and 1€ S"~ 1. Then Oy (0,1) =5~ if and only if
Oav (0,D)=(s-2)".

This proposition is only a reformulation of the microlocal version (for a conical neigh-
bourhood) of the regularity theorem for elliptic operators in Sobolev spaces (see (4]
Theorem 7.2 p. 61. Also cf. [3], Theorem 2).

Theorem. For every € S~ 1

3) Ope2k (0, =+ fork=0,1,2, ...,
(4) 052y xpy 0. 0) = [-2k, —n[2] “fork=0,1,2, ...,
%) OixAnmix; (0,0) = [Re A +n/2] ©

forall \€ECifm> land for A #0,2,4,...,ifm=0,

Proof. Directly from the definition of the local order function, it follows that every
lesn-!

0r(0,))=+=iffEC™
in some neighbourhood of 0,
(6) Osx1y (0,0 = [—/2] "
Hence follow formulas (3) and the first one of (4). To consider the remaining cases

denote by ¥, the distribution | x | * In™ | x | (for A\€C, m =0, 1,2, ...) or the distribu-
tion § (—2-7) (Ix)ifA==2k-n(k=1,2,..). By Proposition 1 we have
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" ®= 2 el g

for some 71 and some constants ;. Suppose now that Re A < — n/2. Then (7) is a locally
square integrable function and we have

- _
SR LN ® P A +1EP) dE= ‘?oe;fm. L1 ~2RA=20 000 g | (14 1E ) dg =

2m o
- igo e;’ f r—ZRek—n—l lﬂ‘ftl _',ri)l&'
=0 !0

with suitable constants e;, ef. Hence V) € H* if s < Re X + n/2. Since Sobolev H* spaces
are closed under multiplication by functions in D (R"), it follows that Oy, (0,7) > [Re
A +n/2] ~ for every l. To prove the equality suppose that there exists / € 5"~ 1 such that
Oy, (0,0) > [Re X + n/2] . Then for some cone I'g, (| £ | > 0) and some function w €
€D (R™), w = 1 in a neighbourhood of zero we would have

frplw V)N ® P Q+1EPRMAY2gE< 4 oo,

Since (1 — w) V, is integrable for Re A < —n, its Fourier transform is bounded. This
together with (9) gives that the integral

Srg LV M@ 1P (1 +1E P)RA2 gy

is convergent. On the contrary a calculus analogous to (8) proves that this integral a di-
vergent. Thus we have proved that for every /€S =

Oy, (0,/)=[ReX +n/2] "if Re A< —n.
Therefore O (2k) (0,0) = [-2k - n/2] "fork=1,2,...,and

(10) O\ inmyx; (0:1) = [Re X +7/2] ~ for Re A< —n.

So we have proved all formulas (4) and some of (5). Denote by W, any distribution of
the norm

K- Ay d m g
(11) i__’.ﬂoa,-lxl In IXl'aieC'i-z-:ola” >0.

By (10) Oy, (0,)) > [Re A +n/2] ” and, as before for ¥,, we prove that

(12) Ow, (0,D)= [ReX +n/2] " for every /ES" 1 and Re A< —n.
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To prove the remaining formulas (S) it suffices to prove that for all X such that Re A =
2 -n

(13) Ow, (0,1)= [Re A +n/2] ~ for every I €S~ L.

We show first that (13) holdsfor —-n < Re A < —n + 2. To this end observe that. Lemma
and formulas (12) we get for—-n < Re A< -n +2

(14) Oaw, (0,1)= [Re A\ —2 +n/2] ~ for every I€S" 1.

Hence by Proposition 2 we obtain formulas (13) for —n < Re A <n + 2. In the next step
we consider the belt -n +2 < Re A < -n + 4. By Lemma, formulas (13) valid for Re A <
< —n +2 and by (6) we get (14) for —n + 2 < Re A < —n + 4, Therefore by Proposition 2
follow formulas (13) for —n + 2 < Re A < —n + 4, To finish the proof by induction take
k > 2 and suppose that the relations (13) are true for Re A < -n + 2 k. Then by Lemma
we get (14) for —n + 2 k < Re A < —n + 2 k + 2 and hence by Proposition 2 follow for-
mulas (13)for-n+2 k< ReA<-n+2k+2.

Remark 1 (see [2] and [5]). Both some fundamental solution £ and its Fourier trans-
form E N for an arbitrary operator P (A), P — a polynomial in one variable, are series of
distributions of the form (2).

Remark 2 (see [1]). If we know the local orders of two distributions U and ¥ we can
multiply them under the condition that for everyx ER™ and /€ 5"~ !

Oy (x, )+ 0y (x, -)> (" .
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STRESZCZENIE

W pracy wyznaczono lokalng funkcig rz¢du dystrybucji w sensie W. Ambrose’a dla jednorodnych
dystrybucji w R niezmienniczych z¢ wzgledu na obroty.

PE3IOME

B pa6oTe NpHBOAHM NOKANBHYIO GYHKUHIO paHra (B cmulcn B. AMG6p033) ANt OMHOPOIHBIX
06061eHHBbix GyHKUHA B RN MHBAPHAHTHLIX OTHOCHTENBHO BpALLCHHA.






