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Исследование некоторых экстремальных задач в классе фу ;ций однолистных в полуплоскости

1. Introduction. In the paper there has been presented an attempt of applying the 
methods of complex analysis and optimal control to investigations of extremal problems 
for holomorphic and univalent functions in a half-plane. The expedience of investigating 
extremal problems in the space of such functions is justified, among other things, by their 
importance in questions of the mechanics of continuous media.

2. Preliminary notes. Let Hl stand for a class of functions/holomorphic and univalent 
in the upper half-plane P£ = $z : Im z > o}, which transform this half-plane onto domains 
contained in the half-plane Pw : Im w>0^. Besides, these functions are normalized 
by the condition

(1.1) lim [f(z)-z]=O.

The class//1 is not empty since the identity function belongs to it. In the paper [5] it 
was proved that Hl is connected in Pz and is not a compact class.

In the paper [2] a possibility of using the variational-parametric method to the exami
nation of extremal problems in the class //* was shown. The idea of the mehod rests 
upon a simultaneous examination of two differential equations satisfied by some function 
F(w, r) which is strictly connected with an extremal function / corresponding to the 
problem considered. In one of these equations there occurs the derivative of the function 
F with respect to the variable w, while in the other equation — the derivative ol F with 
respect to a real parameter r G [0, t0 ] where t0 is some fixed number. The first equation 
is obtained on the basis of the variational method, the other — on the basis of L'owner’s
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parametric theory [6] applied to functions of class Hl. Hence we derive the name of the 
variational-parametric method.

In papers [1], [3] and [5] the variational-parametric method is applied to investigat
ing extremal problems in some subclasses of functions of class Hx.

Let HXL denote the set of all functions f £ H' for which the complement of f(Pz) to 
PZ is bounded. In virtue of the Schwarz symmetry principle each function /£ H1, has 
an analytic continuation in Pz = {z : Im z < Oj- according to the formula /(z) = /(z), z £ 
Pf. Moreover, by continuity, the function f&Hi is uniquely continuable, onto the entire 
real axis bP2 =£z : Im z = 0}, with the exception of some bounded part of dP/. The func
tion f thus continued is holomorphic in some ring

KR = £z :P<|z |<~,P>$.

Expanding f in KR in a Laurent series, we shall obtain

(1.2) /(z) = z+ fcjfcz-*
1

where all the coefficients cjt are real numbers.
Let Hi stand for the set of all functions/£//}, each of which transforms the half- 

-plane Pi onto a domain Go = f(Pz) of the complex plane Cw. obtained form the half- 
-plane P«. by the removal of a finite number of pairwise disjoint Jordan arcs. One can 
prove that the class is non-empty and is dense in Hg in the sense of the topology 
of uniform convergence inside Pz - One can also prove (cf. [2] or [3]):

Theorem A. Let f belong to H' (or to Hi or Hi). Then there exist three classess 
{fk(:, (k = 1. 2, 3) of functions fk(z. t) of class Hx (or of Hi or Hi. respectively) 
depending on a real parameter t and having, with z £ Pf and with small t> 0, the repre
sentation

fk(2, 0 =/(2) +1Qk(2, /) + o(z, Z), P = 1,2, 3,

where

Q2(z.f) = Q2 (z, f; w0 ) =---- - -----  + A
/(2)-W0 f(z] — Wq

Q3(z,f^Q:(z.f;f^))+f'(z)(
(f(2)r(f-2) (f (2)f(f - Z) O

.4
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A and f are arbitrary complex numbers ($&Pf), w0 is any point from the half-plane Pw, 
external for the domain Go = f(Pz), X is an arbitrary real number, o(z, t) is a holomor- 
phic function in Pf such that t~l o(z, t) -» 0 uniformly inside Pf and in the neighbour
hood of infinity as t~*0.

In particular, if f is any function of class H^, then, to this class, also belongs a func
tion given by the formula

* /(z) - W0 /(2) - w0
).

This formula is used to some characterization of the set GQ according to theorem A.

Theorem B. For any function f £ H^, f(z) ¥= z, z £ Pi, there exist:a number t0 > 0, 
real functions ujfc = ug(t) {k = 1, 2, ... , m, m > I)piecewise continuous on the interval 
[0, f0), wirt no points of discontinuity of the second kind, and non-negative functions
&k ~ bk(ff(k = 1........ m), 0 < f < f0, 81 + ... + 6^ = \,such that f(z) =^z, 0) where
$ (z, f) E Hi, t £ [0, t0 ], and the function z = F(w, t) inverse to a function w = <t>(z, t) 
is a solution of the equation

dF(w, t) m 8fc(t) 

dt Jk-1 ui{f) — F(w, t)

satisfying the condition F(w, f0) - w, w€P^. It turns out that the function F(w, t) 
satisfies also the condition F(f(z), 0) = z.

The function F(w, t) is called a function associated with the function/. The equation 
occurring in Theorem B bears the name of the Lowner equation for a half-plane:

In particular (m = 1), the function F(w, t) can be obtained as the integral of the equa
tion

3P(w, f) _ 1
dt u(t) — F(w, t)

with the condition F(w, t0) = w.

Remark. Normalization condition (1.1) secures the uniqueness of the inverse lunction 
(cf. [2], p. 143).

It is to be proved that the function 4>(z, t) (in the special case under consideration) 
satisfies the equation
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34>(z, o ! i a<fr<z. () 

dr u(t) — z dz

and the condition

<t>(z,O)=f(z).

3. Of late years, there appeared many papers (comp. e.g. [8], [9], [10]) in which 
some extremal problems were investigated by means of: variational methods, parametric 
one and that of optimal control. As has been indicated in the introduction, the present 
paper constitutes - in the author’s opinion — the first tentative of applying the above- 
-mentioned methods to the solving of a concrete extremal problem concerning a selected 
class of holomorphic and univalent functions in a half-plane.

Theorem 2.1. Let the differential equation

(2.1)
Wz.t) ! 1 9/(z,f)

dt u(t)-z dz

be given, where (z, t)&P? X [0, z0], while u(t) is a measurable function on the interval 
[0, *o ] • If is o holomorphic function in the half-plane Pf, and f(z, t) is a solution 
of equation (2.1) >w7/i the initial condition

(2.2) /(z,0) = t(z),

then there exists exactly one holomorphic and univalent function g : PfX [0,70] ~*Pz 
such that

(2.3) /(Z, t) = t(?(z. t))for z e [0, z0] •

Proof. Let us take into consideration the equation

dg(z, t) 1 dg(z, t)
(2.4) —------ +------------------——- = 0

dt u(t)-z dz

with the initial condition g(z, 0) = z.

In this way we define, for all t € [0, 70], some holomorphic function g(z, f) of the va
riable z. Besides, the equation

g(z, t) = a, lma>0.



Investigation of Selected Extremal Problems in the Space of Univalent Functions... 95

defines, for t sufficiently small, a curve z(t;a) such that

(2.5) g(z{t;a).t) = a.

This means that the curves z(f; a) are the characteristics of equation (2.4) and satisfy 
the differential equation

1dz(t;a)

dt u(t)-z(t;a)
= 0,z(0;a) = a.

Since Im u(f) = 0, Im z(t;a) > 0, therefore

(2.6)
dz(t;a)

Im — >0
dt

Hence we infer that

dz(f;a)
Arg —- ----- G (0, it).

dt

By taking account of (2.5) and (2.6), it can be verified that the function g(z, t) is, for all 
f 6 [0, f0]. a univalent function in the half-plane P£ and transforms it onto its certain 
subset.

Since g(z, t) is a solution of equation (2.4), so is also each function 

(2.7) Z(*.O = ^fe(*.O)-
X ,

Moreover, since g(z, 0) = z, therefore /(z, 0) = *£(z). From this and from the theorem on 
the uniqueness of solution of a differential equation we deduce that the function/(z, /), 
appearing in the proposition of our theorem, really has form (2.7), i.e. form (2.3).

On the ground of Lowner’s theory, it can be shown that the set of solutions of equa
tion (2.1) is dense in H1. Whereas on the basis of theorem 2.1, from the continuity of 
solution of a differential equation we infer that each function '^G//1 can be arbitrarily 
approximated by the solution /(z, /) of equation (2.1) with the initial condition/(z, 0) = 
= ^(z). The justification of these facts can be found in monograph [7] where there have 
been collected, among other things, some basic results concerning Lowner’s theory tor 
a half-plane and its applications.

4. We shall now give an example of applying the information gathered in sections 2 
and 3 to the solving of a concrete extremal problem.

Let 'tG//[, and let it possess an expansion in a Laurent series, given by formula
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(1.2) . From the considerations contained in sections 2 and 3 it follows that, for this func
tion, there exist: a number t0 > 0 and a real function u = u(t) piecewise continuous on 
the interval [0, t0], with no points of discontinuity of the second kind, continuous on 
the right at the point 0 and on the left at the point f0, such that sC(z)=/(z, 0) where 
/(z, t) G /7} and, with any t G [0, Zo] » is the integral of equation (2.1) with condition
(2.2) . Since, with each t G [0, f0 ], the function/(z, t) G H^, therefore this function has 
in the neighbourhood of infinity the expansion

(3.1) /(z,f) = z+ 2 xjt(f)z-*
*=1

with real coefficients xjt = xjt(r) (k = 1,2,...).
Substituting (3.1) into equation (2.1), we obtain, for the coefficients xjt(f) (k = 1,2,...), 
the following system of equations:

x, = 1

x2 =u

X3 = 1? -Xj

^=uk-l-ki2 mxmuk~m~2 
m»l

for almost all / G [0,f0]-
If cic(k = 1,2,...) are coefficients in the expansion of the function in a Laurent 

series, then from condition (2.2) we have

(3.2) xjt (0) = c*. k = 1,2.......

It can be shown (cf. [7], p. 243) that c2 < 0, with that c, s 0 if and only if "Ç(z) = z. 
From Theorem B one can deduce that the condition x* =Xfc(f0) = Q,k= 1,2,..., holds. 
From this and from condition (3.2) it follows that t0 = -Cy. This equality is obtained at 
once from the conditions: Xj = 0,X! (0) = cJt x( (f0) = 0.

From among all functions of class //} we choose those for which the first two coeffi
cients c, and c2 of the expansion in a Laurent series are known. Let us consider the 
following extremal problem.

Problem 1. Find the extremal values of the coefficient c3 in expansion (1.2), with the 
first two coefficients Ci andcj fixed.

Let a point move in the space of variables (Xj, x2, x3) according to the law 

x, = l,x2 = u,x3 =u2 -x,, te [0,f0]
(3.3)

x/(0) = c/, x/(/0) = 0, / = 1,2,3.
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We assume that the function u = u(t) is a control function. Note that 
to ^0
; (i?(f) - x,(f)) dt = J x3(t) dt = x3(t0) - x3(0) = —x3(0) = -c3, 
0 0

and thus,

(3.4) x3(0) = c3=-f (u2(t)-Xi(t))dt.
0

Let us consider.

Problem 2. Determine a control u that carries a point from a position (cb c2, x3) at 
the instant t = 0 to the position (0, 0, 0) at the instant t0, so that the functional /, = 
= x3(0) should take the maximal value or, which is equivalent, that the functional

/(u) = /(u2(0-Xi(r))df 
0

should attain the minimal value.
Applying the transformation

Xi = x, - t,x2 = x2,

from (3.3) we obtain

Xi = 0,x2 = u, Xi(f0) = -t0, x2(t0) = 0.
(3.5)

x/(0) = <?/,/ = 1,2;
^0

(3.6) /(u) = / (u2 (f) - x, (0 - 0 dt.
o

Then Problem 2 can be reformulated in the following manner.

Problem 3. Determine a control u that carries a point from the position c,, c2 at the 
instant t = 0 to the position (—t0, 0) at the instant t0, so that functional (3.6) should 
attain its minimum. Of course, the optimal control found for Problem 3 is optimal for 
Problem 2.
Let us put

Then (3.5) can be written in the form

x = A(t)x + B(t)u
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where

‘o o' o'
>t(r) = ,5(0 =

.° °. _ij

^0
/(u) = /(M2(r)-*i(r)-0*

0

The matrices A(Z) and B(t) as constants are continuous. We introduce the notations

Note that the function f°, with a fixed t, is a convex and bounded function with 16 [0, 
r0]. In turn, the function h° is a sharply convex function, and

|/t° (f, «)!>!« |J.

Making use of the theorems given in monograph [4] on pages 226—234, we find that 
Problem 3 does possess a solution. Moreover, the control u*(f) together with the trajec
tory' x*(f) will be optimal in our problem if and only if there exists a vector

t?(f)= [ł?0, T?(0]

such that

t?o =O,r?o <0,

t? = -no
x) 

9x

and such that almost everywhere on the interval [0, r0] the relation

r?o h 0 (f, u * (r)) + T?(r) B(0 u * (t) = max [r?0 h 0 (f, u) + r? (f) B (t) u ]

is satisfied.

We determine successively

t?(0 = [>70 t + di.d2],u*(r) = -(c/2/2j)o)
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and

where d,, d2, d3, are fixed real numbers. Since

xf(0) = cf, xf(0) = cj, x?(0) = cf, xf(f0) = -f0. *î('o) = *î(fo) = 0, 

therefore from (3.6), the above relations and the fact that

dï
= +(—7 ~d3)t + ds,d5 = const,

4r?o

we shall easily find the relation

Hence we infer that if the function/€/7 £ has expansion (1.2) with Ci andc2 fixed, then 
the sharp estimate

cl 1 ,
(3.7) c3<---c?

c, 2

takes place. Estimate (3.7) was obtained, in some other way, by V. V. Sobolev and T. 
N. Sellyakhova in 1974 [11].

The result obtained constitutes a confirmation of the efficacy of simultaneous applica
tion of methods of complex analysis and optimal control to investigating extremal prob
lems in the spaces of holomorphic and univalent functions in a half-plane.
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STRESZCZENIE

W pracy tej przedstawiono próbę stosowania metod analizy zespolonej i sterowania optymalnego 
do badania problemów ekstremalnych dla funkcji holomorficznych i jednolistnych w półpłaszczyź- 
nie. Celowość badania problemów ekstremalnych dla takich funkcji jest uzasadniona ich zastosowa
niami w mechanice ośrodków ciągłych.

РЕЗЮМЕ

В работе представлена попытка использования метода комплексного анализа и теории оп
тимального управлукия в изучении экстремальных задач для отображений голоморфных и 
однолистных в полуплоскости. Целесообразность изучения экстремальных задач для таких 
отображений обоснованна возможностью их применения в механике непрерывных сред.


